Basics of linear and commutative superalgebra

1 Linear superalgebra

Definition 1.1. A \mathbb{Z}-graded ring R is a ring with the additional structure of a decomposition

$$
R=\bigoplus_{i \in \mathbb{Z}} R_{i}
$$

as abelian groups, such that $R_{i} \cdot R_{j} \subseteq R_{i+j}$. A \mathbb{Z}-graded module M over a \mathbb{Z}-graded ring R is a module over R equipped with a decomposition

$$
M=\bigoplus_{i \in \mathbb{Z}} M_{i}
$$

as abelian groups such that $R_{i} \cdot M_{j} \subseteq M_{i+j}$. Elements of the R_{i} and M_{i} are called homogeneous.

We note that

1. we can turn every ring R into a graded ring by setting $R_{0}=R$ and $R_{i}=0$ for $i \neq 0$,
2. only R_{0} is a subring of R, the other R_{i} are modules over R_{0},
3. if R is unital (which we will always assume), then $1 \in R_{0}$
4. this construction can be carried out with an arbitrary monoid M instead of \mathbb{Z}. E.g., we can have \mathbb{N}-graded rings such as the polynomials $\mathbb{K}[x]$ or differential forms $\Omega^{\bullet}(M)$ on a smooth manifold.

Definition 1.2. A super vector space $V=V_{0} \oplus V_{1}$ over a field \mathbb{K} is a \mathbb{Z}_{2}-graded \mathbb{K}-module. On the homogeneous elements we define the parity function

$$
\begin{aligned}
p:\left(V_{0} \cup V_{1}\right) \backslash\{0\} & \rightarrow \mathbb{Z}_{2} \\
p(v) & =i \quad \text { for } v \in V_{i} .
\end{aligned}
$$

A morphism $\phi: V \rightarrow W$ of super vector spaces is a linear map that preserves the grading, i.e., $\phi\left(V_{i}\right) \subseteq W_{i}$.

Most natural constructions for vector spaces can be extended to super vector spaces:

1. direct sums: $(V \oplus W)_{i}:=V_{i} \oplus W_{i}$
2. tensor products: $(V \otimes W)_{i}:=\bigoplus_{i=j+k} V_{j} \otimes W_{k}$
 vector space itself, but the space of all linear maps does, via

$$
\operatorname{Hom}_{V \mathrm{Vect}}(V, W)_{i}:=\left\{\phi: V \rightarrow W \mathfrak{m} \phi\left(V_{j}\right) \subset W_{j+i}\right\}
$$

So every linear map $\phi: V \rightarrow W$ of super vector spaces splits uniquely into $\phi=\phi_{0}+\phi_{1}$ where ϕ_{0} ism.

Note: in a supercommutative algebra, all odd elements square to zero: $a^{2}=\frac{1}{2}[a, a]=0$.

2 Supermodules

Definition 2.1. A left supermodule over a supercommutative ring $R=R_{0} \oplus R_{1}$ is simply a left \mathbb{Z}_{2}-graded module $M=M_{0} \oplus M_{1}$ over R.

For the supermodules over a supercommutative superring R we define a braiding, i.e., a rule for how to interchange the factors in a tensor product of modules:

$$
\begin{aligned}
c_{M, N}: M \otimes N & \rightarrow N \otimes M \\
m \otimes n & \mapsto(-1)^{p(m) p(n)} n \otimes m
\end{aligned}
$$

for all R-modules M, N and homogeneous elements $m \in M, n \in N$. This braiding distinguishes superalgebra (and supergeometry) from the plain algebra of graded rings and modules. In practice on can sum this up in the
Sign Rule: whenever in a multiplicative expression involving elements of supermodules over a supercommutative ring we exchange two neighbouring odd elements, a factor (-1) occurs.

Example: the braiding defines what "symmetric" means: a map $f: M \otimes M \rightarrow N$ between modules over a supercommutative algebra A is supersymmetric, if $f\left(m_{1}, m_{2}\right)=$ $(-1)^{p\left(m_{1}\right) p\left(m_{2}\right)} f\left(m_{2}, m_{1}\right)$ for all homogeneous $m_{1}, m_{2} \in M$. So a supercommutative algebra is commutative in this new "super" sense.

