Seminar on Supergeometry - super domains and super manifolds

David Klein - 4 May 2011 - Reference: C. Bär - Nichtkommutative Geometrie (2005)

1 Super domains

Recall 1. U is a \mathbb{K} - vector space. The Grassmann algebra is defined by:

$$
\Lambda^{*} U=\bigoplus_{k \geq 0} \Lambda^{k} U
$$

with the wedge product as multiplication. The partition of $\Lambda^{*} U$ into

$$
\left(\Lambda^{*} U\right)_{0}:=\bigoplus_{j \geq 0} \Lambda^{2 j} U \text { and }\left(\Lambda^{*} U\right)_{1}:=\bigoplus_{j \geq 0} \Lambda^{2 j+1} U
$$

gives $\Lambda^{*} U$ the structure of an associative super algebra.
Def. 1.1. Let $U \subset \mathbb{R}^{m}$ be an open subset. We consider

$$
\mathcal{O}_{m \mid n}:=C^{\infty}(U) \otimes_{\mathbb{R}} \Lambda^{*} \mathbb{R}^{n}
$$

which can be understood more easily if we choose a basis, i.e. let $\theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}}, \epsilon_{j} \in\{0,1\}$ be a basis of $\Lambda^{*} \mathbb{R}^{n}$. Hence we can express every $f \in \mathcal{O}_{m \mid n}(U)$ in a unique way:

$$
f=\sum_{\substack{\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \\ \epsilon_{j} \in\{0,1\}}} f_{\epsilon} \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}}, \quad f_{\epsilon} \in C^{\infty}(U)
$$

We call the elements f of $\mathcal{O}_{m \mid n}(U)$ superfunctions of even dimension m and odd dimension n .
Remark 1.2. Let $V \subset U \subset \mathbb{R}^{n}$ be open subsets. We find a morphism $\mathcal{O}_{m \mid n}(U) \rightarrow \mathcal{O}_{m \mid n}(V)$ by

$$
f=\left.\sum_{\epsilon} f_{\epsilon} \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}} \mapsto \sum_{\epsilon} f_{\epsilon}\right|_{V} \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}}
$$

by the usual restriction $C^{\infty}(U) \rightarrow C^{\infty}(V)$. Hence, $\mathcal{O}_{m \mid n}$ is a sheaf of supercommutative super algebras. The multiplication and the neutral element in $\mathcal{O}_{m \mid n}(U)$ are defined by

$$
\begin{gathered}
\left(f \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}}\right) \cdot\left(g \otimes \theta_{1}^{\delta_{1}} \wedge \cdots \wedge \theta_{n}^{\delta_{n}}\right)=(f g) \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}} \wedge \theta_{1}^{\delta_{1}} \wedge \cdots \wedge \theta_{n}^{\delta_{n}} \\
1=\sum_{\epsilon} f_{\epsilon} \otimes \theta_{1}^{\epsilon_{1}} \wedge \cdots \wedge \theta_{n}^{\epsilon_{n}}, \quad \text { with } f_{\epsilon}\left\{\begin{array}{l}
1, \epsilon=(0, \ldots, 0) \\
0, \text { otherwise }
\end{array}\right\}
\end{gathered}
$$

Remark 1.3. We obtain a homomorphism of algebras v_{p} by

$$
v_{p}: \mathcal{O}_{m \mid n, p} \rightarrow \mathbb{R}, \quad v_{p}\left([f]_{p}\right):=f_{(0, \ldots, 0)}(p)
$$

We can now assemble the above concepts to obtain the triple $\left(\mathbb{R}^{m}, \mathcal{O}_{m \mid n}, v\right)$.
Theorem 1.4. $\left(\mathbb{R}^{m}, \mathcal{O}_{m \mid n}, v\right)$ is a locally ringed space.
Proof 1.5 (Bä05). p. 16.
Def. 1.6. Let $U \subset \mathbb{R}^{m}$ be a domain, i.e. open and connected. We call $\left(U,\left.\mathcal{O}_{m \mid n}\right|_{U}\right)$ a super domain of dimension $\mathrm{m} \mid \mathrm{n}$. The cartesian coordinates x_{1}, \ldots, x_{m} of \mathbb{R}^{m} are called the even coordinates, the coordinates $\theta_{1}, \ldots, \theta_{n}$ are called the odd coordinates.

