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Abstract

This thesis is concerned with various aspects of two dimensional conformal quantum

field theory with a boundary. It is organised as follows: first the necessary formalism

and calculational techniques are explained. Then it is shown how to obtain the

structure constants characterising a boundary conformal field theory. Finally as

an application, the structure constants are used to compare conformal field theory

calculations to the thermodynamic Bethe Ansatz.

In two dimensions the symmetry algebra of a conformal field theory is infinite

dimensional and so in certain cases, organises the Hilbert space of the quantum

theory into finitely many representations. This thesis is concerned with a class of

such theories: the minimal models.

When introducing a boundary into the system, two new ingredients appear:

conformal boundary conditions and boundary fields. The way in which boundary

fields transform under conformal transformations is studied and the result is used

to compute how the shape of the boundary affects the short distance expansion of

a bulk field in terms of boundary fields.

In minimal models conformal symmetry fixes the correlation functions up to

finitely many unknowns, given in terms of the structure constants. The structure

constants have to fulfil a set of polynomial equations, the so-called sewing con-

straints. By solving these constraints, explicit solutions for bulk and boundary

structure constants are calculated in the case of A– and D–series minimal models.

These constants form a vital ingredient in two approximation methods. One is

conformal perturbation theory, which gives an expansion around the unperturbed

theory. The other is the truncated conformal space approach, in which the perturbed

Hamiltonian is truncated at a certain energy and diagonalised numerically.

As an example the boundary Lee-Yang model is considered. This model has an

off-critical description in terms of integrable scattering. It thus allows for an inves-

tigation through the thermodynamic Bethe Ansatz and the outcome is compared to

results from the previous two methods.

To summarise, this thesis provides important additions to the growing tool box of

boundary conformal field theory. One interesting application is the quantitative in-

vestigation of conjectured relationships to other descriptions of boundary integrable

systems.
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Chapter 1.

Introduction

There are many reasons to study two-dimensional conformal field theory (CFT). Let

us briefly look at three of them.

For an elementary particle theorist, a good motivation might be to think of CFT

as a model for a model. Currently the best theory in the realm of elementary particle

physics is the Standard Model. Due to its complicated structure the predictions it

makes are as yet only accessible from perturbative expansions around a free massive

theory. One might hope to learn about the behaviour of interacting quantum field

theories (QFTs) from models that can be solved explicitly. CFT in two dimensions

has enough symmetries to allow for such an exact solution, i.e. the computation of all

correlation functions in the quantum field theory. CFTs provide the renormalisation

group fixed points in the space of two dimensional QFTs. In some cases these

fixed points are connected by a whole line of “integrable theories”, so that one can

non-perturbatively follow the flow from the UV to the IR. The ultimate aim is to

understand, in some sense, the space of 2d-QFTs and draw conclusions for four

dimensional interacting QFTs.

If one’s interest is in condensed matter physics, the merits of CFT are more direct,

as it describes two-dimensional classical systems at a second order phase transition.

The central theme here is universality, i.e. that the properties of a system close to the

critical point are independent of its microscopic realisation and are characterised by

so-called universality classes. At the point of phase transition the system is supposed

to be scale invariant and to possess a description in terms of a CFT. The requirement

of conformal symmetry is so restrictive that one can hope to find a list of all such

theories and thus to classify all universality classes. As it stands this hope may be

too naive, but for example all unitary CFTs with a certain parameter, called central

charge, between zero and one are known. They are part of the minimal models, the

main subject of this thesis. Two prominent members of the list of minimal models

are the universality classes of the Ising model and the three state Potts model.

CFT is also a crucial ingredient in string theory. It governs the behaviour of
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the fields on the string world sheet that determine the position of the string. If the

string is moving in a flat background the CFT is just a free massless theory, but for

curved backgrounds more complicated CFTs arise. A theory including open strings

naturally requires the CFT to be defined on surfaces with boundaries. Objects of

special interest in the theory of open strings are hyper surfaces in the target space on

which open strings are allowed to end, so-called D-branes. Classifying all boundary

conditions of the CFT on the world sheet consistent with conformal invariance gives

information about the possible D-brane configurations in a given string theory. D-

branes can a priori have any dimension and it is interesting how the inherently two

dimensional CFT characterises higher dimensional objects.

We start in chapter 2 by describing some aspects of CFT defined on the full

complex plane and on the upper half plane. The way in which boundary fields

transform under conformal transformations is studied in chapter 3 and the result is

used to compute how the shape of the boundary affects the short distance expansion

of bulk and boundary fields.

In certain cases the symmetry algebra of the conformal field theory organises

the Hilbert space into finitely many representations. When this happens one can

attempt to find the correlators with the following two steps. The first step (chapter 4)

uses the representation theory of the symmetry algebra. The aim is to construct

a set of functions, called conformal blocks, and a set of matrices describing the

transformation behaviour of conformal blocks. In the second step (chapter 5) the

conformal blocks are combined to form the physical correlators of the theory. The

precise combination of conformal blocks is fixed by the structure constants, which

appear in the short distance expansion of nearby fields. The structure constants are

determined by requiring consistency between the various limits one can take in a

correlator and the short distance expansion.

In chapter 6 we apply this method to minimal models. They are characterised by

the property that the algebra of conformal symmetry by itself is enough to finitely

decompose the Hilbert space. We calculate explicit solutions for bulk and boundary

structure constants in the case of A– and D–series minimal models.

In chapter 7 we examine the example of the perturbed boundary Lee-Yang model.

The two methods used on the CFT side are conformal perturbation theory and

the truncated conformal space approach. The Lee-Yang model also admits an off-

critical investigation through the thermodynamic Bethe Ansatz and the outcome is

compared to the previous two methods.



Chapter 2.

Boundary Conformal Field Theory

It is beyond the scope of this thesis to present a full summary of conformal field

theory. Furthermore, it would be quite superfluous, as there already exist many

excellent reviews on the subject. A selection of the author’s personal favourites,

without any particular order, is

[YBk] The book by DiFrancesco, Mathieu and Sénéchal, by now a

standard text about conformal field theory.

