Batchelor's Theorem

David Lindemann

May 26, 2011

Remark Let X be an m-dimensional (smooth) manifold, let $E \rightarrow X$ be a vector bundle of rank n. Then we have that $\left(X, \mathcal{O}_{E}\right)$ is a supermanifold of dimension $m \mid n$, where \mathcal{O}_{E} is the sheaf of smooth sections of $\Lambda^{*} E \rightarrow X$.

Furthermore, $C(U):=C^{\infty}\left(U ; \Lambda^{0} E\right) \cong C^{\infty}(U)$ is a function factor, the related sheaf morphism β_{U} is given by

$$
\beta_{U}: \mathcal{O}_{E}(U) \rightarrow C^{\infty}(U): \sum_{\varepsilon} f_{\varepsilon} \theta^{\varepsilon} \mapsto f_{0, \ldots, 0}
$$

where ε is a multiindex with value in $\{0,1\}^{n}$ and $\theta^{\varepsilon}=\theta_{1}^{\varepsilon_{1}} \cdots \theta_{n}^{\varepsilon_{n}}$.

Remark The $C^{\infty}(U)$-algebra

$$
\mathcal{O}^{1}(U):=\operatorname{ker} \beta_{U}=C^{\infty}\left(U, \bigoplus_{k \geq 1} \Lambda^{k} E\right)
$$

is the set of all nilpotent elements of $\mathcal{O}_{E}(U)$. Hence, we can see β_{U} as the projection onto $C^{\infty}(U)$.

Lemma

Let X be a (smooth) manifold and let $\left(U_{\alpha}\right)_{\alpha \in I}$ be an open covering of X. Let $g_{\alpha \beta} \in C^{\infty}\left(U_{\alpha} \cap\right.$ $\left.U_{\beta} ; \operatorname{GL}(n, \mathbb{R})\right)$, such that for all $\alpha, \beta, \gamma \in I$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$:

$$
g_{\alpha \beta} \circ g_{\beta \gamma}=g_{\alpha \gamma}
$$

this is called the cocycle condition. Then there exist a up to isomorphism unique vector bundle $E \rightarrow X$ which can be trivialized on each U_{α} with smooth sections $e_{\alpha, 1}, \ldots, e_{\alpha, n}$, such that $\left(e_{\alpha, 1}, \ldots, e_{\alpha, n}\right)$ is a frame field and for all $\alpha, \beta \in I, x \in U_{\alpha} \cap U_{\beta}$ the following holds true:

$$
\sum_{j=1}^{n} g_{\alpha \beta}(x)_{i j} e_{\beta, j}(x)=e_{\alpha, i}(x)
$$

Proof See lecture notes "Nichtkommutative Geometrie", C. Bär, page 29.

Theorem (Bachelor, 1980)

Let $\left(X, \mathcal{O}_{X}\right)$ be a supermanifold of dimension $m \mid n$ and let $C(X) \subset \mathcal{O}_{X}(X)$ be a function factor. Then there exists a vector bundle $E \rightarrow X$ of rank n, such that $\left(X, \mathcal{O}_{X}\right)$ is isomorphic to $\left(X, \mathcal{O}_{E}\right)$. The vector bundle E is unique up to isomorphism and does not depend on the choice of $C(X)$. Furthermore, the isomorphism from $\left(X, \mathcal{O}_{X}\right)$ to $\left(X, \mathcal{O}_{E}\right)$ maps $C(X)$ to $C^{\infty}\left(X ; \Lambda^{0} E\right)$.

