Sebastian Novak

April 27, 2011

0 Preliminairies: Categories

A nice introduction to categories can be found in [Ric10].

Definition 1. A category C is a class of objects Ob(C) together with for each two objects $A, B \in Ob(C)$ a set of morphisms $\operatorname{Hom}_{\mathcal{C}}(A, B)$ and for each triple $A, B, C \in Ob(C)$ a composition map $\circ : \operatorname{Hom}_{\mathcal{C}}(B, C) \times \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$ satisfying the following:

- For $f \in \operatorname{Hom}_{\mathcal{C}}(A, B), g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$: $g \circ f \in \operatorname{Hom}_{\mathcal{C}}(A, C)$. (composition of morphisms)
- For each $A \in Ob(\mathcal{C})$ there is an identity morphism $\mathrm{id}_A \in \mathrm{Hom}_{\mathcal{C}}(A, A)$ such that for $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$: $\mathrm{id}_B \circ f = f \circ \mathrm{id}_A = f$.
- The composition of morphisms is associative: $f \circ (g \circ h) = (f \circ g) \circ h$.

Example 1. Sets: Sets and maps between sets, Gr: Groups with group homomorphisms, k-Vect: k-vector spaces and k-linear maps. (for a field k), k-SVect: k-super vector spaces and even k-linear maps, k-Vect^Z₂: Z₂-graded vector spaces with graded k-linear maps.

Example 2. Let X be a topological space, \mathcal{T}_X its topology. \mathcal{T}_X is a category with inclusions of sets as morphisms.

1 Sheaves: Basic definitions

From now on I basically follow [Bä05].

Definition 2. Let X be a topological space with topology \mathcal{T}_X as in example 2. Let \mathcal{C} be a category. A *presheaf* with values in \mathcal{C} is a contravariant functor $\mathcal{G} : \mathcal{T}_X \to \mathcal{C}$:

- \mathcal{G} assigns to each open set $U \in \mathcal{T}_X$ an object $\mathcal{G}(U)$ in \mathcal{C} .
- \mathcal{G} assigns to each pair of open sets $U \subset V$ a "restriction" morphism $\rho_{U,V}^{\mathcal{G}} \in \operatorname{Hom}_{\mathcal{C}}(\mathcal{G}(V), \mathcal{G}(U))$.
- \mathcal{G} preserves identities and composition:

$$\rho_{U,U} = \mathrm{id}_U,$$

$$\rho_{U,V} \circ \rho_{V,W} = \rho_{U,W}$$

for all $U, V, W \in \mathcal{T}_X$.

Definition 3. A sheaf is a presheaf that is complete in the following sense: For each family $(U_{\alpha})_{\alpha \in I}$ of open sets with $\bigcup_{\alpha \in I} U_{\alpha} = U \in \mathcal{T}_X$ we have:

Given a family $(f_{\alpha})_{\alpha \in I}, f_{\alpha} \in \mathcal{G}(U_{\alpha})$ such that for all $\alpha, \beta \in I$

$$\rho_{U_{\alpha}\cap U_{\beta},U_{\alpha}}(f_{\alpha}) = \rho_{U_{\alpha}\cap U_{\beta},U_{\beta}}(f_{\beta}),\tag{1}$$

there exists a unique $f \in \mathcal{G}(U)$ with $f_{\alpha} = \rho_{U_{\alpha},U}(f)$ for all $\alpha \in I$.

Definition 4. Let \mathcal{G} be a sheaf on $X, p \in X$. Define the *stalk* of \mathcal{G} over p as:

$$\mathcal{G}_p := \left(\bigcup_{\substack{U \in \mathcal{T}_{\mathcal{X}} \\ p \in U}}^{\circ} \mathcal{G}(U)\right) \Big/ \sim$$
(2)

Here the equivalence relation for $f \in \mathcal{G}(U_1), g \in \mathcal{G}(U_2)$ is given as

$$f \sim g :\Leftrightarrow \exists U_1 \cap U_2 \supset U_3 \in \mathcal{T}_X, p \in U_3 : \rho_{U_3, U_1}(f) = \rho_{U_3, U_2}(g).$$
(3)

The classes $[f]_p \in \mathcal{G}_p$ are called the *germs* of f at p_1

Remark 1. The stalks inherit the structure of the sheaf, i.e. $\mathcal{G}_p \in Ob(\mathcal{C})$.

