Schriftzug: Fachbereich Mathematik 
  UHH > Fakultäten > MIN-Fakultät > Mathematik > Personen > Ingo Runkel   Sitemap Suchen Hilfe there is no english version of this page  

Ingo Runkel

Algebra Seminar (Rings and Modules) - Summer term 2012

Ankündigungen:
  • keine.

Verteilung der Vorträge:
  • 3.4 : Vorbesprechung und Grundlagen (IR)
  • 10.4 : Grundlagen (IR)
  • 17.4 : Dies Academicus - Seminar fällt aus
  • V6 (24.4) : Kettenbedingungen (AO) [pdf]
  • V7 (8.5) : Jordan-Hölder (YK) [pdf]
  • V8 (15.5/22.5) : Zerlegung von Ringen (SW) [pdf]
  • V9 (22.5/5.6) : Wedderburn-Artin (CL) [pdf]
  • V10 (5.6/12.6) : Hom Funktor und Exaktheit (ID) [pdf]
  • V11 (12.6/19.6) : Projektiv und injektiv (SN) [pdf]
  • V12 (26.6) : Tensorprodukt Funktor (IR)
  • V13 (3.7) : Rechtsexakt und Tensorprodukt (CN) [pdf]

Description:

In this seminar we discuss a selection of topics in ring theory and in the theory of modules. These appear as foundations in many other areas such as representation theory, homological algebra or algebraic geometry. A rough overview of topics treated is
  • division rings (Wedderburn's Little Theorem, Frobenius' Theorem)
  • basics on modules (sums and products, generators and cogenerators, socle and radical)
  • chain conditions (noetherian and artinian modules, Jordan Hölder Theorem)
  • semi-simple rings (Wedderburn-Artin Theorem)
  • Hom and tensor functors (projective/injective/flat modules, exactness)
  • Morita equivalence
A more detailed description of the individual seminar talks is available here [pdf].

In the Winter Term 2011/12 we treated Lie Algebras in the Advanced Algebra class. The above topics constitute and alternative standard content of an Advanced Algebra class and will be useful to students with an interest in algebraic topics.

This course is aimed at Masters students and third year Bachelor students.

Prerequisites:

Basic notions from algebra (in particular groups, fields, linear algebra); the module "Algebra 1" is recommended.

Literature:
  • Anderson, Fuller, Rings and categories of modules, Springer 1992.
  • Farb, Dennis, Noncommutative Algebra, Springer 1993.
  • Jantzen, Schwermer, Algebra, Springer 2005.
  • Lam, A first course in noncommutative rings, Springer 2001.

 
  Seitenanfang  Impressum 2012-07-03, Ingo Runkel