Proof Roughly speaking, the proof works like this:
(i) We construct a $C^{\infty}(U)$-module on $\mathcal{O}^{1}(U) /\left(\mathcal{O}^{1}(U) \cdot \mathcal{O}^{1}(U)\right)$,
(ii) we show that, under certain circumstances, it is free and find a basis.
(iii) Using this and the previous lemma we construct the vector bundle $E \rightarrow X$,
(iv) construct our (first just local) sheaf isomorphism $\Phi: \mathcal{O}_{E} \rightarrow \mathcal{O}_{X}$ and
(v) show that it is a (global) sheaf isomorphism and finally
(vi) we show that E is unique up to isomorphy.
(i) Let $C(X) \subset \mathcal{O}_{X}$ be a function factor. We have shown before that for any open $U \subset X$ there exist a unique function factor $C(U) \subset \mathcal{O}_{X}(U)$, such that

$$
\rho_{U, X}^{\mathcal{O}_{X}}(C(X)) \subset C(U)
$$

Let $\mathcal{O}^{2}(U)$ denote the ideal in \mathcal{O}_{X} generated by $\mathcal{O}^{1}(U) \cdot \mathcal{O}^{1}(U)$. Since $\mathcal{O}^{2}(U) \subset \mathcal{O}^{1}(U)$, we can define $\mathcal{E}(U)$ as the quotient of $C^{\infty}(U)$-algebras

$$
\mathcal{E}(U):=\mathcal{O}^{1}(U) / \mathcal{O}^{2}(U)
$$

The $C^{\infty}(U)$-module structure on $\mathcal{E}(U)$ is defined as

$$
f \cdot[\varphi]_{\mathcal{E}(U)}:=\left[\sigma_{U}(f) \cdot \varphi\right]_{\mathcal{E}(U)}
$$

where $f \in C^{\infty}(U),[\varphi]_{\mathcal{E}(U)} \in \mathcal{E}(U)$ and $\sigma_{U}:=\left(\left.\beta_{U}\right|_{C(U)}\right)^{-1}: C^{\infty}(U) \rightarrow C(U) \subset \mathcal{O}_{X}(U)$. Since $\mathcal{O}^{1}(U)$ and $\mathcal{O}^{2}(U)$ are ideals in $\mathcal{O}_{X}(U)$, the multiplication with f is well defined. Hence $\mathcal{E}(U)$ is a $C^{\infty}(U)$-module.
(ii) If $U \subset U^{\prime}$ is in a superchart domain, then $\mathcal{E}(U)$ is a free $C^{\infty}(U)$-module of rank n. For a superchart

$$
(\varphi, \Psi):\left(U^{\prime},\left.\mathcal{O}_{X}\right|_{U^{\prime}}\right) \rightarrow\left(V^{\prime},\left.\mathcal{O}_{m \mid n}\right|_{V^{\prime}}\right)
$$

we have that

$$
\bar{\theta}_{i}:=\left[\Psi_{V} \theta_{i}\right]_{\mathcal{E}(U)}, \quad V=\phi(U) \subset V^{\prime}
$$

is a $C^{\infty}(U)$-basis of $\mathcal{E}(U)$, where $\theta_{1}, \ldots, \theta_{n}$ are generators of $\Lambda^{*} \mathbb{R}$.

Proof It suffices to do the calculations in $\mathcal{O}_{m \mid n}(V)$. After doing so, applying the superchart (φ, Ψ) shows that $\mathcal{E}(U)$ has the desired properties.

We see that

$$
\begin{aligned}
& \mathcal{O}_{m \mid n}^{1}(V)=\left\{\sum_{|\varepsilon| \geq 1} f_{\varepsilon} \theta^{\varepsilon}\right\}, \\
& \mathcal{O}_{m \mid n}^{2}(V)=\left\{\sum_{|\varepsilon| \geq 2} f_{\varepsilon} \theta^{\varepsilon}\right\}
\end{aligned}
$$

and

$$
\mathcal{E}(U)=\mathcal{O}_{m \mid n}^{1}(V) / \mathcal{O}_{m \mid n}^{2}(V) \cong\left\{\sum_{|\varepsilon|=1} f_{\varepsilon} \theta^{\varepsilon}\right\}=\left\{\sum_{i=1}^{n} f_{i} \theta_{i}\right\}
$$

Hence, $\mathcal{E}(U)$ is a free $C^{\infty}(V)$-module of rank n (since $\Lambda^{1} \mathbb{R}^{n}$ has exactly n generators) and the module structure is defined as follows

$$
f \bullet[\psi]_{\mathcal{E}(V)}=[f \psi]_{\mathcal{E}(V)} \quad \forall f \in C^{\infty}(V), \psi \in \mathcal{O}_{m \mid n}^{1}
$$