[Gin88] The Les Houches lecture notes by Ginsparg, an excellent in-

troduction to CFT.

[Gab99] An overview of CFT centered on the role of the symmetry

generating chiral algebra.

[AGS89a] An introduction by Alvarez-Gaume, Sierra and Gomez, writ-

ten with an emphasis on the connection to knots and quantum

groups.

[Car89a] In the Les Houches lecture by Cardy the focus is on statistical

mechanics. Geometries with boundaries are also discussed.

In the following we will introduce the areas of CFT which are relevant for this thesis.

In some cases we will just state the results and it is understood that additional

information can be found in the introductory articles just mentioned.

2.1 CFT on the full complex plane

Conformal field theory unfolds its full power only in two-dimensional space. The

reason is that the algebra of infinitesimal conformal transformations, i.e. those that

preserve angles but not necessarily length, is finite in dimensions greater than two

and too restrictive in less than two.

The two dimensional space on which the theory is defined can be equipped with

a Minkowski or a Euclidean metric. It is the Euclidean case which has direct appli-
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cations to statistical mechanics or in computations of amplitudes in string theory.

In this thesis we only consider flat two-dimensional Euclidean space.

The formalism takes its easiest form after the identification of the two dimen-

sional space, with Cartesian coordinates (x, y), and the complex plane:

z = x+ iy z̄ = x− iy . (2.1)

Analytic functions automatically preserve angles, and a general infinitesimal confor-

mal transformation can be written as z 7→ z + ε(z), where ε(z) is analytic. We see

that there are infinitely many independent such transformations.

In this thesis we will use z∗ and z̄. The notation z∗ always refers to the complex

conjugate of z. When writing z̄ we want to think of it as an independent variable

which will eventually be set to z∗. We will find later that correlators can be written

in terms of holomorphic functions f, g as 〈φ(z, z̄) · · ·〉 =
∑
f(z)g(z̄). From this point

of view it makes sense to speak of the “chiral half” of a correlator as its z–dependence

while keeping z̄ fixed.

Note that the group of conformal transformations on the Riemann sphere is finite

dimensional and consists only of Möbius transformations

z 7→ az + b

cz + d
, (2.2)

with a, b, c, d ∈ C. They form the Lie group SL(2,C)/Z2. I.e. in two and more dimen-

sions the group of global conformal transformations is finite dimensional. However

the algebra of infinitesimal conformal transformations is infinite in two but finite in

more than two space dimensions.

To the fields φ(z, z̄) in the theory we can associate a scaling dimension ∆ and

a spin J (also sometimes denoted with x and s), according to their transformation

behaviour under global rescaling and rotation1, i.e. under the map w = reiθz for

some fixed real r, θ we have

φ(z, z̄) −→ r∆eiθJφ(w, w̄) . (2.3)

Fields with J=0 are called spinless or diagonal fields.

Every conformal transformation w = f(z) looks locally like a combined rescaling

and rotation. The CFT will contain some fields, called primary fields which only see

1 More precisely among the fields in the theory we can pick a basis with the desired transfor-
mation property. This is necessary since linear combinations of fields in general transform in more
complicated ways. It should also be mentioned that (2.3), while being true for all CFTs considered
in this thesis, might still fail in more general situations, e.g. in logarithmic CFTs [Gur93, Gab99].
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this local behaviour, i.e. whose transformation properties depend only on the first

derivative of f . Let h, h̄ be s.t. ∆ = h + h̄, J = h − h̄. Then, for a primary field

φ(z, z̄)

φ(z, z∗)
w=f(z)−−−−−→ f ′(z)h(f ′(z)∗)h̄φ(f(z), f(z)∗) (2.4)

h and h̄ are called the conformal weights of the primary field φ(z, z̄).

We can formulate an infinitesimal version of (2.4). Under the conformal mapping

z 7→ z + ε(z) a primary field changes according to

δφ(z, z∗) =
(
hε′(z) + ε(z)∂z + h̄ε′(z)∗ + ε(z)∗∂z̄

)
φ(z, z∗) . (2.5)

The stress-tensor

Another way to arrive at the properties of correlation functions under infinitesimal

transformations is to use the energy momentum or stress tensor2. Even though we

will never explicitly need an action it is sometimes helpful to think that there is a

path integral formulation of the theory. We take the response of the action to an

arbitrary infinitesimal coordinate transformation ε(x, y) as a definition of the stress

tensor

δS = −
∫
d2x ∂µεν(~x)T

µν(~x) . (2.6)

This relation is valid for any infinitesimal transformation ε(~x), not just those de-

scribing a symmetry. For a collection of fields X the path integral formulation gives

the relation ∫
dΦX δS e−S[Φ] =

∫
dΦ δX e−S[Φ] , (2.7)

where δS and δX are the changes of the action and the fields under the transforma-

tion ε(~x).

Now consider (2.7) for a collection of primary fields X = φ(z1, z
∗
1) . . . φ(zn, z

∗
n).

We use a continuous transformation ε(x) that is conformal in a small disc around

each zk and otherwise arbitrary in a compact region containing all the discs. Outside

this region we set ε(x) to zero, as depicted in fig. 2.1. Let D be the collection of all

n discs. Since ε(x) is a symmetry of the action inside D, we have δS
∣∣
D
=0.

2 To be precise the name energy-momentum tensor refers to Minkowski space time. After all
one needs a time dimension to speak of momentum, whereas the term stress tensor refers to the
elastic properties of materials. In a slight abuse of notation we will use both names.
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ε conformal

ε arbitrary

ε zero

field insertion

Figure 2.1: Infinitesimal transformation used to deduce properties of the stress tensor
on the complex plane.

