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1 Poincare symmetry and spinors
The d-dimensional real vector space with metric

gµν = diag(1,−1, . . . ,−1︸ ︷︷ ︸
d−1

)

is called Minkowski space. A Lorentz transformation

xµ → x′µ = Λµνx
ν (1)

is an automorphism of Minkowski space which leaves the metric tensor invariant.

Lorentz transformation in 4-dimensions has six generators: three rotations Ji and three boosts Ki with
following commutation relations:

[Ji, Jj ] = iεijkJk

[Ki,Kj ] = −iεijkJk (2)
[Ji,Kj ] = iεijkKj

Let us define new generators as:

J±j =
1

2
(Jj ± iKj) (3)

Note that these generators are the non-Hermitian. The commutation relations (2) then become

[J±i , J
±
j ] = iεijkJ

±
k

[J±i , J
∓
j ] = 0

We see that J+ and J− each generate a group SU(2), and these two groups commute. One can easily
show that the Lorentz group is then essentially SU(2)× SU(2) = SL(2, C) group.

The Poincare group contains Lorentz transformations and translations:

xµ → x′µ = Λµνx
ν + aµ (4)

The translations do not commute with the Lorentz transformations.

One rewrites Lorentz generators as M0i = Ki and Mij = εijkJk. Then the Poincare algebra becomes:

[Pµ, Pν ] = 0

[Mµν ,Mρσ] = igνρMρσ − igµρMνσ − igνσMµρ + igµσMνρ

[Mµν , Pρ] = −igρµPν + igρνPµ (5)

The elements M ∈ SL(2, C) are automorphisms of spinor space. Let ψα be an arbitrary element (called
spinor) of the spinor space. Consider SL(2, C)–transformation of ψα:

ψα → ψ′α = Mβ
αψβ . (6)

1



It is a fundamental representation of SL(2, C). The conjugate representation is

ψ̄α → ψ̄′α̇ = M∗βα̇ ψβ . (7)

We now want to enlarge the Poincare algebra by generators that transform either as undotted spinors
QNα or as dotted spinors Q̄Nα̇ under Lorentz transformations and that commute with translations:

[Pµ, Q
N
α ] = 0

[Pµ, Q̄
N
α̇ ] = 0

[Mµν , Q
N
α ] = i(σµν)βαQ

N
β

[Mµν , Q̄
N
α̇ ] = i(σ̄µν)β̇α̇Q̄

N
β̇

(8)

The only possibility that algebra does not require extra generators is found to be the algebra:

{QIα, Q̄Jβ̇} = 2(σmu)α,β̇P
µδIJ

{QIα, QJβ} = εαβZ
IJ

{Q̄Iα̇, Q̄Jβ̇} = εα̇β̇(ZIJ)∗. (9)

ZIJ = −ZJI commute with all generators of SUSY algebra and called central charges. In N=1 SUSY
there are no central charges.

The generators are described by the following representations of the Poincare algebra:

Pµ → (1/2, 1/2) Mµν → (1, 0) + (0, 1)

Qα → (1/2, 0) Q̄α̇ → (0, 1/2).

2 Some properties
Since the full SUSY algebra contains the Poincare algebra as a subalgebra, any representation of the
full SUSY algebra also gives a representation of the Poincare algebra. Each irreducible representation
of the Poincare algebra corresponds to a particle. An irreducible representation of the SUSY algebra in
general corresponds to several particles, in other words each superparticle, when viewed as irreducible
representation of the SUSY algebra, is the direct sum of a collection of ordinary particles, called a
multiplet.

Note that in systems where particles are created and annihilated the unitary representation of the Poincare
algebra is not irreducible and for this reason there are some problems in Quantum Field Theory, which
have been solved only partially, by procedures like renormalization.

There are some basic properties in SUSY:

1. All particles belonging to an irreducible representation of SUSY, i.e. within one supermultiplet, have
the same mass.

2. The energy P0 is always positive in SUSY.

3. A supermultiplet always contains an equal number of bosonic and fermionic degrees of freedom, i.e.
the number nb of bosons equals the number nf of fermions.

Consider fermion number operator (−)NF defined as

(−)NF |b 〉= |b〉
(−)NF |f 〉= −|f〉 . (10)
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(−)NF anticommutes with Q:

(−)NFQ|f
〉
= (−)NF |b

〉
= |b >= Q|f

〉
= −Q(−)NF |f

〉
Therefore

{(−)NF , Q} = 0. (11)

Using the cyclicity of the trace one has

0 = Tr
(
−Q(−)NF Q̄+Q(−)NF Q̄

)
= Tr

(
−Q(−)NF Q̄+ (−)NF Q̄Q

)
= Tr

(
(−)NF {Q, Q̄}

)
= Tr

(
(−)NF 2σµPµ

)
= 2σµpµTr

(
(−)NF

)
, (12)

where Pµ is replaced by its eigenvalues pµ for the specific state. As result we get that

0 = Tr
(
(−)NF

)
=
∑
bosons

〈
b|(−)NF |b

〉
+

∑
fermions

〈
f |(−)NF |f

〉
=
∑
bosons

〈b|b〉 −
∑

fermions

〈f |f〉 = nb − nf .

