
Basics of linear and commutative superalgebra

1 Linear superalgebra

Definition 1.1. A Z-graded ring R is a ring with the additional structure of a decompo-
sition

R =
⊕
i∈Z

Ri

as abelian groups, such that Ri ·Rj ⊆ Ri+j . A Z-graded module M over a Z-graded ring
R is a module over R equipped with a decomposition

M =
⊕
i∈Z

Mi

as abelian groups such that Ri · Mj ⊆ Mi+j . Elements of the Ri and Mi are called
homogeneous.

We note that

1. we can turn every ring R into a graded ring by setting R0 = R and Ri = 0 for i 6= 0,

2. only R0 is a subring of R, the other Ri are modules over R0,

3. if R is unital (which we will always assume), then 1 ∈ R0

4. this construction can be carried out with an arbitrary monoid M instead of Z. E.g.,
we can haveN-graded rings such as the polynomialsK[x] or differential forms Ω•(M)
on a smooth manifold.

Definition 1.2. A super vector space V = V0⊕V1 over a fieldK is a Z2-gradedK-module.
On the homogeneous elements we define the parity function

p : (V0 ∪ V1) \ {0} → Z2

p(v) = i for v ∈ Vi.

A morphism φ : V →W of super vector spaces is a linear map that preserves the grading,
i.e., φ(Vi) ⊆Wi.

Most natural constructions for vector spaces can be extended to super vector spaces:

1. direct sums: (V ⊕W )i := Vi ⊕Wi

2. tensor products: (V ⊗W )i :=
⊕

i=j+k Vj ⊗Wk

The space HomSVect(V,W ) of morphisms of super vector spaces does not form a super
vector space itself, but the space of all linear maps does, via

HomVect(V,W )i := {φ : V →Wmφ(Vj) ⊂Wj+i}.

So every linear map φ : V → W of super vector spaces splits uniquely into φ = φ0 + φ1
where φ0 ism.

Note: in a supercommutative algebra, all odd elements square to zero: a2 = 1
2 [a, a] = 0.
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2 Supermodules

Definition 2.1. A left supermodule over a supercommutative ring R = R0⊕R1 is simply
a left Z2-graded module M = M0 ⊕M1 over R.

For the supermodules over a supercommutative superring R we define a braiding, i.e.,
a rule for how to interchange the factors in a tensor product of modules:

cM,N : M ⊗N → N ⊗M
m⊗ n 7→ (−1)p(m)p(n)n⊗m

for all R-modules M,N and homogeneous elements m ∈ M,n ∈ N . This braiding dis-
tinguishes superalgebra (and supergeometry) from the plain algebra of graded rings and
modules. In practice on can sum this up in the
Sign Rule: whenever in a multiplicative expression involving elements of supermodules
over a supercommutative ring we exchange two neighbouring odd elements, a factor (-1)
occurs.

Example: the braiding defines what “symmetric” means: a map f : M ⊗M → N
between modules over a supercommutative algebra A is supersymmetric, if f(m1,m2) =
(−1)p(m1)p(m2)f(m2,m1) for all homogeneous m1,m2 ∈ M . So a supercommutative alge-
bra is commutative in this new “super” sense.

Every left supermodule M over a supercommutative algebra A can be given a right
module structure by setting

m · a := (−1)p(a)p(m)a ·m.

Definition 2.2. Let M,N be left supermodules over a supercommutative K-superalgebra
A. A K-linear map φ : M → N is called graded linear over A, if for all homogeneous
m ∈M,a ∈ A we have

φ(a ·m) = (−1)p(a)p(φ)a · φ(m).

We write HomA(M,N) for the A-supermodule of graded linear maps M → N over A, and
EndA(M) for HomA(M,M).

Example: left translation Lb : M →M , Lb(m) = b ·m for b ∈ A, A supercommutative,
M a left A-module is graded linear of parity p(Lb) = p(b).

Definition 2.3. A left supermodule M over a supercommutative superalgebra A is called
free of rank r|s, if there exists a homogeneous basis

e1, . . . , er︸ ︷︷ ︸
even

, er+1, . . . , er+s︸ ︷︷ ︸
odd

for M . That means that every x ∈M can uniquely be written as

x =

r+s∑
i=1

ajej , aj ∈ A.