Every left supermodule M over a supercommutative algebra A can be given a right module structure by setting

$$
m \cdot a:=(-1)^{p(a) p(m)} a \cdot m .
$$

Definition 2.2. Let M, N be left supermodules over a supercommutative \mathbb{K}-superalgebra A. A \mathbb{K}-linear map $\phi: M \rightarrow N$ is called graded linear over A, if for all homogeneous $m \in M, a \in A$ we have

$$
\phi(a \cdot m)=(-1)^{p(a) p(\phi)} a \cdot \phi(m) .
$$

We write $\operatorname{Hom}_{A}(M, N)$ for the A-supermodule of graded linear maps $M \rightarrow N$ over A, and $\operatorname{End}_{A}(M)$ for $\operatorname{Hom}_{A}(M, M)$.

Example: left translation $L_{b}: M \rightarrow M, L_{b}(m)=b \cdot m$ for $b \in A, A$ supercommutative, M a left A-module is graded linear of parity $p\left(L_{b}\right)=p(b)$.

Definition 2.3. A left supermodule M over a supercommutative superalgebra A is called free of rank $r \mid s$, if there exists a homogeneous basis

$$
\underbrace{e_{1}, \ldots, e_{r}}_{\text {even }}, \underbrace{e_{r+1}, \ldots, e_{r+s}}_{\text {odd }}
$$

for M. That means that every $x \in M$ can uniquely be written as

$$
x=\sum_{i=1}^{r+s} a^{j} e_{j}, \quad a^{j} \in A .
$$

Remarks:

1. One can show that the rank $r \mid s$ is independent of the basis chosen.
2. We can as well use a left basis like above as a right basis, i.e., we can as well write every $x \in M$ uniquely as

$$
x=\sum_{i=1}^{r+s} e_{j} b^{j}, \quad b^{j} \in A
$$

A graded linear morphism $\phi: M \rightarrow N$ between free A-supermodules can be written as a matrix as follows. We pick bases $e_{1} \ldots, e_{m+n}$ of M and f_{1}, \ldots, f_{r+s}. Then we have unique expressions

$$
\begin{aligned}
\phi\left(e_{j}\right) & =\sum_{i=1}^{r+s} f_{i} a_{j}^{i} \\
x & =\sum_{j=1}^{m+n} e_{j} x^{j} \\
\phi(x) & =\sum_{i=1}^{r+s} f_{i} y^{i}
\end{aligned}
$$

for any $x \in M$. Thus

$$
\phi(x)=\sum_{j=1}^{m+n} \phi\left(e_{j}\right) x^{j}=\sum_{i=1}^{r+s} \sum_{j=1}^{m+n} f_{i} a_{j}^{i} x^{j}
$$

and so $y^{i}=\sum_{j} a_{j}^{i} x^{j}$. We can therefore think of the a_{j}^{i} as the entries of a matrix representation L of the morphism ϕ which decomposes into blocks

$$
L=\left(\begin{array}{c|c}
L_{00} & L_{01} \tag{1}\\
\hline L_{10} & L_{11}
\end{array}\right)
$$

where L_{00} is a $r \times m$-matrix, L_{01} a $r \times n$ matrix, L_{10} a $s \times m$-matrix and L_{11} a $s \times n$-matrix. When ϕ is homogeneous, then the entries of $L_{i j}$ have parity $i+j+p(\phi)$.