Putting together (2.5) and (2.7) we get the relation

−
∫

R2−D
d2x(∂µεν(x))〈T µν(x)φ(z1, z

∗
1) . . . φ(zn, z

∗
n)〉

=
n∑
k=1

(
hkε

′(zk) + ε(zk)∂zk + h̄ε′(zk)
∗ + ε(zk)

∗∂z̄
)
〈φ(z1, z

∗
1) . . . φ(zn, z

∗
n)〉 (2.8)

As a first consequence we can use Gauß’s theorem to reduce the lhs of (2.8) to a

surface integral and a term containing εν(x)∂µT
µν integrated over R2 − D. Now

ε(x) could be chosen arbitrarily on any compact region in R2 −D. Since the rhs is

independent of the values of ε outside D, this is consistent only if T is conserved.

The reason why we went through this procedure at such length is to compare it

later to an analogous argument on the upper half plane. In this case, in addition to

the conservation of T , we will obtain the boundary condition for T .

Altogether the properties of the stress tensor are, when its position does not

coincide with the insertion points of other fields:

Txy = Tyx ; Txx+Tyy = 0 ; ∂xTxx+∂yTyx = 0 ; ∂xTxy+∂yTyy = 0 (2.9)

The relations orginate, in this order, from invariance under rotations and rescaling

and conservation of the stress-tensor.

Using the fact that Tµν is conserved we arrive at the second consequence of (2.8),

the Ward identity:

−
∫
∂D

εµ(x)nν(x)〈T µν(x)φ(z1, z
∗
1) . . . φ(zn, z

∗
n)〉

=
n∑
k=1

(
hkε

′(zk) + ε(zk)∂zk + h̄ε′(zk)
∗ + ε(zk)

∗∂z̄
)
〈φ(z1, z

∗
1) . . . φ(zn, z

∗
n)〉 (2.10)

Here nν(x) is an inward pointing vector normal to the boundary of D.



2.1. CFT on the full complex plane 13

Cartesian coordinates xa Complex coordinates zµ

x = 1
2(z + z̄) ; y = 1

2i(z − z̄) z = x+ iy ; z̄ = x− iy

∂x = ∂z + ∂z̄ ; ∂y = i(∂z − ∂z̄) ∂z = 1
2(∂x − i∂y) ; ∂z̄ = 1

2(∂x + i∂y)

∂xa

∂zµ
= P aµ =

(
∂zx ∂z̄x
∂zy ∂z̄y

)
=
(

1/2 1/2
−i/2 i/2

)
∂zµ

∂xa
= Qµa =

(
∂xz ∂yz
∂xz̄ ∂y z̄

)
=
(

1 i
1 −i

)
gab = gab =

(
1 0
0 1

)
gµν = P TP =

(
0 1

2
1
2 0

)
; gµν = QQT =

(
0 2
2 0

)
Txx = Tzz + Tzz̄ + Tz̄z + Tz̄z̄ Tzz = 1

4(Txx − Tyy) + 1
4i(Txy + Tyx)

Txy = i(Tzz − Tzz̄ + Tz̄z − Tz̄z̄) Tzz̄ = 1
4(Txx + Tyy)− 1

4i(Txy − Tyx)

Tyx = i(Tzz + Tzz̄ − Tz̄z − Tz̄z̄) Tz̄z = 1
4(Txx + Tyy) + 1

4i(Txy − Tyx)

Tyy = −Tzz + Tzz̄ + Tz̄z − Tz̄z̄ Tz̄z̄ = 1
4(Txx − Tyy)− 1

4i(Txy + Tyx)

T (z) = 2πTzz(z) ; T̄ (z̄) = 2πTz̄z̄(z̄)

Table 2.1: Relation between some quantities in Cartesian and complex coordinates

Next we will reformulate the previous relations in terms of the stress tensor ex-

pressed in complex coordinates. It is convenient to define T = 2πTzz and T̄ = 2πTz̄z̄.

Using the relations listed in table 2.1, the properties (2.9) in complex coordinates

are:

Tzz̄ = Tz̄z = 0 ; ∂̄T (z, z̄) = 0 ; ∂T̄ (z, z̄) = 0 (2.11)

The second equation implies in particular that a correlator involving the field T (z, z̄)

is an analytic function in z on the full complex plane minus the insertion points of

other fields in the correlator. This is often abbreviated by omitting the z̄ variable,

and one writes T (z). Similarly one writes T̄ (z̄) instead of T̄ (z, z̄). This will however

lead to great confusion when considering the upper half plane later on, where one

has to deal with T (z∗, z) and T̄ (z∗, z) as functions of z. So in the following we will

use T (z, z̄) and, when the meaning is clear also T (z).

In transforming (2.10) to the complex stress tensor one has to be careful with

minus signs and factors of 2π. One obtains the following relation, valid for an

analytic function ε(z):(∫ ���6z

w ε(z)T (z) +

∫ ���6z̄

w ε(z)∗T̄ (z∗)
)
φ(w,w∗)

=
(
hε′(w) + ε(w)∂w + h̄ε′(w)∗ + ε(w)∗∂w̄

)
φ(w,w∗) (2.12)

Some remarks are in order. The equation is valid when inserted in any correlator.

The notation for contour integrals used above and the rest of the thesis is that
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the factor of (2πi)−1dz (resp. −(2πi)−1dz̄) is absorbed into the definition of the

integral. The contour is indicated in a schematic picture and the variable integrated

over appears in the lower left corner. For some closed contour γ : [0, 1] → C, a

holomorphic function f and an antiholomorphic function g define∫ ���6z

f(z) :=
1

2πi

∫ 1

0

dtf(γ(t)) · γ′(t) ,∫ ���6z̄

g(z) :=
−1

2πi

∫ 1

0

dtg(γ(t)) · γ′(t)∗ (2.13)

With this definition we have∫ ���6z
0

1

z
= 1

∫ ���6z̄
0

1

z∗
= 1 . (2.14)

Looking at (2.12) we note that the separate action of T and T̄ can be extracted

from this equation. Simply consider (2.12) for a 90◦ rotated transformation ε̃(z) =

iε(z) and take linear combinations. The result is∫ ���6z

w ε(z)T (z)φ(w,w∗) =
(
hε′(w) + ε(w)∂w

)
φ(w,w∗) (2.15)

Note that (2.15), while being an identity for correlators, does not correspond to a

infinitesimal coordinate transformation. It is only in the combination (2.12) that

this interpretation is allowed.

