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The statements (without proofs) can be found in a concise form in [Bä05]. In [CdG94] the change of
variables formula is prooved in great detail.

1 Motivation

In classical differential geometry we can integrate densities. These are given by n-forms on a smooth
compact n-dimensional manifold M . Given a coordinate system ϕ : M → Rn, ϕ = (x1, . . . , xn) and an
n-form ω = ω(x)dx1 ∧ · · · ∧ dxn, the integral of ω over M is defined to be∫

M

ω :=

∫
ϕ(M)

ω(x) d(x1, . . . , xn). (1)

By the change of variables formula this is then independent of the choice of coordinate system made.1

We want to define a similiar integration on supermanifolds. The crucial steps are then the definition of
an integral on super domains and a change of variables for it. Using partitions of unity this can then in
principal be lifted to supermanifolds.
The Berezin Integral is motivated by the rules∫

R0|1
1dθ = 0,

∫
R0|1

θdθ = 1 (2)

on the super point R0|1. By formal use of the theorem of Fubini this motivates the definition of the
integral on general super domains.

2 Berezin Integration and the change of variables formula

Definition 1. Let (U,Op|q|U ) be a super domain and

f =
∑
ε

fεθ
ε1
1 · · · θεnn ∈ Op|q(U) (3)

be a super function with compact support. Then the Berezin Integral of f over (U,Op|q|U ) is defined to
be ∫

U

f d(x, θ) = (−1)pq+q(q−1)/2
∫
U

f(1,...,1)(x1, . . . , xp) dx1, . . . , dxm. (4)

Theorem 1 (Change of variables formula). Let (U,Op|q|U ), (V,Op|q|V ) be super domains with coordinates
(xj , θj) on U and (yj , ηj) on V . Let

(ϕ,Ψ) : (U,Op|q|U )→ (V,Op|q|V ) (5)

be an isomorphism. Let f ∈ Op|q(V ) be a super function with compact support. Then the Berezin Integral
transforms as ∫

V

f d(y, η) = ±
∫
U

Ψ(f) · sdet(J(ϕ,Ψ)) d(x, θ). (6)

The negative sign appears iff ϕ is orientation reversing.

Example 1. It is imperative that the super functions have compact support for the change of variables
formula to hold: Let (U,Op|q|U ) = (V,Op|q|V ) =

(
(0, 1),O1|2|(0,1)

)
. Let (ϕ,Ψ) : (U,Op|q|U )→ (V,Op|q|V )

with ϕ = id(0,1) and

Ψ :


f(0,0)
f(1,0)
f(0,1)
f(1,1)

 7→


f(0,0)
f(1,0)
f(0,1)

f(1,1) + f ′0,0

 (7)

1By giving a coordinate system in (1) I implicitely made a choice of orientation. Orientation reversing changes of
coordinate systems will then change the sign of the integral. In any case a choice of orientation has to be made.
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for a super function f =
∑

(ε1,ε2)
f(ε1,ε2)η

ε1
1 η

ε2
2 . Then sdet(J(ϕ,Ψ)) = 1. Now let f ∈ O1|2 ((0, 1)) be

given by f(y) = y. Then ∫
(0,1)

f d(y, η1, η2) = 0 (8)

but∫
(0,1)

Ψ(f)sdet(J(ϕ,Ψ)) d(x, θ1, θ2) =

∫
(0,1)

(x+ θ1θ2) · 1 d(x, θ1, θ2) = (−1)2·1+
2·1
2

∫
(0,1)

1dx = −1. (9)

3 Proof of the change of variables formula

Just a sketch of the proof is provided here. For the missing details the reader is referred to the literature.
Write f = f0 + f1 with f1 := f(1,...,1)η1 · · · ηq, f0 := f − f1. f0 can then be written as

f0 =

q∑
i=1

∂

∂ηi
f̃i. (10)

It is obvious that
∫
V

∂
∂ηi

f̃i d(y, η) = 0. It can be shown (see [CdG94]) that

Ψ

(
∂

∂ηi
f̃i

)
· sdet (J(ϕ,Ψ)) (11)

can still be written as a sum of terms of the form ∂
∂(x,θ)i

h (i = 1, . . . , p + q) for some super functions

h ∈ Op|q|U with compact support. (But now even derivatives may appear). It follows with Stokes’
theorem and compact support of the functions h that∫

U

∂

∂(x, θ)i
h = 0 (12)

for all i = 1, . . . , p+ q. We can therefore assume w.r.o.g. that f = f(1,...,1)η1 · · · ηq.

Denote with IU the ideal generated by θ1, . . . , θq and with IV the ideal generated by η1, . . . , ηq. Since
Ψ is an isomorphism Ψ(IV) = IU and by abuse of notation denote both ideals with I.
We have that f ∈ Iq. Then Iq 3 Ψ(f) = hθ1 · · · θq for some h ∈ C∞0 (U). By the definition of the super
determinant we have

sdet (J(ϕ,Ψ)) = det (J(ϕ,Ψ))00 · det (J(ϕ,Ψ))
−1
11 mod I. (13)

We have
Ψ(ηl) =

∑
j

θjJ(ϕ,Ψ)jl mod I2 (14)

and a calculation shows that

Ψ(η1)Ψ(η2) · · ·Ψ(ηq) = det (J(ϕ,Ψ))11 θ1 · · · θq mod Iq+1 = det (J(ϕ,Ψ))11 θ1 · · · θq. (15)

Therefore we can identify h with Ψ(f(0,...,0)) det (J(ϕ,Ψ))11. Putting things together we get

Ψ(f) · sdet (J(ϕ,Ψ)) = Ψ(f(1,...,1)) · det (J(ϕ,Ψ))00 mod I. (16)

But (det (J(ϕ,Ψ))00 mod I) is just the usual determinant of the underlying diffeomorphism and the
theorem follows from the classical change of variables formula.
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