Definition 2.4. We define $\operatorname{Mat}_{A}(m|n, r| s)$ as the A-supermodule of all matrices of block form as in (1). A matrix L is homogeneous of parity $p(L)$ if the entries of $L_{i j}$ have parity $i+j+p(L)$. The A-supermodule structure of $\operatorname{Mat}_{A}(m|n, r| s)$ is given by

$$
a \cdot L=\left(\begin{array}{c|c}
a L_{00} & a L_{01} \\
\hline(-1)^{p(a)} a L_{10} & (-1)^{p(a)} a L_{11}
\end{array}\right) .
$$

3 The supertrace

Definition 3.1. The supertrace is defined on the quadratic supermatrices $\mathrm{Mat}_{A}(m \mid n)$ by

$$
\operatorname{str}(L):=\operatorname{tr}\left(L_{00}\right)-(-1)^{p(L)} \operatorname{tr}\left(L_{11}\right)
$$

This definition is essentially (up to normalization) forced upon us by requiring that

1. str : $\operatorname{Mat}_{A}(m \mid n)$ is A-linear,
2. $\operatorname{str}([X, Y])=0$ where $[X, Y]$ is the supercommutator of matrices (see above).

The second requirement ensures that the super trace is invariant under base changes: we can actually define the super trace to be a morphism of A-modules str : $\operatorname{End}(M) \rightarrow A$ for any free A-module M.

One checks that str is an even A-linear map, i.e., $\operatorname{str}(a \cdot L)=a \cdot \operatorname{str}(L)$ for all square supermatrices L and all $a \in A$.

4 The superdeterminant (Berezinian)

The superdeterminant is a less obvious generalization. It can only be defined on a certain subset of the square matrices $\operatorname{Mat}_{A}(m \mid n)$.

Lemma 4.1. Let $A=A_{0} \oplus A_{1}$ be a supercommutative \mathbb{K}-superalgebra. Then

1. the quotient $\mathcal{A}=A /\left(A_{1}\right)$, where $\left(A_{1}\right)$ is the ideal generated by the odd elements, is an ordinary commutative \mathbb{K}-algebra,
2. an element $a \in A$ is invertible if and only if its even part a_{0} is invertible, and a_{0} is invertible if and only if its image $\pi(a) \in \mathcal{A}$ is invertible. Here $\pi: A \rightarrow \mathcal{A}$ denotes the projection onto the quotient algebra.

Theorem 4.2. A matrix $L \in \operatorname{Mat}_{A}(m \mid n)$ is invertible if and only if $\pi(L) \in \operatorname{Mat}_{\mathcal{A}}(m+n)$ is invertible.

Both statements are proven in [1]. As a corollary one finds that an even matrix L is invertible if and only if L_{00} and L_{11} are invertible.

Definition 4.3. We define the general linear group of a free A-supermodule of rank $r \mid s$ as

$$
G L_{A}(r \mid s)=\left\{L \in \operatorname{Mat}_{A}(r \mid s) \mathfrak{m} p(L)=0, \quad L \text { invertible }\right\} .
$$

The superdeterminant (Berezinian) can only be defined on such even invertible square matrices.

Definition 4.4. The superdeteterminant is defined as

$$
\operatorname{sdet}\left(\begin{array}{r|l}
& \operatorname{sdet}: G L_{A}(r \mid s)
\end{array} \rightarrow A_{0}\right.
$$

This definition is again essentially forced upon us if we require that

1. the superdeterminant be multiplicative: $\operatorname{sdet}(A \cdot B)=\operatorname{sdet}(A) \cdot \operatorname{sdet}(B)$,
2. sdet is independent of the chosen basis for a free module, i.e., that it is actually a map from the even invertible endomorphisms to A_{0} rather than from the matrices.

Theorem 4.5. For all $r, s>0$ the superdeterminant is a homomorphism

$$
\text { sdet : } G L_{A}(r \mid s) \rightarrow A_{0}^{\times}
$$

of groups. Moreover we have

$$
\operatorname{sdet}\left(e^{A}\right)=e^{\operatorname{str}(A)}
$$

for all $A \in G L_{A}(r \mid s)$.
Proof. Tough, see [2].

References

[1] C. Bär: Nichtkommutative Geometrie. Vorlesungsskript.
[2] F. Constantinescu, H.F. de Groote: Geometrische und algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren. Teubner Studienbücher, Teubner, Stuttgart 1994.