Inserting (2.15) in a correlator and using Cauchy’s formula one can deduce the

conformal Ward identity:

〈T (ζ)φ1(z1, z̄1) . . . φn(zn, z̄n)〉 =
n∑
j=1

{ h

(ζ − zj)2
+

1

ζ − zj

∂

∂zj

}
〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉+ reg(ζ) (2.16)

where reg(ζ) is a regular function on the complex plane. A similar relation holds for

T̄ (z̄).

In particular we see that the operator product expansion (OPE) –or short dis-

tance expansion– of the stress tensor with a primary bulk field is

T (z)φ(w, w̄) =
( h

(z − w)2
+

1

z − w

∂

∂w

)
φ(w, w̄) + reg(z − w) (2.17)

As expounded in more detail in the introductory texts, the most general OPE for T
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consistent with associativity is

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) + reg(z − w) , (2.18)

with an analogous expression for T̄ (z̄)T̄ (w̄). The OPE of T with T̄ has no poles.

(2.18) gives rise to the following transformation behaviour under a conformal map

w=f(z):

T (z)
z 7→f(z)−−−−→ f ′(z)2T (w) + c

12
{f ; z} (2.19)

In particular T is not primary. The constant c is called central charge and turns

out largely to fix the properties of the conformal field theory. {f ; z} is called the

Schwarzian derivative and is defined as

{f ; z} :=
f ′′′(z)

f ′(z)
− 3

2

(f ′′(z)
f ′(z)

)2

. (2.20)

Since the theory is defined on the full complex plane we can actually do better than

(2.16). For ζ →∞, in any direction, the leading behaviour of the correlator will be

given by 〈T (ζ)T (0)〉 = c
2
· ζ−4. The regular function reg.(ζ) thus goes to zero in any

direction on the complex plane, and it has no poles, hence it has to be identically

zero. We obtain a much stronger relation, which allows us to remove the energy

momentum tensor completely from the correlator:

〈T (ζ, ζ∗) φ1(z1, z
∗
1) . . . φm(zm, z

∗
m)〉

=
m∑
j=1

{ hj
(ζ − zj)2

+
1

ζ − zj

∂

∂zj

}
〈φ1(z1, z

∗
1) . . . φm(zm, z

∗
m)〉 (2.21)

Using the OPE (2.18) we can even extend this to correlators with several insertions

of T and T̄ . The conformal Ward identity on the full complex plane now reads:

〈T (ζ) T (u1) . . . T (uk) T̄ (v̄1) . . . T̄ (v̄`) φ1(z1, z̄1) . . . φm(zm, z̄n)〉

=
k∑
j=1

c/2

(ζ − uj)4
〈T (u1) . . . T (uj−1)T (uj+1) . . . T (uk) T̄ ’s φ’s 〉

+
( k∑
j=1

{ 2

(ζ − uj)2
+

1

ζ − uj

∂

∂uj

}
+

m∑
j=1

{ hj
(ζ − zj)2

+
1

ζ − zj

∂

∂zj

})
· 〈T (u1) . . . T (uk) T̄ (v̄1) . . . T̄ (v̄`) φ1(z1, z̄1) . . . φm(zm, z̄m)〉 (2.22)

Together with a similar relation for T̄ this makes it possible to express a correlator
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with any number of T ’s and T̄ ’s in terms of correlators involving only primary fields.

Hilbert space formulation

We use radial quantization on the complex plane. This means we pick out a point

z0 on the complex plane and think of the vectors in the Hilbert space as describing

states on concentric circles around z0. For the conformal theories we are considering

in this thesis, there is a state field correspondence in the sense that a field inserted

at z0 can be thought of as a state and vice versa. Usually one takes z0 to be the

origin, but let us keep it arbitrary for the moment. On the upper half plane we will

have to distinguish between the Hilbert space constructed around a point on the

boundary and around a point in the bulk.

We can define the action of the stress tensor T and its anti holomorphic coun-

terpart T̄ on the Hilbert space via their modes. Define

Lm(z0) =

∫ ���6ζ
z0 (ζ − z0)

m+1T (ζ, ζ∗) ,

L̄m(z0) =

∫ ���6ζ̄
z0 (ζ∗ − z0

∗)m+1T̄ (ζ, ζ∗) . (2.23)

From (2.18) one can deduce that the modes have to fulfil the Virasoro algebra Vir,

that is (omitting the z0 at each L)

[Lm, Ln] = (m− n)Lm+n + δm+n,0
c
12

(m− 1)m(m+ 1)

[Lm, L̄n] = 0

[L̄m, L̄n] = (m− n)L̄m+n + δm+n,0
c
12

(m− 1)m(m+ 1) . (2.24)

Furthermore, performing the corresponding contour integral with (2.17), we get the

commutation relations

[Lm(z0), φ(w, w̄)] =
(
h(m+1)(w − z0)

m + (w − z0)
m+1 ∂

∂w

)
φ(w, w̄)

[L̄m(z0), φ(w, w̄)] =
(
h̄(m+1)(w̄ − z̄0)

m + (w̄ − z̄0)
m+1 ∂

∂w̄

)
φ(w, w̄) (2.25)

Note that, as was the case for T , the conserved charges Lm and L̄m individually do

not correspond to an infinitesimal transformation on the complex plane. It is only in

the combinations Lm+L̄m and i(Lm−L̄m) with m≥−1 that do. The transformations

are z → z + ε · (z−z0)
m+1 and z → z + ε · i (z−z0)

m+1, respectively.

In particular from (2.25) we see that a primary field φ(z0, z
∗
0) is annihilated by

all Lm(z0)’s and L̄m(z0)’s with m > 0. This is just rephrasing the statement made
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earlier, that primary fields only see the first derivative in a change of coordinates,

which for z=z0 in z → z + ε · (z−z0)
m+1 and m>0 is f ′(z0) = 1. For a primary field

this transformation looks like the identity and hence φ(z0, z̄0) and Lm(z0) commute

for m>0.

