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1 Compact real super manifolds (X,OX) and their superal-
gebra OX(X) of global superfunctions

The aim of this section is to prove that compact supermanifolds (X,OX) are completely determined
by their superalgebra OX(X) of global superfunctions.

1.1 Statements and Corollaries

Let us first formulate the statement more precisely:

Theorem 1.1. Let (X,OX), (Y,OY ) be compact supermanifolds such that the unital superal-
gebras OX(X) and OY (Y ) are isomorphic. Then the supermanifolds (X,OX) and (Y,OY ) are
isomorphic.

More generally we prove

Theorem 1.2. Let (X,OX), (Y,OY ) be supermanifolds, χ : OY (Y )→ OX(X) be a unital super-
algebra homomorphism and Y be compact. Then there exists exactly one morphism

(ϕ,Ψ) : (X,OX)→ (Y,OY )

such that ΨY = χ.

Before we come to the technical details of the proof of Theorem 1.2 let us first see how we can
use Theorem 1.2 to prove Theorem 1.1:

Let χ : OX(X)→ OY (Y ) be the unital superalgebra isomorphism. From Theorem 1.2 we get
morphisms of supermanifolds

(ϕ1,Ψ1) : (Y,OY )→ (X,OX), (ϕ2,Ψ2) : (X,OX)→ (Y,OY )

such that (Ψ1)X = χ and (Ψ2)Y = χ−1. Then (ϕ1 ◦ ϕ2,Ψ1 ◦ Ψ2) : (X,OX) → (X,OX) and
(idX , idOX

) : (X,OX)→ (X,OX) are both morphisms of the compact supermanifold (X,OX) such
that the corresponding unital superalgebra homorphism from OX(X) to OX(X) is the identity.
Thus the uniqueness result in Theorem 1.1 tells us that they coincide, i.e. ϕ1◦ϕ2 = idX , Ψ1◦Ψ2 =
idOX

. Similarly, we get ϕ2 ◦ϕ1 = idY , Ψ2 ◦Ψ1 = idOY
and so (ϕ1,Ψ1) : (X,OX)→ (Y,OY ) is an

isomorphism of supermanifolds.
Besides we like to note an interesting consequence of Theorem 1.1. We saw last time that each

smooth manifold M gives rise to a supermanifold (M,C∞M ) of dimension n|0. Moreover, we know
from last time that if (ϕ,Ψ) is a morphism of supermanifolds, then ϕ is smooth. Hence we get

Corollary 1.3. Let M , N be compact smooth manifolds such that the unital algebras C∞(M) and
C∞(N) are isomorphic. Then M and N are diffeomorphic.

Remark 1.4. Note that Corollary 1.3 is totally wrong if we are in the complex category: From
Liouville’s theorem we know that for all compact complex manifolds the set HolX(X) of holomor-
phic functions f : X → C is isomorphic as a unital algebra to C, but there are of course many
non-isomorphic compact complex manifolds.
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1.2 Globalization of local superfunctions and other useful results

We remind the reader of three properties we had proven last time:

Lemma 1.5. (a) Let M be a compact smooth manifold. The unital algebra homomorphisms
δ : C∞(M)→ R are precisely δp, p ∈M with δp(f) := f(p).

(b) Let (X,OX) be a supermanifold. Then there is precisely one unital sheaf homomorphism
β : OX → C∞X . Moreover, for all U ∈ TX , we have the following short exact sequence of
superalgebras:

0→ O1(U)→ OX(U)
βU→ C∞X (U) = C∞(U)→ 0.

Thereby, O1(U) is the set of all nilpotent elements in OX(U).

(c) Let (X,OX), (Y,OY ) be supermanifolds and (ϕ,Ψ) : (X,OX) → (Y,OY ) be a morphism of
supermanifolds. Let ϕ∗ : C∞(Y ) → C∞(X) be the pullback of C∞-functions with ϕ, i.e.
ϕ∗(f) = f ◦ ϕ. Then the following diagramm commutes:

OX(X)
χ← OY (Y )

βX ↓ ↓ βY
C∞(X)

ϕ∗

← C∞(Y )

For a local C∞-function f : U → R on a smooth manifold M we know that for each y ∈ U we
can find a global function fy : M → R such that fy|WY

= f |Wy
for some (in general smaller) open

neighborhood Wy ⊆ U of y ∈M . We like to prove the same result for superfunctions. This result
will play the crucial role in the proof of Theorem 1.2 and it is the reason why a similar result in
the complex holomorphic setting fails.

Lemma 1.6. Let (X,OX) be a supermanifold, U ∈ TX , f ∈ OX(U), y ∈ U . Then there exists
U ⊇Wy ∈ TX , y ∈Wy and fy ∈ OX(X) such that ρWy,X(fy) = ρWy,U (f).

