The physical and mathematical background of the app: single pipe flow

Author: Martin Rybicki
Website: www.math.uni-hamburg.de/home/rybicki
Email: martin.rybicki@math.uni-hamburg.de)
Version: October 22, 2012
Remark 1 A detailed description of the mathematical computation to which I will refer in the later sections, can be found in [1]

1 Applications background

The emission caused by vehicles is an import issue in these times. In order to reduce the pollutant emissions of $\mathrm{CO}, \mathrm{NO}_{x}$ and $\mathrm{C}_{x} \mathrm{H}_{y}$ in the exhaust gas, there are catalytic converters installed in the exhaust pipe system. The crucial quantity to control the efficiency of a catalytic converter is the temperature. Due to this reason, one is interested in how to ensure a sufficient high temperature in the catalytic converters in a short time after the engine start.

A special method of heating after the engine start is the combustion of unburnt gas in the catalytic converters. Modern cars can control the ratio of oxygen and fuel in the combustion chamber of the engine. By choosing a ratio with more fuel and less oxygen some unburnt gas gets to the catalytic converters and can be used there for an exothermic reaction.

2 Mathematical background

The mathematical model we use for the computation is the following system, consisting of two PDEs and 2 ODEs

$$
\begin{align*}
\rho_{t}+(v+Q) \rho_{x}= & -q \rho \\
z_{t}+(v+Q) z_{x}= & -\chi z K(T) \\
v_{t}= & \frac{1}{\int_{0}^{1} \rho d x}\left[p_{1_{l}}-p_{1_{r}}-\int_{0}^{1} \rho Q_{t} d x-\int_{0}^{1} \rho(v+Q) q d x\right. \\
& \left.-C_{f} \int_{0}^{1} \frac{\rho(v+Q)|v+Q|}{2} d x-C_{c} \int_{0}^{1} \chi \rho(v+Q) d x\right], \\
\left(T_{c}\right)_{t}= & -h_{c}\left(T_{c}-T_{g a s}\right) . \tag{AM}
\end{align*}
$$

The dynamic of the density ρ and the ratio of unburnt gas z are describes by the first two equations. The velocity u is now split into the space independent velocity component v and the aggregated energy balance Q. Lastly, the temperature of the catalytic converter is modelled by the last equation.

The letter χ denotes the locality of the catalyst, i.e. vanished outside the catalytic converter.

$$
\begin{aligned}
p_{0} & =\rho T \\
T_{g a s} & =\frac{1}{\int_{0}^{1} \chi d x} \int_{0}^{1} T(x, t) d x \\
T_{\text {Wall }} & =\frac{1}{2}\left(T+T_{\text {out }}\right) \\
u(x, t) & =v(t)+Q[\rho, z](x, t)=v(t)+\int_{0}^{x} q[\rho, z](y, t) d y, \\
q[\rho, z] & :=\frac{1}{\gamma p_{0}}\left[-h\left(T-T_{\mathrm{Wall}}\right)-\chi h_{c}\left(T-T_{c}\right)+\chi q_{0} \rho z K(T)\right] .
\end{aligned}
$$

The model (AM) is the result of a low Mach number limit, executed on the Euler equation of gas dynamics (for details see [1]). This limit is performed by expanding asymptotically the pressure p. This is the reason, why we have to differentiate via indices the order of the term of the asymptotic expansion. The index of the pressure p, denotes the order of the term of the asymptotic expansion, which lead to the model (AM).

You will find a complete list of the parameters and their definition in the appendix.

3 Numerical treatment

The numerical algorithm we use is a combination of the explicit upwind method (for the PDEs) and the explicit Euler method (for the ODEs).

1. Compute from the CFL condition the right step size in time Δt.
2. Use the explicit upwind method to compute ρ and z for the next time step.
3. Use the explicit Euler rule to compute v and T_{c} for the next time step.
4. Go back to 1 .

References

[1] I. Gasser and M. Rybicki. Modelling and simulation of gas dynamics in an exhaust pipe, Applied Mathematical Modelling, (2012)
[2] M. Rybicki and R. Krenzler Single Pipe Flow App Visit website: http://www.math.uni-hamburg.de/home/rybicki/apps.

A Parameters

$$
\begin{aligned}
\gamma M^{2} & =\frac{\rho_{r} u_{r}^{2}}{p_{r}} & \gamma & =\frac{c_{p}}{c_{v}}
\end{aligned} \gamma-1=\frac{R}{c_{v}} \quad C_{f}:=\frac{\xi x_{r}}{\tilde{d}}
$$

Parameter	Name	Unit	Parameter value
ξ	wall friction		$4.52 \cdot 10^{-3}$
\tilde{C}_{c}	cc friction	s^{-1}	800
\tilde{q}_{0}	heat release	$\mathrm{m}^{2} \mathrm{~s}^{-2}$	$5 \cdot 10^{6}$
\tilde{h}	heat transfer wall	$\mathrm{kg} \mathrm{s}^{-3} \mathrm{~K}^{-1}$	150
\tilde{h}_{c}	heat transfer cc	$\mathrm{kg} \mathrm{s}^{-3} \mathrm{~K}^{-1}$	100
\tilde{K}_{0}	reaction rate	s^{-1}	100
\tilde{E}^{+}	activation energy	K	600
γ	adiabatic exponent		1.4
R	Boltzmann constant	$\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$	287.08
c_{v}	heat capacity	$\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$	717.7
$\tilde{T}_{\text {out }}$	external temperature	K	290.28

Table 1: Parameters, units, parameter values

Quantity	Unit	Reference quantity	Reference value
\tilde{t}	s	$t_{r}=x_{r} / u_{r}$	0.1 s
\tilde{x}	m	$x_{r}=\tilde{L}$	1 m
$\tilde{\rho}$	$\mathrm{~kg} \mathrm{~m}^{-3}$	ρ_{r}	$1.2 \mathrm{~kg} \mathrm{~m}^{-3}$
\tilde{u}	$\mathrm{~m} \mathrm{~s}^{-1}$	u_{r}	$10 \mathrm{~m} \mathrm{~s}^{-1}$
\tilde{p}	$\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$	p_{r}	$10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
\tilde{T}	K	$T_{r}=p_{r} /\left(R \rho_{r}\right)$	300 K
\tilde{z}		z_{r}	0.1

Table 2: Quantities, units, reference quantities, reference values