The Hilbert space thus decomposes into highest weight representations of Vir ⊗
Vir. Each module is spanned by a highest weight state |h, h̄〉 and an infinite set

of descendent states of the form Lm1 . . . L̄n1 . . . |h, h̄〉 with all m and n less than

zero. Once we know the central charge c of the theory and the conformal weights

(h, h̄) of all primary fields we can construct the Hilbert space. As we will see in the

next section some care has to be taken in the construction of a basis, since not all

products of L’s and L̄’s are linearly independent.

We denote fields α(z0) which commute with L1(z0) as quasi–primary fields. Note

that if α(z0) additionally commutes with L2(z0) it is primary, since from (2.24) we

see that all Lm with m>0 can be obtained as commutators of L1, L2. The state |α〉
corresponding to α(z) is also called quasi–primary and has the defining property

L1|α〉=0.

The inner product on the Hilbert spaces is defined by the commutation rela-

tions (2.24). For two highest weight states |i〉, |j〉 we define

〈i|j〉 = δi,j · ai , (2.26)

for some constant ai. For descendent states we define (we will come back to this in

the following section)

(Lm)† = L−m (2.27)

and use the Vir–algebra to reduce a general inner product to the form (2.26). E.g.

〈i|(L−1)
†L−1|j〉=〈i|L1L−1|j〉=δi,j2hi〈i|i〉.

The operator L0 acts like a grading operator on a Vir–module M(h, c). That

is, a state |χ〉=L−m1 . . . L−mk |h〉 is an L0 eigenstate with eigenvalue L0|χ〉=(h +

m1 + · · · +mk)|χ〉. From (2.25) we see that the combinations L0+L̄0 and iL0−iL̄0

generate rescalings and rotations, respectively. Translations in turn are generated

by L−1+L̄−1 and iL−1−iL̄−1.

The identity field 11(z0) corresponds to the vacuum state |0〉 in the Hilbert space

H(z0). From definition (2.23) it follows that Lm|0〉=0=L̄m|0〉 for m≥−1. This

implies that the vacuum is translation, rotation and scale invariant, and that it is

a Vir⊗Vir–highest weight vector in H. To be precise we should call |0〉 the sl(2)–

invariant vacuum, since e.g. for a non–unitary theory on a cylinder it is not the



18 Boundary Conformal Field Theory

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

=

φ φ

φ φ |Φ〉

Figure 2.2: Operator product expansion (OPE): The field outside the disc cannot
tell the difference between two fields inside the disc or an appropriate state inserted
on its boundary.

state of lowest energy and thus not the real vacuum. It will always be clear from the

context whether “vacuum” refers to the state of lowest energy or the sl(2)–invariant

state |0〉. Also, throughout this thesis the expressions correlation function, n-point

function, amplitude and vacuum–expectation value all refer to the (radially ordered)

vacuum–expectation value 〈0| . . . |0〉 w.r.t. to the sl(2)–invariant vacuum. When we

talk about physical expectation values, the identity one–point function, or partition

function, 〈1〉 is divided out explicitly.

Let |φ〉∈H be the highest weight vector corresponding to the primary field φ(z, z̄).

The Vir⊗Vir module built on |φ〉, i.e. |φ〉 and all its descendents, is called the con-

formal family [φ]. By definition it closes under repeated infinitesimal conformal

transformations.

It is much more difficult to check that the set of fields in the theory is also closed

with respect to the OPE. From the Hilbert space point of view the OPE is really a

statement about completeness. As shown in fig. 2.2 a field outside the circle cannot

tell the difference between two fields inside the circle or an appropriate state put on

the circle.

Now that we know all the states in the Hilbert space, and thus all the primary

and descendent fields, we can write down the OPE of two primary fields as

φi(z, z̄)φj(w, w̄) =
∑
k

Cij
k (z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄j(φk(w, w̄)+

+ c1(z−w) · (L−1φk)(w, w̄) + c2(z̄−w̄) · (L̄−1φk)(w, w̄)

+ c3(z−w)(z̄−w̄) · (L−1L̄−1φk)(w, w̄)

+ c4(z−w)2 · (L−2φk)(w, w̄) + . . . ) (2.28)

The coefficients cn depend on the primary fields cn≡cn(i, j, k). The notation

(L−mA)(w, w̄) is a shorthand for [L−m(w), A(w, w̄)], i.e. (ζ−w)−m+1T (ζ)A(w, w̄)

being integrated around a tight circle centered at w. The sum runs over all pri-

mary fields in the theory. The functional form and the constants c1, c2, . . . in front

of the descendent fields are determined by requiring that the lhs and rhs of (2.28)
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describe the same state in the Hilbert space, i.e. 〈v|lhs〉 = 〈v|rhs〉 for all states

v. An example calculation can be found in appendix A.1. The constant Cij
k is

called a structure constant and is the only nontrivial3 input in the OPE. It is the

coefficient in front of the most relevant contribution of a particular conformal family

[φk], i.e. all descendent states vanish faster as z → w.

By the commutation relation (2.24), (2.25) of the L’s one can always express

an amplitude involving descendent fields as a differential operator acting on an

amplitude involving only primary fields. In particular, if a primary field is not

present on the rhs of (2.28) none of its descendent will appear in the OPE either.

This is a particularity of the Virasoro algebra not necessarily shared by more general

symmetry algebras; we will briefly come back to that point in chapter 5.

As mentioned in the beginning, all global conformal transformations are of the

form (2.2). These allow us to map three arbitrary points in the complex plane to

three fixed points, 0, 1, 2, say. Thus the form of the 1, 2, 3-pt correlators is entirely

fixed by the behaviour under conformal transformations:

〈φi(z, z̄)〉 = δhi,0 · Ai ,

〈φi(z, z̄)φj(w, w̄)〉 = δhi,hjδh̄i,h̄j ·Bij · (z − w)−2hi(z̄ − w̄)−2h̄i ,

〈φi(u, ū)φj(v, v̄)φk(w, w̄)〉 = Cijk · (u−v)hk−hi−hj(u−w)hj−hi−hk(v−w)hi−hj−hk

· (ū−v̄)h̄k−h̄i−h̄j(ū−w̄)h̄j−h̄i−h̄k(v̄−w̄)h̄i−h̄j−h̄k , (2.29)

for some constants Ai, Bij, Cijk. Note that we have some freedom in fixing Bij by

redefining the fields φ̃i(z, z̄)=λi · φi(z, z̄).