Remarks:

1. One can show that the rank r|s is independent of the basis chosen.
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2. We can as well use a left basis like above as a right basis, i.e., we can as well write
every x ∈M uniquely as

x =

r+s∑
i=1

ejb
j , bj ∈ A.

A graded linear morphism φ : M → N between free A-supermodules can be written
as a matrix as follows. We pick bases e1 . . . , em+n of M and f1, . . . , fr+s. Then we have
unique expressions

φ(ej) =
r+s∑
i=1

fia
i
j

x =
m+n∑
j=1

ejx
j

φ(x) =

r+s∑
i=1

fiy
i

for any x ∈M . Thus

φ(x) =

m+n∑
j=1

φ(ej)x
j =

r+s∑
i=1

m+n∑
j=1

fia
i
jx
j

and so yi =
∑

j a
i
jx
j . We can therefore think of the aij as the entries of a matrix represen-

tation L of the morphism φ which decomposes into blocks

L =

(
L00 L01

L10 L11

)
(1)

where L00 is a r×m-matrix, L01 a r×n matrix, L10 a s×m-matrix and L11 a s×n-matrix.
When φ is homogeneous, then the entries of Lij have parity i+ j + p(φ).

Definition 2.4. We define MatA(m|n, r|s) as the A-supermodule of all matrices of block
form as in (1). A matrix L is homogeneous of parity p(L) if the entries of Lij have parity
i+ j + p(L). The A-supermodule structure of MatA(m|n, r|s) is given by

a · L =

(
aL00 aL01

(−1)p(a)aL10 (−1)p(a)aL11

)
.

3 The supertrace

Definition 3.1. The supertrace is defined on the quadratic supermatrices MatA(m|n) by

str(L) := tr(L00)− (−1)p(L)tr(L11).

This definition is essentially (up to normalization) forced upon us by requiring that

1. str : MatA(m|n) is A-linear,

2. str([X,Y ]) = 0 where [X,Y ] is the supercommutator of matrices (see above).

The second requirement ensures that the super trace is invariant under base changes: we
can actually define the super trace to be a morphism of A-modules str : End(M)→ A for
any free A-module M .

One checks that str is an even A-linear map, i.e., str(a · L) = a · str(L) for all square
supermatrices L and all a ∈ A.
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4 The superdeterminant (Berezinian)

The superdeterminant is a less obvious generalization. It can only be defined on a certain
subset of the square matrices MatA(m|n).

Lemma 4.1. Let A = A0 ⊕A1 be a supercommutative K-superalgebra. Then

1. the quotient A = A/(A1), where (A1) is the ideal generated by the odd elements, is
an ordinary commutative K-algebra,

2. an element a ∈ A is invertible if and only if its even part a0 is invertible, and a0 is
invertible if and only if its image π(a) ∈ A is invertible. Here π : A → A denotes
the projection onto the quotient algebra.

Theorem 4.2. A matrix L ∈MatA(m|n) is invertible if and only if π(L) ∈ MatA(m+n)
is invertible.

Both statements are proven in [1]. As a corollary one finds that an even matrix L is
invertible if and only if L00 and L11 are invertible.

Definition 4.3. We define the general linear group of a free A-supermodule of rank r|s
as

GLA(r|s) = {L ∈ MatA(r|s)mp(L) = 0, L invertible }.

The superdeterminant (Berezinian) can only be defined on such even invertible square
matrices.

Definition 4.4. The superdeteterminant is defined as

sdet : GLA(r|s) → A0

sdet

(
L00 L01

L10 L11

)
:= det(L00 − L01L

−1
11 L10)

−1) det(L00)

This definition is again essentially forced upon us if we require that

1. the superdeterminant be multiplicative: sdet(A ·B) = sdet(A) · sdet(B),

2. sdet is independent of the chosen basis for a free module, i.e., that it is actually a
map from the even invertible endomorphisms to A0 rather than from the matrices.

Theorem 4.5. For all r, s > 0 the superdeterminant is a homomorphism

sdet : GLA(r|s)→ A×0

of groups. Moreover we have
sdet(eA) = estr(A)

for all A ∈ GLA(r|s).

Proof. Tough, see [2].
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