Proof. We may assume, without loss of generality, that U is a superchart neighborhood, i.e.
OX(U) ∼= Om|n(U) and

f =
∑
ε

fε ⊗ θε11 · . . . · θεnn

with fε ∈ C∞(U). Then there exists ρy ∈ C∞(U) such that ρy|Wy
≡ 1 and supp(ρy) ( U . Thus

g :=
∑
ε

fε · ρy ⊗ θε11 · . . . · θεnn

fulfills ρWy,U (f) = ρWy,U (g) and ρU\supp(ρy),U (g) = 0. Let now fy ∈ OX(X) be the unique
function such that ρU,X(fy) = g and ρX\supp(ρy),X(fy) = 0. Note that such a superfunction exists
since

ρU∩(X\supp(ρy)),U (g) = ρU\supp(ρy),U (g) = 0 = ρU\supp(ρy),X\supp(ρy)(0).

Then ρWy,X(fy) = ρWy,U (g) = ρWy,U (f) as claimed.

1.3 Proof of Theorem 1.2

Construction of ϕ : X → Y :
To construct ϕ, the first step is to show that there exists a unique unital algebra homomorphism

χ̃ : C∞(Y )→ C∞(X)such that the following diagram commutes (think of Lemma 1.5 (c)):

OX(X)
χ← OY (Y )

βX ↓ ↓ βY
C∞(X)

χ̃← C∞(Y )
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The only possibility to define χ̃ is by setting χ̃(f) := βX(χ(F )) for some F ∈ OY (Y ) with
βY (F ) = f . Note that due to the surjectivity of βY (Lemma 1.5 (b)) such an F exists. χ̃
is a unital algebra homomorphism if it is well-defined. Therefore, let F1, F2 ∈ OY (Y ) with
f = βY (F1) = βY (F2). In particular, then βY (F1 − F2) = 0 so that F1 − F2 is by Lemma 1.5
(b) nilpotent. Thus also χ(F1 − F2) ∈ OX(X) is nilpotent and so χ(F1 − F2) ∈ kerβX . Thus
βX(χ(F1))− βX(χ(F2)) = βX(χ(F1 − F2)) = 0 and χ̃ is well-defined.

Next, let x ∈ X. Then δx ◦ χ̃ : C∞(Y ) → R is a unital algebra homomorphism. Thus, by
Lemma 1.5 (a) there exists exactly one y ∈ Y such that δx ◦ χ̃ = δy. Set now ϕ(x) := y.

Continuity of ϕ : X → Y :
Notice that for all f ∈ C∞(Y ) and all convergent sequences (xi)i with limit x we have

f(ϕ(xi)) = δϕ(xi)(f) = (δxi ◦ χ̃)(f) = χ̃(f)(xi)
i→∞→ χ̃(f)(x) = f(ϕ(x)).

Suppose now that nevertheless (ϕ(xi))i does not converge to ϕ(x). Then there exists an open
neighborhood U of ϕ(x) and a subsequence (ϕ(xij ))j such that for all j ∈ N we have ϕ(xij ) /∈ U .
There exists a smooth function f ∈ C∞(Y ) such that supp(f) ( U and f |V ≡ 1 for some open
neighborhood V ( U of ϕ(x). But then

0 = lim
j→∞

f(ϕ(xij )) 6= 1 = f(ϕ(x)),

a contradiction. Thus (ϕ(xi)i converges to ϕ(x) and ϕ is continuous.
Uniqueness of ϕ : X → Y :
Suppose that (ϕ0,Ψ0) : (X,OX)→ (Y,OY ) is a morphism of supermanifolds with (Ψ0)Y = χ.

Then Lemma 1.5 tells us that βX ◦ (Ψ0)Y = βX ◦ χ = ϕ∗0 ◦ βY and the uniqueness result for χ̃ at
the beginning tells us χ̃ = ϕ∗0, i.e. f(ϕ(x)) = χ̃(f)(x) = ϕ∗0(f)(x) = f(ϕ0(x)) for all f ∈ C∞(M).
But then ϕ(x) = ϕ0(x) for all x ∈ X, since for X 3 y 6= z ∈ X there is always f ∈ C∞(M) such
that f(y) = 1 and f(z) = 0.

Construction of Ψ:
For the rest of the proof we will frequently use that χ : OY (Y )→ OX(X) is local, i.e. if U ∈ TY

and ρU,Y (f) = 0 for some f ∈ OY (Y ), then ρϕ−1(U),X(χ(f)) = 0. We do not prove this here.
Let now U ∈ TY and f ∈ OY (U). Set V := ϕ−1(U). We have to define ΨV (f) ∈ OX(V ).

