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Remark Let X be an m-dimensional (smooth) manifold, let E → X be a vector bundle of rank n.
Then we have that (X,OE) is a supermanifold of dimension m|n, where OE is the sheaf of smooth
sections of Λ∗E → X.

Furthermore, C(U) := C∞(U ; Λ0E) ∼= C∞(U) is a function factor, the related sheaf morphism βU is
given by

βU : OE(U)→ C∞(U) :
∑
ε

fεθ
ε 7→ f0,...,0,

where ε is a multiindex with value in {0, 1}n and θε = θε11 · · · θεnn .

Remark The C∞(U)-algebra

O1(U) := kerβU = C∞(U,
⊕
k≥1

ΛkE)

is the set of all nilpotent elements of OE(U). Hence, we can see βU as the projection onto C∞(U).

Lemma

Let X be a (smooth) manifold and let (Uα)α∈I be an open covering of X. Let gαβ ∈ C∞(Uα ∩
Uβ ; GL(n,R)), such that for all α, β, γ ∈ I on Uα ∩ Uβ ∩ Uγ :

gαβ ◦ gβγ = gαγ ,

this is called the cocycle condition. Then there exist a up to isomorphism unique vector bundle E → X
which can be trivialized on each Uα with smooth sections eα,1, ..., eα,n, such that (eα,1, ..., eα,n) is a
frame field and for all α, β ∈ I, x ∈ Uα ∩ Uβ the following holds true:

n∑
j=1

gαβ(x)ijeβ,j(x) = eα,i(x).

Proof See lecture notes ”Nichtkommutative Geometrie”, C. Bär, page 29.

Theorem (Bachelor, 1980)

Let (X,OX) be a supermanifold of dimension m|n and let C(X) ⊂ OX(X) be a function factor. Then
there exists a vector bundle E → X of rank n, such that (X,OX) is isomorphic to (X,OE). The vector
bundle E is unique up to isomorphism and does not depend on the choice of C(X). Furthermore, the
isomorphism from (X,OX) to (X,OE) maps C(X) to C∞(X; Λ0E).
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Proof Roughly speaking, the proof works like this:

(i) We construct a C∞(U)-module on O1(U)/(O1(U) · O1(U)),

(ii) we show that, under certain circumstances, it is free and find a basis.

(iii) Using this and the previous lemma we construct the vector bundle E → X,

(iv) construct our (first just local) sheaf isomorphism Φ : OE → OX and

(v) show that it is a (global) sheaf isomorphism and finally

(vi) we show that E is unique up to isomorphy.

(i) Let C(X) ⊂ OX be a function factor. We have shown before that for any open U ⊂ X there exist
a unique function factor C(U) ⊂ OX(U), such that

ρOXU,X(C(X)) ⊂ C(U).

Let O2(U) denote the ideal in OX generated by O1(U) · O1(U). Since O2(U) ⊂ O1(U), we can define
E(U) as the quotient of C∞(U)-algebras

E(U) := O1(U)/O2(U).

The C∞(U)-module structure on E(U) is defined as

f · [ϕ]E(U) := [σU (f) · ϕ]E(U),

where f ∈ C∞(U), [ϕ]E(U) ∈ E(U) and σU :=
(
βU |C(U)

)−1
: C∞(U) → C(U) ⊂ OX(U). Since

O1(U) and O2(U) are ideals in OX(U), the multiplication with f is well defined. Hence E(U) is a
C∞(U)-module.

(ii) If U ⊂ U ′ is in a superchart domain, then E(U) is a free C∞(U)-module of rank n. For a
superchart

(ϕ,Ψ) : (U ′,OX |U ′)→ (V ′,Om|n|V ′)

we have that
θi := [ΨV θi]E(U), V = φ(U) ⊂ V ′

is a C∞(U)-basis of E(U), where θ1, ..., θn are generators of Λ∗R.

Proof It suffices to do the calculations in Om|n(V ). After doing so, applying the superchart (ϕ,Ψ)
shows that E(U) has the desired properties.

We see that

O1
m|n(V ) =

∑
|ε|≥1

fεθ
ε

 ,

O2
m|n(V ) =

∑
|ε|≥2

fεθ
ε


and

E(U) = O1
m|n(V )/O2

m|n(V ) ∼=

∑
|ε|=1

fεθ
ε

 =

{
n∑
i=1

fiθi

}
.

Hence, E(U) is a free C∞(V )-module of rank n (since Λ1Rn has exactly n generators) and the module
structure is defined as follows

f • [ψ]E(V ) = [fψ]E(V ) ∀f ∈ C∞(V ), ψ ∈ O1
m|n.

It remains to check that this module structure is consistent with (i). Since βV σv(f) = f we have

σV (f) = f + νV (f),
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where νV (f) ∈ O1
m|n(V ). Hence

f · [ψ]E(V )

(i)
= [σV (f) · ψ]E(V )

= [f · ψ]E(V ) + [νV (f) · ψ︸ ︷︷ ︸
∈O2

m|n(V )

]E(V )

= [f · ψ]E(V )

= f • [ψ]E(V ).
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(iii) We want to construct the vector bundle E → X. Therefore, let

(φα,Ψα) : (Uα,OX |Uα)→ (Vα,Om|n|Vα)

be a superchart covering of X. For θi ∈ Om|n(Vα) choose the standard basis of Rn, i.e. the generators
of Λ∗Rn and let

θα,i = [Ψα,Vαθi]E(Uα) ∈ E(Uα).

