Schriftzug: Fachbereich Mathematik 
  UHH > Fakultäten > MIN-Fakultät > Mathematik > Personen > Ingo Runkel   Sitemap Suchen Hilfe there is no english version of this page  

Ingo Runkel

Affine Lie Algebras - Summer term 2012

Announcements:
  • [6.7] Die mündlichen Prüfungen finden an den Terminen Donnerstag, 26.7., und Freitag, 28.9., statt.
  • [5.7] In der Übungen am Fr, 6.7. wird auch eine Vorlesung statt finden; dadurch soll die ausgefallene Vorlesung nachgeholt werden. Am letzten Freitag im Semester ist dann wieder Fragestunde.
  • [26.6] Wenn Sie eine Prüfung in diesem Modul wüschen und Terminwüsche haben, schreiben Sie mir bitte bis zum Montag, 2.7, eine Email. Ich versuche dann, Ihre Wüsche zu berücksichtigen.
Overview of material covered: [PDF].
Proof of the Weyl-Kac charakter formula [PDF].

Exercises: This course is an advanced class which involves a significant component of individual study. That applies in particular to solving the exercises mentioned in the class; these will be dicussed in the exercise classes. (Exercises are not handed in and not marked.) The individual work may also consist of small reading assignments (like a section in a book) to prepare the next class or to supplement some technical details skipped in the presentation.

Exam: This course will have oral exams (to take the exam you should be registered for the course).

Description:

Affine Lie algebras are infinite dimensional Lie algebras constructed out of finite-dimensional simple Lie algebras via central extensions of loop algebras. In theoretical physics, affine Lie algebras chiefly occur in systems of space-time dimension two or three, for example in the study of conformal field theory, topological field theory, integrable models, or in the world sheet theory of strings. Examples of applications in mathematics are that affine Lie algebra give rise to modular forms, representations of mapping class groups, and to knot invariants.

This course can be divided into three related parts:
  • Affine Lie algebras and their representations (construction via central extension of loop algebra, generalised Cartan matrices, affine Weyl group, integrable highest weight representations, characters).

  • Theta functions and modular transformations (theta series associated to a lattice, behaviour under the action of the modular group SL(2,Z), relation to characters of affine Lie algebras, vector valued modular functions).

  • Vertex operator algebras (formal power series and fields, vertex operator algebras, reconstruction theorem, examples from affine Lie algebras, relation to two-dimensional conformal field theory).
This course is aimed at Masters students in Mathematics and Mathematical Physics. A course on quantum groups (by C. Schweigert) is planned for the winter term 2012/13; these two courses would serve as a good preparation for a Masters Thesis in the groups of C. Schweigert or I. Runkel.

Prerequisites:

Some familiarity with Lie algebras, for example with the structure theory for finite-dimensional semi-simple complex Lie algebras. The module "Algebra 2 (Lie algebras)" is recommended.

Literature:
  • Kac, Infinite dimensional Lie algebras, Cambridge University Press 1994.
  • Kac, Vertex algebras for beginners, American Mathematical Society 1998.
  • Wakimoto, Infinite dimensional Lie algebras, American Mathematical Society 2001.
and also
  • Di Francesco, Mathieu, Senechal, Conformal field theory, Springer 1997.
  • Fuchs, Affine Lie algebras and quantum groups, Cambridge University Press 1992.

 
  Seitenanfang  Impressum 2012-07-06, Ingo Runkel