Berezin Integration

Sebastian Novak

June 29, 2011

The statements (without proofs) can be found in a concise form in Bä05. In CdG94 the change of variables formula is prooved in great detail.

1 Motivation

In classical differential geometry we can integrate densities. These are given by n-forms on a smooth compact n-dimensional manifold M. Given a coordinate system $\varphi: M \rightarrow \mathbb{R}^{n}, \varphi=\left(x_{1}, \ldots, x_{n}\right)$ and an n-form $\omega=\omega(x) d x_{1} \wedge \cdots \wedge d x_{n}$, the integral of ω over M is defined to be

$$
\begin{equation*}
\int_{M} \omega:=\int_{\varphi(M)} \omega(x) d\left(x_{1}, \ldots, x_{n}\right) . \tag{1}
\end{equation*}
$$

By the change of variables formula this is then independent of the choice of coordinate system made ${ }^{1}$ We want to define a similiar integration on supermanifolds. The crucial steps are then the definition of an integral on super domains and a change of variables for it. Using partitions of unity this can then in principal be lifted to supermanifolds. The Berezin Integral is motivated by the rules

$$
\begin{equation*}
\int_{\mathbb{R}^{0 \mid 1}} 1 d \theta=0, \quad \int_{\mathbb{R}^{0 \mid 1}} \theta d \theta=1 \tag{2}
\end{equation*}
$$

on the super point $\mathbb{R}^{0 \mid 1}$. By formal use of the theorem of Fubini this motivates the definition of the integral on general super domains.

2 Berezin Integration and the change of variables formula

Definition 1. Let $\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right)$ be a super domain and

$$
\begin{equation*}
f=\sum_{\varepsilon} f_{\varepsilon} \theta_{1}^{\varepsilon_{1}} \cdots \theta_{n}^{\varepsilon_{n}} \in \mathcal{O}_{p \mid q}(U) \tag{3}
\end{equation*}
$$

be a super function with compact support. Then the Berezin Integral of f over $\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right)$ is defined to be

$$
\begin{equation*}
\int_{U} f d(x, \theta)=(-1)^{p q+q(q-1) / 2} \int_{U} f_{(1, \ldots, 1)}\left(x_{1}, \ldots, x_{p}\right) d x_{1}, \ldots, d x_{m} \tag{4}
\end{equation*}
$$

Theorem 1 (Change of variables formula). Let $\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right),\left(V,\left.\mathcal{O}_{p \mid q}\right|_{V}\right)$ be super domains with coordinates $\left(x_{j}, \theta_{j}\right)$ on U and $\left(y_{j}, \eta_{j}\right)$ on V. Let

$$
\begin{equation*}
(\varphi, \Psi):\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{O}_{p \mid q}\right|_{V}\right) \tag{5}
\end{equation*}
$$

be an isomorphism. Let $f \in \mathcal{O}_{p \mid q}(V)$ be a super function with compact support. Then the Berezin Integral transforms as

$$
\begin{equation*}
\int_{V} f d(y, \eta)= \pm \int_{U} \Psi(f) \cdot \operatorname{sdet}(J(\varphi, \Psi)) d(x, \theta) \tag{6}
\end{equation*}
$$

The negative sign appears iff φ is orientation reversing.
Example 1. It is imperative that the super functions have compact support for the change of variables formula to hold: Let $\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right)=\left(V,\left.\mathcal{O}_{p \mid q}\right|_{V}\right)=\left((0,1),\left.\mathcal{O}_{1 \mid 2}\right|_{(0,1)}\right)$. Let $(\varphi, \Psi):\left(U,\left.\mathcal{O}_{p \mid q}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{O}_{p \mid q}\right|_{V}\right)$ with $\varphi=\operatorname{id}_{(0,1)}$ and

$$
\Psi:\left(\begin{array}{l}
f_{(0,0)} \tag{7}\\
f_{(1,0)} \\
f_{(0,1)} \\
f_{(1,1)}
\end{array}\right) \mapsto\left(\begin{array}{c}
f_{(0,0)} \\
f_{(1,0)} \\
f_{(0,1)} \\
f_{(1,1)}+f_{0,0}^{\prime}
\end{array}\right)
$$

[^0]for a super function $f=\sum_{\left(\varepsilon_{1}, \varepsilon_{2}\right)} f_{\left(\varepsilon_{1}, \varepsilon_{2}\right)} \eta_{1}^{\varepsilon_{1}} \eta_{2}^{\varepsilon_{2}}$. Then $\operatorname{sdet}(J(\varphi, \Psi))=1$. Now let $f \in \mathcal{O}_{1 \mid 2}((0,1))$ be given by $f(y)=y$. Then
\[

$$
\begin{equation*}
\int_{(0,1)} f d\left(y, \eta_{1}, \eta_{2}\right)=0 \tag{8}
\end{equation*}
$$