∀x ∈ Uα ∩ Uβ we have the following:

θα,i(x) =
∑
j

gαβ(x)ijθβ,j(x),

this is in fact the basis transformation of the basis of E(Uα ∩ Uβ) ⊂ E(Uβ) to the basis in E(Uβ), the
coefficients gαβ(·)ij are in C∞(Uα ∩ Uβ). We can see the matrices gαβ as smooth maps

gαβ : Uα ∩ Uβ → GL(n,R)

since gαβ ∈ GL(n,C∞(Uα ∩ Uβ)). To use the previous lemma we have to check the cozycle property
gαγ = gαβ · gβγ . We have

θβ,i =
∑
k

gβγ(x)ikθγ,k(x)

and
θα,i =

∑
j

gαβ(x)ijθβ,j(x) =
∑
j,k

gαβ(x)ijgβγ(x)jkθγ,k(x).

This is effectively a change of a basis in every x ∈ Uα ∩ Uβ ∩ Uγ . Thus, linear algebra yields that∑
j,k

gαβ(x)ijgβγ(x)jkθγ,k(x) =
∑
k

gαγ(x)ikθγ,k(x).

So we choose E → X to be the vector bundle defined by gαβ as in the previous lemma.

(iv) We construct the sheaf isomorphism Φ : OE → OX first just for open U ⊂ X, such that U is
contained in a superchart domain. For V ⊂ Rm we know that

Om|n(V ) ∼=
n⊕
k=0

(
Okm|n(V )/Ok+1

m|n(V )
)
,

where

Okm|n(V ) =

∑
|ε|≥k

fεθ
ε

 .

To see this isomorphism, we see that for any k ∈ {0, ..., n}:

Okm|n(V )/Ok+1
m|n(V ) ∼=

 ∑
|ε|=k

fεθ
ε

∣∣∣∣∣∣ fε ∈ C∞(V )

 .
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Let U ⊂ Uα for some superchart (φα,Ψα) : (Uα,OX |Uα) → (Vα,Om|n|Vα) of (X,OX) and let V :=
φα(U) ⊂ Vα. We constructed E → X with the previous lemma and hence E|Uα → Uα is trivial and
admits the local frame field (eα,1, ..., eα,n). We define

Φk,U,α : C∞(U,ΛkE)→ OkX(U)/Ok+1
X (U)

f =
∑
|ε|=k

fεe
ε1
α,1 · · · eεnα,n 7→

Ψα,V

∑
|ε|=k

(fε ◦ ϕ−1
α )θε11 · · · θεnn


OkX(U)/Ok+1

X (U)

.

One can show that for U ⊂ Uα ∩ Uβ
Φk,U,α = Φk,U,β .

Hence we get for each U that is contained in a superchart domain an isomorphism

Φ1,U :=

n∑
k=0

Φk,U : OE(U) = C∞(U,Λ∗E)→
n⊕
k=0

(OkX(U)/Ok+1
X ), Φ1,U =

n∑
k=0

Φk,U .

Each superchart (φ,Ψ) : (U,OX |U )→ (V,Om|n|V ) yields an isomorphism

n⊕
k=0

(OkX(U)/Ok+1
X ) ∼=

n⊕
k=0

(Okm|n(V )/Ok+1
m|n(V )) ∼= Om|n(V ) ∼= OX(U).

But this isomorphism depends on the choice of the superchart. With the help of a covering of X with
supercharts and an associated smooth partition of unity we can construct for each U that is contained
in a superchart an isomorphism

Φ2,U :

n⊕
k=0

(OkX(U)/Ok+1
X )→ OX(U)

that is compatible with the restriction map ρOX of OX . Hence we have at least for each U that is
contained in a superchart domain the desired sheaf homomorphism

Φ : OE → OX , ΦU := Φ2,U ◦ Φ1,U .

(v) Now we want to have a sheaf isomorphism Φ : OE → OX not just for special U ’s. To get such an
isomorphism, we use the gluing axiom of sheaves.

Let U ⊂ X be an arbitrary open set, let (Uα) be a basis of the topology of X that consist of all
superchart domains (this actually is a basis of the topology of X) and write U = ∪αUα. For f ∈ OE(U)
let

gα := ΦUα(ρOEUα,U (f)).

With fα = ρOEUα,U (f) and fβ = ρOEUβ ,U we have for all α, β

ρOXUα∩Uβ ,Uα(gα) = ΦUα∩Uβ (ρOEUα∩Uβ ,Uα(fα))

= ΦUα∩Uβ (ρOEUα∩Uβ ,U (f))

= ΦUα∩Uβ (ρOEUα∩Uβ ,Uβ (fβ))

= ρOXUα∩Uβ ,Uβ (gβ).

Hence, there is a unique g ∈ OX(U), such that ρOXUα,U (g) = gα. So we just have to set ΦU (f) := g and
thus have our desired isomorphism of sheaves.

(vi) To show the uniqueness of E → X we remark that OE defines Λ∗E up to algebra bundle
isomorphism. Hence, E is unique up to vector bundle isomorphisms, since

E =

⊕
k≥1

ΛkE

/⊕
k≥2

ΛkE

 .

⊕
k≥1

ΛkE is the ideal of nilpotent elements,
⊕
k≥2

ΛkE =
⊕
k≥1

ΛkE ·Λ∗E
⊕
k≥1

ΛkE.
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