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1 Classical Mechanics
Problem:
Given two points (spacetime or in any general manifold representing some states of the system), find the
"trajectory" of the system in the configuration space.
solution: Functional Integrals

Definition 1 (ActionFunctional) Given a manifold M, two points in it p0, p1 ∈M , two real parame-
ters t0 < t1 and a smooth function : L : TM →M . We define the action functional by:

S : Ω = {cεC∞([t0, t1],M)|c(t0) = p0, c(t1) = p1} → R

c(t) 7→
∫ t1

t0

L(ċ(t)) dt

We want to find the minimum of this action. We parametrize the possible trajectories by a parameter
s ∈ R. For some curve c(t) = (x1(t), . . . , xm(t)) we have ċ(t) = (x1(t), . . . , xm(t), (̇x)1(t), . . . , (̇x)m(t)).
We define:

vj(t) :=
∂

∂s
xj(s, t)

∣∣∣∣
s=0

It is obvious we look for curves with the property
d

ds
S(cs)

∣∣∣∣
s=0

= 0. We calculate:

d

ds
S(cs)

∣∣∣∣
s=0

=

∫ t1

t0

∂

∂s
L(x1(s, t), . . . , xm(s, t), ẋ1(s, t), . . . , ẋm(s, t)) dt

=

∫ t1

t0

(
∂L(x(t), ẋ(t))

∂xi

∂xi
∂s

+
∂L(x(t), ẋ(t))

∂ẋi

∂ẋi
∂s

)
dt

∣∣∣∣
s=0

=

∫ t1

t0

(
∂L(x1, . . . , xm, ẋ1, . . . , ẋm)

∂xi

∂xi
∂s

+
d

dt

(
∂L

∂ẋi

∂ẋi
∂s

)
− d

dt

(
∂L

∂ẋi

)
∂xi
∂s

)
dt

=

∫ t1

t0

(
∂L

∂xi
− d

dt

∂L

∂ẋi

)
vi(t) dt

By the fundamental lemma of calculus of variations we arrive at the well known Euler-Lagrange
equations:

d

dt

∂L

∂ẋi
(x(t), ẋ(t)) =

∂L

∂xi
(x(t), ẋ(t)), i = 1, . . . ,m

Example: Geodesics

In a n-dim manifold we take:
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L =
1

2
gij ẋ

iẋj

The Euler-Lagrange equations coincide with the geodesic equations:

∇
dt
ẋi = 0 , i = 1, . . . , n

Theorem 1 (Noether’s Theorem) If a system has a continuous symmetry, then there exists a con-
served quantity which is called Noether’s Charge.

In our simple case:

Qi =
∂L

∂ẋj
Xj

i −
(
∂L

∂ẋj
ẋj − L

)
Ti (1)

With ∆xj = Xj
i ε

i and ∆t = Tiε
i. And εi are some real small parameters.

In a realistic case we take some transformation check if it leaves invariant the action, and then try to
find the correspodint charge. The next example shows the way we can do it:

Example: Time Translations

So we take t′ 7→ t + α and δx = ẋα, where α > 0 is some small parameter. For simplicity we take

L = m
2 ẋ

2 − V (x). The E-L equation read mẍ = −∂V
∂x

. We try so see if the action remains unchanged:

δS =

∫ t1

t0

(
mẋδẋ− ∂V

∂x
δx

)
dt =

∫ t1

t0

(
mαẋẍ− ∂v

∂x
ẋ

)
dt =

∫ t1

t0

d

dt

(m
2
αẋ2 − αV

)
dt

And since we ask for all physical quantities to vanish at the boundaries we get δS = 0, so the above
transformation is a symmetry. To find the conserved charge we consider the parameter as a function of

time and try to bring the variation to the form δS =

∫ t1

t0

α̇Q dt where Q will be our conserved charge.

δS =

∫ t1

t0

(
mẋ (α̇ẋ+ αẍ)− ∂V

∂x
αẋ

)
dt =

∫ t1

t0

(
mẋ2α̇− α d

dt

(m
2
ẋ2 − V

))
dt

=

∫ t1

t0

α̇
(
mẋ2 − m

2
ẋ2 + V

)
dt

And so the conserved charge is Q = m
2 ẋ

2 + V = H. So the energy is conserved

2 Classical Mechanics on Supermanifolds
We would like now to do the same procedure but in the case of a Supermanifold. Every new structure
will come from the odd part. So lets say we do not have any even variables and L ∈ O0|2n(0), so it is a
polynomial in the variables θ1, . . . , θn, η1, . . . , ηn. So the Lagrangian here is defined as:

L : (Λ∗Rn)1 × · · · × (Λ∗Rn)1︸ ︷︷ ︸
2n

→ ΛRn (2)

We define by Ω1 :=
{
c = (c1, . . . , cn) ∈ C∞ ([t0, t1], (Λ∗Rn)1 × · · · × (Λ∗Rn)1)

∣∣c(t0) = p0, c(t1) = p1
}
.