In the rest of the thesis we will assume that the identity is the only bulk field

with conformal weights (0, 0). Furthermore we choose a basis of primary fields

s.t. Bij=δi,j · Bi, for some new constant Bi. An obvious choice would be Bi=1, as

this simplifies the expressions somewhat. But in the way the structure constants

are computed in chapter 6 it is more convenient to leave the normalisation of the

two-point couplings arbitary at this stage. With these assumptions, the constants

in (2.29) are linked to the OPE-coefficients (2.28) as4

Ai = 〈1〉 = 〈0|0〉 , Bij = δij Cii
1 〈1〉 , Cijk = Cjk

i Cii
1 〈1〉 . (2.30)

3 Nontrivial in the sense that the structure constants are not directly fixed by the representation
theory of the Virasoro algebra. See chapters 4 and 5 for details.

4 No summation is implied in these formulas. Sums over field labels are always written out
explicitly.
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More on the inner product

The state field correspondence introduced in the previous section links the normal-

isation of states |α〉 and fields α(z, z̄):

|α〉 = α(0, 0)|0〉 . (2.31)

In this section we want to clarify the connection between fields and in/out states as

well as between two-point functions and the inner product in the Hilbert space.

The aim is to construct an inner product (a, b)=〈a|b〉 that is hermitian,

i.e. (a, b)∗=(b, a). Following the description in [Gab99] we take the correlators to

have the property

(
〈φ1(z1, z

∗
1) . . . φn(zn, z

∗
n)〉
)∗

= 〈φ̄1(z
∗
1 , z1) . . . φ̄n(z

∗
n, zn)〉 (2.32)

for some fields φ̄. We further take the fields to be either purely real or purely

imaginary in the sense that φ̄(z, z∗)=σ(φ)(−1)Jφ ·φ(z, z∗) for some sign σ(φ). Recall

that Jφ is the spin of the field φ. Let U be the operator implementing the Möbius

transformation z → z−1. It has the property U=U−1 and, since U is a global

symmetry, for any collection X of fields 〈X〉=〈UXU〉. Define the inner product as

(a, b) = lim
ε→0
〈Uā(ε)Ub(ε)〉 . (2.33)

This is hermitian due to (2.32) and SL(2,C)–invariance:

(a, b)∗ = lim
ε→0
〈Ua(ε)Ub̄(ε)〉 = lim

ε→0
〈UUa(ε)Ub̄(ε)U〉 = (b, a) . (2.34)

The hermitian conjugate of a field a(z, z̄) is given by a(z, z̄)† = Uā(z̄, z)U . For a

quasi primary field α(z, z̄) this results in

α(z, z̄)† = σ(α)z̄−2hαz−2h̄αα(z̄−1, z−1) . (2.35)

In particular the out states corresponding to primary fields are given by

〈i| = lim
ε→0
〈0|φi(ε)† = σ(i) lim

ε→0
ε−2∆φ〈0|φi(ε−1) . (2.36)

We can employ this together with (2.29) to obtain the connection between the inner

product and the two-point structure constants:

〈i|i〉 = σ(i) lim
ε→0

ε−2∆φ〈0|φi(ε−1)φi(0)|0〉 = σ(i)Cii
1 · 〈0|0〉 . (2.37)
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By an appropriate choice of sign it is possible to have negative two-point functions

even in a unitary theory. Changing the sign σ(φ) corresponds to redefining the field

φ as i · φ. After a little algebra one can show that with the above definitions

(Cij
k )∗ = (−1)Ji+Jj+Jk · σ(i)σ(j)σ(k) · Cijk . (2.38)

The signs σ(φ) can thus be necessary if one wants to have real bulk structure con-

stants and a unitary inner product in the presence of fields with spin.

Suppose we have a quasi–primary chiral field J(z), i.e. a field that does not

depend on z̄, with integer weight hJ . By relating the mode expansion of J(z) and

J(z)† we find

Jm
† = σ(J) · J−m . (2.39)

In particular, for the stress tensor T we have σ(T )=1 and Lm
†=L−m.

In this thesis we will treat unitary and non-unitary theories on the same footing,

and it will cause no problems that the inner product 〈i|i〉 can be negative. To

simplify notation we will choose all signs σ(i)=1, keeping in mind that we might

end up with a non-unitary inner product even for a unitary field theory.

Torus partition function and modular invariance

Consider the map z = f(w) = exp(2πi
R
w) from a cylinder of circumference R (con-

structed from C by identifying w≡w+R) to the complex plane (with coordinate z).

The Hamiltonian on the cylinder is given by

Hcyl =

∫ R

0

Tyydx (2.40)

With the relations in table 2.1 we can express Tyy = −2π(T + T̄ ) and using (2.19)

we obtain the action of Hcyl in the Hilbert space of the complex plane

Hcyl =
2π

R

(
L0 + L̄0 −

c

12

)
(2.41)

The term c/12 has its origin in the Schwarzian derivative. (2.41) also implies that for

the Hamiltonian to be bounded below, the Hilbert space can only consist of highest

weight representations of Vir⊗Vir.

Next suppose we identify two sections of the cylinder to turn it into a torus of
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length L. The partition function of this system is

Z(R,L) = tr e−L·Hcyl = tr qL0+L̄0−c/12 (2.42)

where q = exp(−2πL/R). Note that the partition function is unaltered if we change

the overall size of the cylinder. Since conformal field theory is designed to describe

a scale invariant system, this is what we expect5.

The partition function can be expressed through the characters of the represen-

tations of Vir present in the Hilbert space. The character of a Vir-module M(h, c)

of highest weight h and central charge c is defined as

χh(q) = q−c/24 · trM(qL0) . (2.43)

Recalling that L0 gives the level of a state we see that the character will contain

a term k · q−c/24+h+n if the representation contains k states of level n. In terms of

characters the partition function becomes

Z(R,L) =
∑
k

χhk(q)χh̄k(q
∗) . (2.44)

The sum runs over all primary bulk fields present in the theory.