2 Super manifolds

Def. 2.1. Let $\left(X, \mathcal{O}_{X}\right)$ be an arbitrary \mathbb{R}-super ringed space. A super chart of dim $\mathrm{m} \mid \mathrm{n}$ of $\left(X, \mathcal{O}_{X}\right)$ consists of open subsets $U \subset X, V \subset \mathbb{R}^{m}$ and an isomorphism of \mathbb{R}-super ringed spaces:

$$
(\phi, \psi):\left(U,\left.\mathcal{O}_{x}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{O}_{m \mid n}\right|_{V}\right)
$$

Def. 2.2. A \mathbb{R}-super ringed space $\left(X, \mathcal{O}_{X}\right)$ is a super manifold if

1. X is Hausdorff.
2. The topology \mathcal{T}_{X} of X possesses a countable basis.
3. Each point $p \in X$ is in the Domain of a super chart.

Def. 2.3. A morphism of super manifolds is a morphism of \mathbb{R}-ringed spaces.
Example 2.4. Let M be an m-dimensional smooth manifold. We find that $\left(M, C_{M}^{\infty}\right)$ is a super manifold of dimension ml 0 , since we can construct a super chart from any chart $\phi: M \supset U \rightarrow$ $V \supset \mathbb{R}^{m}$ of the manifold M , by chosing

$$
\psi(f)=f \circ \phi=\phi^{*}(f)
$$

and finally constructing

$$
(\phi, \psi):\left(U, C_{U}^{\infty}\right) \rightarrow\left(V, C_{V}^{\infty}\right)
$$

which is an isomorphism of \mathbb{R}-super ringed spaces and

$$
C_{V}^{\infty}\left(V^{\prime}\right)=C^{\infty}\left(V^{\prime}\right) \otimes_{\mathbb{R}} \mathbb{R}=C^{\infty}\left(V^{\prime}\right) \otimes_{\mathbb{R}} \Lambda^{*} \mathbb{R}^{0}=\mathcal{O}_{m \mid 0}\left(V^{\prime}\right)
$$

Theorem 2.5. Let $\left(X, \mathcal{O}_{X}\right)$ be a super manifold. It holds:

1. X possesses exactly one differentiable structure such that for any super chart $(\phi, \psi):\left(U,\left.\mathcal{O}_{x}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{O}_{m \mid n}\right|_{V}\right)$, the map $\phi: U \rightarrow V$ is a diffeomorphism.
2. There exists exactly one 1-preserving homomorphism

$$
\beta: \mathcal{O}_{X} \rightarrow C_{X}^{\infty}
$$

of sheaves of \mathbb{R}-algebras.
3. Let $U \in \mathcal{T}_{X}$. We define $\mathcal{O}^{1}(U):=\left\{f \in \mathcal{O}_{X}(U) \mid \mathrm{f}\right.$ is nilpotent $\}$.

Then we find that the sequence

$$
0 \rightarrow \mathcal{O}^{1}(U) \hookrightarrow \mathcal{O}_{X}(U) \xrightarrow{\beta U} C^{\infty}(U) \rightarrow 0
$$

is exact, i.e. β is surjective and $\operatorname{ker} \beta_{U}=\mathcal{O}^{1}(U)$.
4. Let $\left(Y, \mathcal{O}_{Y}\right)$ be another super manifold and $(\phi, \psi):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ be a morphism of super manifolds. Then $\phi: X \rightarrow Y$ is smooth.
5. For any $V \in \mathcal{T}_{Y}$ the diagram

commutes.
Proof 2.6 (Bä05). p. 21.