The action is defined as:

S : Ω1 → Λ∗RnS(c) =

∫ t1

t0

L(c1(t), . . . , cn(t), ċ1(t), . . . , ċn(t)) dt (3)

By following the previous arguments we get:
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d

ds
S(cs)

∣∣∣∣
s=0

=

∫ t1

t0

∂

∂s
L (θ1(s, t), . . . , θn(s, t), η1(s, t), . . . , ηn(s, t))

∣∣∣∣
s=0

dt

=

∫ t1

t0

(
∂L (θ(t), η(t))

∂θj

dθj
ds

∣∣∣∣
s=0

+
∂L (θ(t), η(t))

∂ηj

dηj
ds

∣∣∣∣
s=0

)
dt

but θ̇j = ηj . So:

d

ds
S(cs)

∣∣∣∣
s=0

=

∫ t1

t0

(
∂L (θ(t), η(t))

∂θj

dθj
ds

∣∣∣∣
s=0

+
d

dt

(
∂L(θ(t), η(t))

∂ηi

dθj
ds

∣∣∣∣
s=0

)
− d

dt

(
∂L(θ(t), η(t))

∂ηi

)
dθj
ds

∣∣∣∣
s=0

)
dt

=

∫ t1

t0

(
∂L(θ(t), η(t))

∂θi
− d

dt

(
∂L(θ(t), η(t))

∂ηi(t)

))
dθi
ds

∣∣∣∣
s=0

dt

So once again we get :

∂L(θ(t), η(t))

∂θi
=

d

dt

(
∂L(θ(t), η(t))

∂ηi(t)

)

Remark: Noether’s Charge

Of course the Noether’s theorem apply also to the case of Supermanifolds. Let us see an example:

Example: Supercharge

We take the most trivial supersymmetric Lagrangian L = 1
2 ẋ

2 + ı
2θθ̇. So we have only one even and

one odd variable in a flat space. We consider the transformations δ(ε)x = −iεθ and δ(ε)ψ = εẋ where
ε is some small odd parameter. To have δS = 0 We get (following the same procedure as for the time
translations) that there is a conserved quantity:

Q = iẋθ

3 Pseudoclassical Mechanincs

We consider the Lagrangian: L := 1
2

3∑
i=1

θiηi + b1θ2θ3 + b2θ3θ1 + b3θ1θ2. Where the quantities bi are just

real parameters.
We calculate:

d

dt

(
∂L

∂ηj

)
=

1

2

3∑
i=1

d

dt

(
− ∂ηi
∂ηj

θi

)
= −1

2

3∑
i=1

d

dt
(δijθi) = −1

2
θ̇j

The same way we find:

∂L

∂θi
=

1

2
θ̇i −

∑
ij

εijkbjθk

So combining the previous:

θ̇i =
∑
jk

εijkbjθk
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Something weird happened ⇒ spin . Classicaly there is no analogue of spin. The appearence here
is credited to the use of the (nonstandard) grassman variables.We consider a general Lagrangian in a
supermanifold (TM,OTM ) where OTM (U) = C∞(U)⊗Λ∗R2n. The equations of motion are a combined
system of the ones we found so far:

d

dt

∂L

∂yi
=
∂L

∂xi
, i = 1, . . . ,m (4)

d

dt

∂L

∂ηi
=
∂L

∂θi
, i = 1, . . . , n (5)

Example We take M = R3. ~B = (b1(x), b2(x), b3(x)). Consider:

L(x, y, θ, η) =
m

2
〈y, y〉 − V (x) +

i

2

3∑
k=1

θkηk + i (b1(x)θ2θ3 + b2(x)θ3θ1 + b3(x)θ1θ2) (6)

So we get:

mẍ = −∇V + ı (∇b1(x)θ2θ3 +∇b2(x)θ3θ1 +∇b3(x)θ1θ2)

θ̇ = ~B(x)× θ

Grassman variables are not meassurable by experiments. We introduce the expectation value of a
function of the odd variables:

〈f〉 = i

∫
f(θ)ρ(θ, t)d3θ (7)

demanding also that 〈1〉 = 1 , 〈~S〉 = ~C we get:

ρ(θ) = − i
6
εabcθ

aθbθc + Caθa (8)

But for 〈f∗f〉 ≥ 0 we have to get ~C = 0. Which is very trivial. This is solved with quantization. The
simplest way to do that is in the "canonical" way:

[, ]P →
ı

~
[, ] (9)

The grassman variables up to some rescaling go to the Pauli matrices, σi =
√

2
~θ

i. The spin now

takes the (familiar) form ~S = 1
2~~σ. These turn the Grassmann algebra [θi, θj ]P = iδij to the Clifford

algebra [σi, σj ] = 2δij . We must also redefine the expectation value by i
∫
fρ dθ → Tr (ρf). Where :

ρ(θ) = 2

(
1

2
+ ~C

~σ

~

)
(10)

is defined as the density matrix. So the new condition for positive difiniteness reads:|~C| ≤ 1
2~
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