It remains to check that this module structure is consistent with (i). Since $\beta_{V} \sigma_{v}(f)=f$ we have

$$
\sigma_{V}(f)=f+\nu_{V}(f)
$$

where $\nu_{V}(f) \in \mathcal{O}_{m \mid n}^{1}(V)$. Hence

$$
\begin{aligned}
& f \cdot[\psi]_{\mathcal{E}(V)} \\
\stackrel{(i)}{=} & {\left[\sigma_{V}(f) \cdot \psi\right]_{\mathcal{E}(V)} } \\
= & {[f \cdot \psi]_{\mathcal{E}(V)}+\underbrace{\nu_{V}(f) \cdot \psi}_{\in \mathcal{O}_{m \mid n}^{2}(V)}]_{\mathcal{E}(V)} } \\
= & {[f \cdot \psi]_{\mathcal{E}(V)} } \\
= & f \bullet[\psi]_{\mathcal{E}(V)} .
\end{aligned}
$$

(iii) We want to construct the vector bundle $E \rightarrow X$. Therefore, let

$$
\left(\phi_{\alpha}, \Psi_{\alpha}\right):\left(U_{\alpha},\left.\mathcal{O}_{X}\right|_{U_{\alpha}}\right) \rightarrow\left(V_{\alpha},\left.\mathcal{O}_{m \mid n}\right|_{V_{\alpha}}\right)
$$

be a superchart covering of X. For $\theta_{i} \in \mathcal{O}_{m \mid n}\left(V_{\alpha}\right)$ choose the standard basis of \mathbb{R}^{n}, i.e. the generators of $\Lambda^{*} \mathbb{R}^{n}$ and let

$$
\bar{\theta}_{\alpha, i}=\left[\Psi_{\alpha, V_{\alpha}} \theta_{i}\right]_{\mathcal{E}\left(U_{\alpha}\right)} \in \mathcal{E}\left(U_{\alpha}\right) .
$$

$\forall x \in U_{\alpha} \cap U_{\beta}$ we have the following:

$$
\bar{\theta}_{\alpha, i}(x)=\sum_{j} g_{\alpha \beta}(x)_{i j} \bar{\theta}_{\beta, j}(x),
$$

this is in fact the basis transformation of the basis of $\mathcal{E}\left(U_{\alpha} \cap U_{\beta}\right) \subset \mathcal{E}\left(U_{\beta}\right)$ to the basis in $\mathcal{E}\left(U_{\beta}\right)$, the coefficients $g_{\alpha \beta}(\cdot)_{i j}$ are in $C^{\infty}\left(U_{\alpha} \cap U \beta\right)$. We can see the matrices $g_{\alpha \beta}$ as smooth maps

$$
g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{GL}(n, \mathbb{R})
$$

since $g_{\alpha \beta} \in \mathrm{GL}\left(n, C^{\infty}\left(U_{\alpha} \cap U \beta\right)\right)$. To use the previous lemma we have to check the cozycle property $g_{\alpha \gamma}=g_{\alpha \beta} \cdot g_{\beta \gamma}$. We have

$$
\bar{\theta}_{\beta, i}=\sum_{k} g_{\beta \gamma}(x)_{i k} \bar{\theta}_{\gamma, k}(x)
$$

and

$$
\bar{\theta}_{\alpha, i}=\sum_{j} g_{\alpha \beta}(x)_{i j} \bar{\theta}_{\beta, j}(x)=\sum_{j, k} g_{\alpha \beta}(x)_{i j} g_{\beta \gamma}(x)_{j k} \bar{\theta}_{\gamma, k}(x) .
$$

This is effectively a change of a basis in every $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Thus, linear algebra yields that

$$
\sum_{j, k} g_{\alpha \beta}(x)_{i j} g_{\beta \gamma}(x)_{j k} \bar{\theta}_{\gamma, k}(x)=\sum_{k} g_{\alpha \gamma}(x)_{i k} \bar{\theta}_{\gamma, k}(x) .
$$