Had we chosen instead the Hamiltonian H̃cyl =
∫ L

0
Txxdy and used the map

f̃(w) = exp(2π
L
w), we would have arrived at the expression

Z(R,L) = tre−R·Hcyl = trq̃L0+L̄0−c/12 =
∑
k

χhk(q̃)χh̄k(q̃
∗) (2.45)

with q̃ = exp(−2πR/L).

Requiring the two expressions for the partition function to coincide places severe

constraints on the possible bulk field content of the theory. More generally one

characterises a torus by its two periods on the complex plane. One period can be

fixed to one by rescaling, and the other is τ = iL/R (in the first case). All values

of τ leading to conformally equivalent tori (i.e. such that are related by rescaling)

are generated by the two operations τ → τ + 1 and τ → −1/τ . The torus partition

function should be independent of the parametrisation of the torus. This requirement

is called modular invariance [Car86].

We have seen that different ways to calculate the torus amplitude gives con-

5 Some care has to be taken at this point. The partition function of a CFT defined on a disc of
radius r for example will in general depend on r. Roughly speaking, this is because the boundary
curvature introduces a scale to the system. The scale dependence of CFT partition functions in
different geometries has been considered in [CPe88].
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straints on the spectrum of the theory in the bulk. As discussed shortly, different

ways to calculate the amplitude of a cylinder with finite length (i.e. with boundaries)

tells us about the possible conformal boundary conditions.

2.2 Minimal models

This section is a selection of facts about a class of conformal field theories called

minimal models. More details can be found for example in the original work by

Belavin, Polyakov and Zamolodchikov [BPZ84] or in the choice of texts mentioned

in the beginning.

For certain values of the central charge the OPE of fields closes, even if the theory

contains only finitely many primary fields. The only values of the central charge for

which this happens are:

c = 1− 6(t+ t−1− 2) ; t ∈ Q+ − Z+ − 1/Z+ . (2.46)

In other words the central charge is parametrised by a rational number t=p/q with

p, q integers ≥ 2 that have no common divisor. The irreducible highest weight

representations of the Virasoro algebra which are present in minimal models can be

organised in a (p−1) × (q−1) table called the Kac-table. Let r run over 1 . . . p−1

and s over 1 . . . q−1. Then the highest weights of the corrresponding representations

are

hr,s =
1

4t

(
(r−st)2 − (1−t)2

)
. (2.47)

These representations are degenerate, i.e. they contain null vectors. A null vec-

tor is an element of the Vir-module other than the highest weight state that is

annihilated by all Lm with positive m. To obtain an irreducible representation

these have to be divided out. For example in the h1,2 representation the state

|η〉=(L−2− 3
2(2h+1)

L−1L−1)|h1,2〉 has this property. Note that since any Lm can be ob-

tained from commuting L1’s and L2’s it is enough to verify L1|η〉 = 0 and L2|η〉 = 0,

reducing the amount of work considerably.

For the degenerate representations just mentioned the character formulas are

(e.g. [YBk])

χr,s(q) =
qhrs−c/24

ϕ(q)
·
∑
n∈Z

{
qn(npq+qr−ps) − qn(npq+qr+ps)+rs

}
; ϕ(q) =

∞∏
n=1

(1−qn)

(2.48)



24 Boundary Conformal Field Theory

One checks that for 0<r<p, 0<s<q the exponents entering the sum are always non–

negative. It is also possible to work out the behaviour of the characters under the

modular transformation q=e2πiτ → q̃=e−2πi/τ . We have χk(q̃) =
∑

` Sk
`χ(q) with

Srs
r′s′ = 23/2(pq)−1/2(−1)1+rs′+sr′ · sin(πrr′/t) · sin(πss′t) (2.49)

The matrix S squares to one.

Explicit knowledge of S makes it possible to check if a given field content is

modular invariant. If Mk` is the multiplicity of a primary field with weights (hk, h`),

then modular invariance demands SM = MS. The solution to this condition6

has been found by Cappelli, Itzykson and Zuber [CIZ87] leading to an ADE-type

classification of all modular invariant minimal models.

The null vectors of degenerate representations give rise to differential equations

on the correlation functions. For example, with the null state |η〉 previously men-

tioned we have

0 = 〈i|φj(1, 1)φk(z, z̄)
(
L−2− 3

2(2h+1)
L−1L−1

)
|h1,2〉 . (2.50)

To get the differential operator one commutes the L’s past the fields till they anni-

hilate at the out state. The result is a second order differential operator of the form

D(z)〈i|φj(1, 1)φk(z, z̄)|h1,2〉=0. For h1,2 it actually has a general solution in terms

of hypergeometric functions, given later in eqn. (4.54).

Note that the differential operator acts only on z and not on z̄. Replacing the

L’s with L̄ we get another operator, D̄(z̄), acting only on the anti holomorphic part

of the correlator. This implies that the correlator can be written as
∑

k,` fk(z)g`(z̄),

where D(z)fk(z)=0 and D̄(z̄)g`(z̄)=0. The solutions to the (anti–) holomorphic

differential equations are called conformal blocks and we will encounter them again

in a more general setting in chapter 4.

2.3 CFT on the upper half plane

CFT on the upper half plane was initiated by Cardy and Cardy and Lewellen in a

series of articles [Car84, Car89b, CLe91]. Apart from the original work, an introduction

can be found in Cardy’s Les Houches lecture notes [Car89a]. In this section some

aspects of their work are described.

Once we understand CFT on the UHP, we can also calculate correlators in more

6 It turns out that the constraint arising from τ → 1 + τ merely multiplies the character (2.43)
by a phase, resulting in the condition h − h̄ ∈ Z. The difficult constraint arises from τ → −1/τ .
We also demand that the bulk vacuum is unique, i.e. M00 = 1.
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Figure 2.3: Infinitesimal transformation used to deduce properties of the stress tensor
on the upper half plane.

general geometries. This is accomplished by a conformal mapping back to the UHP.