(13)

3 Superspace and Superfields
A very convenient way to obtain supermultiplets is the superfield technique. Superfield is a function on
the superspace. Since the supercoordinates θ and θ̄ cannot be multiplied one by another more than some
fixed number of times the Taylor expansion of a superfield over supercoordinates is finite.

Let us consider N=1 SUSY. An arbitrary scalar superfield can always be expended as:

F (x, θ, θ̄) = f(x) + θψ(x) + θ̄ξ̄(x) +m(x)θθ+ n(x)θ̄θ̄+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + d(x)θθθ̄θ̄ (14)

where θ = (θa, θ
†ḃ)T and θa are Grassman.

We now want to realize the SUSY generators Qα and its hermitian conjugate Q̄α̇ = (Qα)† as differential
operators on superspace. We want that iεαQα generates a translation in θα by a constant infinitesimal
spinor εα plus some translation in xµ:

(1 + iεQ)F (x, θ, θ̄) = F (x+ δx,+ε, θ̄) (15)

By the ansatz we find that

Qα = −i ∂

∂θα
+ σµ

αβ̇
θ̄β̇∂µ (16)

Then the hermitian conjugate is

Q̄α̇ = i
∂

∂θ̄α̇
+ θβσµβα̇∂µ. (17)

We define SUSY variation as
δε,ε̄F = (iεQ+ iε̄Q̄)F. (18)

Let us find covariant derivatives Dα and D̄α̇ that commute with the SUSY generators Q and Q̄. Then
δεε̄(DαF ) = Dα(δεε̄F ) and the same for D̄α̇. One finds

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ

D̄α̇ = − ∂

∂θ̄α̇
+ iθβσµβα̇∂µ. (19)

A chiral superfield F is defined by the condition

D̄α̇F = 0 (20)

and an anti-chiral superfield F̄ by
DαF̄ = 0. (21)
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4 Supersymmetry in dimension 2 + 1

Let us consider SUSY in the three-dimensional Minkowski space.

Consider scalar superfield F (x, θ, θ̄):

F (x, θ) = A(x) + ψ̄θ + Φθ̄θ, (22)

where A(x) and Φ are scalar fields of the boson type and ψ and ψ̄ are Majorana spinor fields of the
fermionic type. Let us show that θθ̄ is invariant under the Lorentz transformations. We know that θ
transforms under the Lorentz transformation as:

θ′ = θ +
i

2
ωµνJ

µνθ (23)

here Jµν = − i
4 [σµ, σν ]. Now we can write transformations of θ1 and θ2:

θ′1 = θ1 +
i

2
(ω01θ1 + ω12θ2 + ω20θ2) (24)

θ′2 = θ2 +
i

2
(−ω01θ2 − ω12θ1 + ω20θ1) (25)

After some math one can easily show that:

θ′1θ
′
2 = θ1θ2. (26)

Since θ̄θ = 2θ1θ2, θ̄θ is a Lorentz invariant. It is obvious that ψθ̄ and θψ̄ are also invariants under the
Lorentz transformations.

Under acting of the operator δεε̄ fields A(x), ψ(x) and Φ(x) transform through each other:

A′(x) = A(x) + 2ψ̄ε(x);

ψ′(x) = ψ(x)− σµε∂µA− 2Φε; (27)
Φ′(x) = Φ(x) + ∂µ ¯ψ(x)σµε.

The superfield F (x, θ, θ̄) transforms as:

δεε̄F (x, θ) = (θ̄σµε)∂µA(x) + 2ψ̄(x)ε+ (∂µψ̄(x)σµε)θθ̄ + 2Φ(x)θ̄ε. (28)

We see that the operator δεε̄ from the odd part of the superalgebra mixes fields which transform in
different ways under acting of the Poincare group. It mixes fermions and bosons.

Let us construct the simplest Lagrangian for the scalar superfield F (x, θ, θ̄). We require that as equations
of motion we obtain second-order differential equations. So the derivatives in the Lagrangian should
occur no more than quadratically. We shal also require the Lagrangian would be invariant under Poincare
transformations.

As far as our superspace is parametrised by usual coordinates xµ and grassmanian coordinates θ, θ̄, one
should integrate over all these coordinates to obtain translational invariant action. The action which
would give us a Lorentz-invariant theory of free scalar and spinor fields has the following form:

S =

∫
d3xdθ̄dθ

(
D̄FDF +MF 2

)
=

∫
d3xL. (29)

Covariant derivation has the form:

DΦ = −1

2
σµθ∂µA− λ+

θθ̄

2
σµ∂µψ − θΦ. (30)

One can show that the Lagrangian density is (terms with coefficent θ̄θ):

L =

(
−1

2
(∂µA)2 − ψ̄σµ∂µψ + 2Φ2

)
+M(2AΦ− ψ̄ψ). (31)
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Let us find equation of motion for the field Φ:

2Φ = −AM. (32)

This field has no dynamics, but interaction of the fields A and λ with it gives rise to the mass terms.
This can be easily seen if one put (32) to the action (29):

L = −1

2

(
(∂µA)2 +M2A2

)
− ψ̄ (σµ∂µ +M)ψ. (33)

We see that fermion and boson fields in the scalar multiplet have the same mass.
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