So we choose $E \rightarrow X$ to be the vector bundle defined by $g_{\alpha \beta}$ as in the previous lemma.
(iv) We construct the sheaf isomorphism $\Phi: \mathcal{O}_{E} \rightarrow \mathcal{O}_{X}$ first just for open $U \subset X$, such that U is contained in a superchart domain. For $V \subset \mathbb{R}^{m}$ we know that

$$
\mathcal{O}_{m \mid n}(V) \cong \bigoplus_{k=0}^{n}\left(\mathcal{O}_{m \mid n}^{k}(V) / \mathcal{O}_{m \mid n}^{k+1}(V)\right)
$$

where

$$
\mathcal{O}_{m \mid n}^{k}(V)=\left\{\sum_{|\varepsilon| \geq k} f_{\varepsilon} \theta^{\varepsilon}\right\} .
$$

To see this isomorphism, we see that for any $k \in\{0, \ldots, n\}$:

$$
\mathcal{O}_{m \mid n}^{k}(V) / \mathcal{O}_{m \mid n}^{k+1}(V) \cong\left\{\sum_{|\varepsilon|=k} f_{\varepsilon} \theta^{\varepsilon} \mid f_{\varepsilon} \in C^{\infty}(V)\right\}
$$

Let $U \subset U_{\alpha}$ for some superchart $\left(\phi_{\alpha}, \Psi_{\alpha}\right):\left(U_{\alpha},\left.\mathcal{O}_{X}\right|_{U_{\alpha}}\right) \rightarrow\left(V_{\alpha},\left.\mathcal{O}_{m \mid n}\right|_{V_{\alpha}}\right)$ of $\left(X, \mathcal{O}_{X}\right)$ and let $V:=$ $\phi_{\alpha}(U) \subset V_{\alpha}$. We constructed $E \rightarrow X$ with the previous lemma and hence $\left.E\right|_{U_{\alpha}} \rightarrow U_{\alpha}$ is trivial and admits the local frame field $\left(e_{\alpha, 1}, \ldots, e_{\alpha, n}\right)$. We define

$$
\begin{aligned}
\Phi_{k, U, \alpha}: C^{\infty}\left(U, \Lambda^{k} E\right) & \rightarrow \mathcal{O}_{X}^{k}(U) / \mathcal{O}_{X}^{k+1}(U) \\
f= & \sum_{|\varepsilon|=k} f_{\varepsilon} e_{\alpha, 1}^{\varepsilon_{1}} \cdots e_{\alpha, n}^{\varepsilon_{n}} \mapsto\left[\Psi_{\alpha, V}\left(\sum_{|\varepsilon|=k}\left(f_{\varepsilon} \circ \varphi_{\alpha}^{-1}\right) \theta_{1}^{\varepsilon_{1}} \cdots \theta_{n}^{\varepsilon_{n}}\right)\right]_{\mathcal{O}_{X}^{k}(U) / \mathcal{O}_{X}^{k+1}(U)} .
\end{aligned}
$$

One can show that for $U \subset U_{\alpha} \cap U_{\beta}$

$$
\Phi_{k, U, \alpha}=\Phi_{k, U, \beta} .
$$

Hence we get for each U that is contained in a superchart domain an isomorphism

$$
\Phi_{1, U}:=\sum_{k=0}^{n} \Phi_{k, U}: \mathcal{O}_{E}(U)=C^{\infty}\left(U, \Lambda^{*} E\right) \rightarrow \bigoplus_{k=0}^{n}\left(\mathcal{O}_{X}^{k}(U) / \mathcal{O}_{X}^{k+1}\right), \quad \Phi_{1, U}=\sum_{k=0}^{n} \Phi_{k, U} .
$$

Each superchart $(\phi, \Psi):\left(U,\left.\mathcal{O}_{X}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{O}_{m \mid n}\right|_{V}\right)$ yields an isomorphism

$$
\bigoplus_{k=0}^{n}\left(\mathcal{O}_{X}^{k}(U) / \mathcal{O}_{X}^{k+1}\right) \cong \bigoplus_{k=0}^{n}\left(\mathcal{O}_{m \mid n}^{k}(V) / \mathcal{O}_{m \mid n}^{k+1}(V)\right) \cong \mathcal{O}_{m \mid n}(V) \cong \mathcal{O}_{X}(U)
$$