- **Example 3.** Let X be a topological manifold. Then C_X^0 is a sheaf of rings over X: $C_X^0(U) = C^0(U)$ and for $f \in C^0(V)$, $\rho_{U,V} : C^0(V) \to C^0(U)$ is given by $\rho_{U,V} : f \mapsto f|_U$.
 - Let X be a smooth manifold and $\Omega^{\bullet} X = \bigoplus_{k=0}^{n} \Omega^{n} X$ be the smooth differential forms on X. This is a sheaf of unital \mathbb{R} -algebras.

2 Morphisms of sheaves

Definition 5. Let \mathcal{F}, \mathcal{G} be sheaves over a space X. A sheaf homomorphism $\psi : \mathcal{F} \to \mathcal{G}$ is a natural transformation of functors $\mathcal{F} \Rightarrow \mathcal{G}$, i.e., a family of morphisms $(\psi_U)_{U \in \mathcal{T}_X}, \psi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ such that

$$\begin{array}{cccc}
\mathcal{F}(V) \xrightarrow{\rho^{\mathcal{F}_{U,V}}} \mathcal{F}(U) & (4) \\
\psi_{V} & & & \downarrow \psi_{U} \\
\mathcal{G}(V) \xrightarrow{\rho^{\mathcal{G}}_{U,V}} \mathcal{G}(U)
\end{array}$$

commutes for all $V \subset U$.

Remark 2. For every $p \in X$ this induces a morphism on stalks $\psi_p : \mathcal{F}_p \to \mathcal{G}_p, \ \psi_p([f]_p) := [\psi_U(f)]_p$.

Definition 6. Let X, Y be topological spaces, $\varphi : X \to Y$ continuous, \mathcal{F} a sheaf over X, \mathcal{G} a sheaf over $Y. \varphi$ induces a functor $\varphi^{-1} : \mathcal{T}_Y \to \mathcal{T}_X$ and therefore an image sheaf $\varphi_* \mathcal{F} = \mathcal{F} \circ \varphi^{-1}$. A sheaf morphism $(\varphi, \psi) : (X, \mathcal{F}) \to (Y, \mathcal{G})$ is a continuous map $\varphi : X \to Y$ together with a sheaf homomorphism $\psi : \mathcal{G} \to \varphi_* \mathcal{F}$.

3 Ringed spaces

Definition 7. A k-ringed space (k a field) (X, \mathcal{G}, v) is a topological space X together with a sheaf \mathcal{G} of k-algebras on X and a family $(v_p)_{p \in X}$ of k-algebra morphisms (evaluation maps)

$$v_p:\mathcal{G}_p\to \mathbb{k}.$$

 \mathcal{G} is then called the *structure sheaf* of (X, \mathcal{G}, v) .

Definition 8. A k-ringed space (X, \mathcal{G}, v) is called *local*, if for all $p \in X \ker v_p$ is the unique maximal ideal of \mathcal{G}_p .

Remark 3. For local k-ringed spaces the evaluation map v is unique.

Example 4. (X, C_X^0, ev) with $ev_p(f) = f(p)$ is a locally \mathbb{R} -ringed space.

Definition 9. A morphism of k-ringed spaces (X, \mathcal{F}, v) , (Y, \mathcal{G}, w) is a morphism $(\varphi, \psi) : (X, \mathcal{F}) \to (Y, \mathcal{G})$ of sheaves such that

commutes for all $p \in X$.

Lemma 1. Let $(\varphi, \psi) : (X, \mathcal{F}, v) \to (Y, \mathcal{G}, w)$ be a morphism of k-ringed spaces, $p \in X$. Then

$$\ker w_{\varphi(p)} = \psi_p^{-1}(\ker v_p). \tag{6}$$

In particular if (X, \mathcal{F}, v) , (Y, \mathcal{G}, w) are locally ringed spaces then

$$\psi_p:\mathcal{G}_{\varphi(p)}\to\mathcal{F}_p$$

is a morphism of local rings, i.e. $\psi_p(\ker w_{\varphi(p)}) \subset \ker v_p$.

References

- [Bä05] C. Bär. Nichtkommutative Geometrie (Skript). http://geometrie.math.uni-potsdam.de/ documents/baer/skript-NKommGeo.pdf, 2005.
- [Ric10] B. Richter. Kategorientheorie mit Anwendungen in Topologie (Skript) . http://www.math. uni-hamburg.de/home/richter/cats.pdf, 2010.