\]

but

$$
\begin{equation*}
\int_{(0,1)} \Psi(f) \operatorname{sdet}(J(\varphi, \Psi)) d\left(x, \theta_{1}, \theta_{2}\right)=\int_{(0,1)}\left(x+\theta_{1} \theta_{2}\right) \cdot 1 d\left(x, \theta_{1}, \theta_{2}\right)=(-1)^{2 \cdot 1+\frac{2.1}{2}} \int_{(0,1)} 1 d x=-1 . \tag{9}
\end{equation*}
$$

3 Proof of the change of variables formula

Just a sketch of the proof is provided here. For the missing details the reader is referred to the literature. Write $f=f_{0}+f_{1}$ with $f_{1}:=f_{(1, \ldots, 1)} \eta_{1} \cdots \eta_{q}, f_{0}:=f-f_{1} . f_{0}$ can then be written as

$$
\begin{equation*}
f_{0}=\sum_{i=1}^{q} \frac{\partial}{\partial \eta_{i}} \tilde{f}_{i} . \tag{10}
\end{equation*}
$$

It is obvious that $\int_{V} \frac{\partial}{\partial \eta_{i}} \tilde{f}_{i} d(y, \eta)=0$. It can be shown (see CdG94) that

$$
\begin{equation*}
\Psi\left(\frac{\partial}{\partial \eta_{i}} \tilde{f}_{i}\right) \cdot \operatorname{sdet}(J(\varphi, \Psi)) \tag{11}
\end{equation*}
$$

can still be written as a sum of terms of the form $\frac{\partial}{\partial(x, \theta)_{i}} h(i=1, \ldots, p+q)$ for some super functions $\left.h \in \mathcal{O}_{p \mid q}\right|_{U}$ with compact support. (But now even derivatives may appear). It follows with Stokes' theorem and compact support of the functions h that

$$
\begin{equation*}
\int_{U} \frac{\partial}{\partial(x, \theta)_{i}} h=0 \tag{12}
\end{equation*}
$$

for all $i=1, \ldots, p+q$. We can therefore assume w.r.o.g. that $f=f_{(1, \ldots, 1)} \eta_{1} \cdots \eta_{q}$.
Denote with \mathcal{I}_{U} the ideal generated by $\theta_{1}, \ldots, \theta_{q}$ and with \mathcal{I}_{V} the ideal generated by $\eta_{1}, \ldots, \eta_{q}$. Since Ψ is an isomorphism $\Psi\left(\mathcal{I}_{\mathcal{V}}\right)=\mathcal{I}_{U}$ and by abuse of notation denote both ideals with \mathcal{I}.
We have that $f \in \mathcal{I}^{q}$. Then $I^{q} \ni \Psi(f)=h \theta_{1} \cdots \theta_{q}$ for some $h \in C_{0}^{\infty}(U)$. By the definition of the super determinant we have

$$
\begin{equation*}
\operatorname{sdet}(J(\varphi, \Psi))=\operatorname{det}(J(\varphi, \Psi))_{00} \cdot \operatorname{det}(J(\varphi, \Psi))_{11}^{-1} \quad \bmod \mathcal{I} . \tag{13}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Psi\left(\eta_{l}\right)=\sum_{j} \theta_{j} J(\varphi, \Psi)_{j l} \quad \bmod \mathcal{I}^{2} \tag{14}
\end{equation*}
$$

and a calculation shows that

$$
\begin{equation*}
\Psi\left(\eta_{1}\right) \Psi\left(\eta_{2}\right) \cdots \Psi\left(\eta_{q}\right)=\operatorname{det}(J(\varphi, \Psi))_{11} \theta_{1} \cdots \theta_{q} \quad \bmod I^{q+1}=\operatorname{det}(J(\varphi, \Psi))_{11} \theta_{1} \cdots \theta_{q} . \tag{15}
\end{equation*}
$$

Therefore we can identify h with $\Psi\left(f_{(0, \ldots, 0)}\right) \operatorname{det}(J(\varphi, \Psi))_{11}$. Putting things together we get

$$
\begin{equation*}
\Psi(f) \cdot \operatorname{sdet}(J(\varphi, \Psi))=\Psi\left(f_{(1, \ldots, 1)}\right) \cdot \operatorname{det}(J(\varphi, \Psi))_{00} \quad \bmod I . \tag{16}
\end{equation*}
$$

But $\left(\operatorname{det}(J(\varphi, \Psi))_{00} \bmod I\right)$ is just the usual determinant of the underlying diffeomorphism and the theorem follows from the classical change of variables formula.

References

[Bä05] C. Bär. Nichtkommutative Geometrie (Skript). http://geometrie.math.uni-potsdam.de/ documents/baer/skripte/skript-NKommGeo.pdf, 2005.
[CdG94] F. Constantinescu and H.F. de Groote. Geometrische und algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren. BG Teubner, 1994.

[^0]: ${ }^{1}$ By giving a coordinate system in (1) I implicitely made a choice of orientation. Orientation reversing changes of coordinate systems will then change the sign of the integral. In any case a choice of orientation has to be made.