But this isomorphism depends on the choice of the superchart. With the help of a covering of X with supercharts and an associated smooth partition of unity we can construct for each U that is contained in a superchart an isomorphism

$$
\Phi_{2, U}: \bigoplus_{k=0}^{n}\left(\mathcal{O}_{X}^{k}(U) / \mathcal{O}_{X}^{k+1}\right) \rightarrow \mathcal{O}_{X}(U)
$$

that is compatible with the restriction map $\rho^{\mathcal{O}_{X}}$ of \mathcal{O}_{X}. Hence we have at least for each U that is contained in a superchart domain the desired sheaf homomorphism

$$
\Phi: \mathcal{O}_{E} \rightarrow \mathcal{O}_{X}, \quad \Phi_{U}:=\Phi_{2, U} \circ \Phi_{1, U}
$$

(v) Now we want to have a sheaf isomorphism $\Phi: \mathcal{O}_{E} \rightarrow \mathcal{O}_{X}$ not just for special U 's. To get such an isomorphism, we use the gluing axiom of sheaves.

Let $U \subset X$ be an arbitrary open set, let $\left(U_{\alpha}\right)$ be a basis of the topology of X that consist of all superchart domains (this actually is a basis of the topology of X) and write $U=\cup_{\alpha} U_{\alpha}$. For $f \in \mathcal{O}_{E}(U)$ let

$$
g_{\alpha}:=\Phi_{U_{\alpha}}\left(\rho_{U_{\alpha}, U}^{\mathcal{O}_{E}}(f)\right)
$$

With $f_{\alpha}=\rho_{U_{\alpha}, U}^{\mathcal{O}_{E}}(f)$ and $f_{\beta}=\rho_{U_{\beta}, U}^{\mathcal{O}_{E}}$ we have for all α, β

$$
\begin{aligned}
\rho_{U_{\alpha} \cap U_{\beta}, U \alpha}^{\mathcal{O}_{X}}\left(g_{\alpha}\right) & =\Phi_{U_{\alpha} \cap U_{\beta}}\left(\rho_{U_{\alpha} \cap U_{\beta}, U_{\alpha}}^{\mathcal{O}_{E}}\left(f_{\alpha}\right)\right) \\
& =\Phi_{U_{\alpha} \cap U_{\beta}}\left(\rho_{U_{\alpha} \cap U_{\beta}, U}^{\mathcal{O}_{E}}(f)\right) \\
& =\Phi_{U_{\alpha} \cap U_{\beta}}\left(\rho_{U_{\alpha} \cap U_{\beta}, U_{\beta}}^{\mathcal{O}_{E}}\left(f_{\beta}\right)\right) \\
& =\rho_{U_{\alpha} \cap U_{\beta}, U_{\beta}}^{\mathcal{O}_{X}}\left(g_{\beta}\right) .
\end{aligned}
$$

Hence, there is a unique $g \in \mathcal{O}_{X}(U)$, such that $\rho_{U_{\alpha}, U}^{\mathcal{O}_{X}}(g)=g_{\alpha}$. So we just have to set $\Phi_{U}(f):=g$ and thus have our desired isomorphism of sheaves.
(vi) To show the uniqueness of $E \rightarrow X$ we remark that \mathcal{O}_{E} defines $\Lambda^{*} E$ up to algebra bundle isomorphism. Hence, E is unique up to vector bundle isomorphisms, since

$$
E=\left(\bigoplus_{k \geq 1} \Lambda^{k} E\right) /\left(\bigoplus_{k \geq 2} \Lambda^{k} E\right)
$$

$\bigoplus_{k \geq 1} \Lambda^{k} E$ is the ideal of nilpotent elements, $\bigoplus_{k \geq 2} \Lambda^{k} E=\bigoplus_{k \geq 1} \Lambda^{k} E \cdot \Lambda^{*} E \underset{k \geq 1}{\bigoplus} \Lambda^{k} E$.