Therefore, we like to use χ : OY (Y ) → OX(X). Hence we have to globalize f as in Lemma
1.6. So, for each y ∈ U we have an open neighborhood Uy ⊆ U of y and fy ∈ OY (Y ) such that
ρUy,Y (fy) = ρUy,U (f). In particular,

ρUy∩Uz,Y (fy − fz) = ρUy∩Uz,Uy
◦ ρUy,Y (fy)− ρUy∩Uz,Uz

◦ ρUz,Y (fz) = ρUy∩Uz,U (f)− ρUy∩Uz,U (f) = 0.
(1.1)

for all y, z ∈ U .
Set Vy := ϕ−1(Uy) ⊆ V and hy := ρVy,X(χ(fy)) for all y ∈ U . We like to build out of

the superfunctions hy ∈ OX(Vy) a superfunction on V . Therefore we have to check that the
restrictions are the same on the overlaps. We get

ρVy∩Vz,Vy (hy) = ρVy∩Vz,X(χ(fy)) = ρVy∩Vz,X(χ(fz))+ρVy∩Vz,X(χ(fy−fz))
(1.1), χ local

= ρVy∩Vz,Vz (hz).

Hence there exists a unique h ∈ OX(V ) such that ρVy,V (h) = hy. Now set ΨU (f) := h. If ΨU

is well-defined, i.e. independent of fy and Uy, then we see from the construction that ΨU is a
unital superalgebra homomorphism. Moreover, ΨY = χ, since in this case we can choose fy = f
and Uy = Y for all y ∈ Y . Furthermore, if everything is well-defined we also see easily that
ρV0,V ◦ΨU = ΨU0 ◦ ρU0,U for all U0 ⊆ U , V0 := ϕ−1(U0).

Well-definedness of Ψ:
Let f̃y ∈ OY (Y ) with ρŨy,Y

(f̃y) = ρŨy,U
(f), h̃y := ρṼy,X

(χ(f̃y)) ∈ OX(Ṽy), Ṽy := ϕ−1(Ũy)

and h̃ ∈ OX(V ) be the unique superfunction with ρṼy,V
(h̃) = h̃y. Then, for all y ∈ U , we have

ρUy∩Ũy,Y
(fy − f̃y) = (ρUy∩Ũy,Uy

◦ ρUy,Y )(fy)− (ρUy∩Ũy,Ũy
◦ ρŨy,Y

)(fy)

= (ρUy∩Ũy,Uy
◦ ρUy,U )(f)− (ρUy∩Ũy,Ũy

◦ ρŨy,U
)(f) = 0.
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Hence, by the locality of χ:

0 = ρVy∩Ṽy,X
(χ(fy − f̃y)) = ρVy∩Ṽy,Vy

(hy)− ρVy∩Ṽy,Ṽy
(h̃y) = ρVy∩Ṽy,V

(h− h̃).

But then h− h̃ = 0 since
⋃
y∈U (Vy ∩ Ṽy) = V . Thus ΨU is well-defined.

Uniqueness of Ψ:

Let Ψ̃ be a different sheaf homomorphism Ψ̃ : (Y,OY ) → (Y, ϕ∗OX). Let U ∈ TY and
f ∈ OY (U). Then, if Uy, fy, Vy, V are defined as before, we must have

ρVy,V (Ψ̃U (f)) = Ψ̃Uy
(ρUy,U (f)) = Ψ̃Uy

(ρUy,Y (fy)) = ρVy,X(Ψ̃Y (fy)) = ρVy,X(χ(fy)) = ρVy,V (ΨU (f)).

Thus Ψ̃U (f) = ΨU (f) due to
⋃
y∈U VY = V .

2 Function factors

Definition 2.1. Let (X,OX) be a supermanifold and U ∈ TX . A subalgebra C(U) of the even
superfunctions OX(U)0 is called function factor on U if βU |C(U) : C(U) → C∞(U) is a unital
algebra isomorphism.

Remarks 2.2. • There is a natural embedding of C∞(U) into Om|n(U) = C∞(U) ⊗ Λ∗Rn as
the even subalgebra C∞(U)⊗ Λ0Rn. Hence, locally function factors always exist.

• Function factors are in general not unique, even locally. Therefore, consider e.g. (R,O1|2(R))
and note that O1|2(U)0 = C∞(U) ⊕ C∞(U)θ1θ2 for all open U ⊆ R. Then, for any h ∈
C∞(U) the set

Ch(U) := {f + h · f ′ · θ1 · θ2|f ∈ C∞(U)}

is an even subalgebra of O1|2(U), which is isomorphic to C∞(U) via βU .

• Each supermanifold (X,OX) possesses a global function factor C(X). This can be proven
with similar techniques as Theorem 1.2.

• After a choice of a global function factor C(X) one can prove that for each U ∈ TX there
exists a unique function factor C(U) with ρU,X(C(X)) ⊆ C(U). The map U 7→ C(U) is a
sheaf. In general, ρU,X(C(X)) 6= C(U) (consider e.g. (X,OX) = (X,C∞X ) with the natural
global function factor).

• So (β|C(U))
−1 gives us a splitting of the following exact sequence of sheaves:

0→ O1 → OX
β→ C∞X → 0.
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