One can find such a map for any simply connected proper subset of the complex

plane (Riemann mapping theorem). So studying CFT on the UHP is in this sense

not a restriction, but covers the general case as well.

Conformal boundary conditions

On the full complex plane we used infinitesimal conformal transformations to relate

different correlators on the plane. This led to condition (2.21), which the correlators

in a conformally invariant theory have to satisfy.

If the theory is defined on the UHP, conformal transformations serve two pur-

poses. Firstly, transformations that change the geometry (e.g. from the UHP to the

unit disc) make it possible to express correlators in different geometries in terms of

those on the UHP. Secondly, transformations that map the UHP back to itself place

constraints on the correlators on the UHP.

For the moment, we are interested in determining the correlators on the UHP,

that is we need to consider infinitesimal transformations that map the UHP to

itself. On the full complex plane, starting from (2.5), (2.7) we were led to the Ward

identities (2.22). On the UHP the same argument leads to a slightly different answer.

To see the effect of the boundary consider a collection of primary fields X and an

infinitesimal transformation ε(x, y) with properties (see fig. 2.3)

- ε(x, y) is a continuous function UHP→ C.

- The transformation (x, y) 7→ (x, y) + ε(x, y) maps the UHP to itself, i.e. for

all x we have εy(x, 0) = 0.

- ε(x, y) is conformal in a semi-disc D containing all the fields X.

- Let K be a compact set s.t. D ⊂ K. ε(x, y) is arbitrary in K −D.

- ε(x, y) is zero on R2 −K.
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We want to apply relation (2.7),∫
dΦX δS e−S[Φ] =

∫
dΦ δX e−S[Φ] , (2.51)

to the infinitesimal transformation ε(x, y). Note that up to now we did not say

anything about the boundary condition along the real line. To proceed we demand

that the boundary condition is conformally invariant. More precisely we demand

that δS
∣∣
D
=0. That is the action, including a segment of the boundary, does not

change under the conformal transformation. δX is again given by (2.5) and as

before, the rhs is independent of the values of ε(x, y) outside D. Integrating the lhs

by parts gives, in analogy with (2.10),∫
dΦδXe−S[Φ] = −

∫
∂(K−D)

nν(~x)εµ(~x)〈T µν(~x)X〉+

∫
K−D

εµ(~x)∂ν〈T µν(~x)X〉 . (2.52)

Here nν(~x) is an outward pointing normal to the boundary ∂(K−D). From the

second term we conclude that the stress tensor is conserved away from the insertion

points of other fields ∂µT
µν = 0. The first term, however, gives a new condition.

Each portion of the integral along the real line amounts to
∫ b
a
εx(x, 0)〈T xy(x, y)X〉dx.

Demanding this be independent of εx(x, 0) leads to the boundary condition for the

stress tensor: T xy(x, 0) = 0.

This condition can be interpreted as the absence of energy flow across the bound-

ary. For this point of view we take time to run along the boundary. The quantity

Tµνv
ν describes the energy-momentum flow in direction ~v. At the boundary this flow

is always orthogonal to the boundary, i.e. only momentum, but no energy crosses

the boundary. That is the case e.g. for elastic particles bouncing off a hard wall. It

is however less clear in this picture why this boundary condition should be necessary

for conformal invariance.

To summarise we saw that the condition T xy(x, 0) = 0 is necessary and suffi-

cient to ensure that a boundary condition preserves conformal invariance. After a

quick glance at table 2.1 we see that in complex coordinates this corresponds to

T (x, x∗)=T̄ (x, x∗) for all x∈R. Note that this relation does not fix the boundary

condition uniquely. It just selects a class of boundary conditions allowed by con-

formal invariance. The task of finding all boundary conditions consistent with the

bulk theory will be addressed briefly in the next section and more thoroughly in

section 5.3.

We will now come to the Ward identities on the UHP. First note that in the
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bulk the argument separating the action of T and T̄ leading to (2.15) goes through

in exactly the same way. So correlators involving T and T̄ alone are defined unam-

bigously.

The functions z 7→ T (z, z∗) and z 7→ T̄ (z∗, z) are both analytic (i.e. any correlator

involving these fields is analytic in z). Furthermore they are equal on the real line,

i.e. T (x)=T̄ (x). By analytic continuation this has to hold for all z ∈ C:

T (z, z∗) = T̄ (z∗, z) ; for all z ∈ C . (2.53)

The general Ward identity (2.16) for a collection of primary fields

φ1(z1, z
∗
1) . . . φm(zm, z

∗
m) is still valid. However the argument leading to the

special form (2.21) required that the only poles of T (ζ, ζ∗) be at ζ = zk for all k.

On the UHP all we can say is that the only poles of T (ζ, ζ∗) situated in the UHP

are at ζ = zk. On the other hand we also know that all poles of T̄ (ζ, ζ∗) are equally

located at ζ = zk. Combining this information with condition (2.53) tells us the

location of all poles of T : The correlator 〈T (ζ, ζ∗)φ1(z1, z
∗
1) . . . φm(zm, z

∗
m)〉UHP has

poles only at ζ = zk and ζ = z∗k for all k. Furthermore it decays as ζ−4 for ζ → ∞
along any direction. We obtain the Ward identity on the UHP:

〈T (ζ, ζ∗) φ1(z1, z
∗
1) . . . φm(zm, z

∗
m)〉UHP

=
( m∑
j=1

{ hj
(ζ − zj)2

+
1

ζ − zj

∂

∂zj

}
+

m∑
j=1

{ h̄j
(ζ − z∗j )

2
+

1

ζ − z∗j

∂

∂z̄j

})
· 〈φ1(z1, z

∗
1) . . . φm(zm, z

∗
m)〉UHP (2.54)

There also is a straightforward extension to correlators with several T and T̄ inser-

tions in addition to the primary fields φ, corresponding to (2.22).

Comparing the full plane and UHP Ward identities (2.21) and (2.54) we see that

the two correlators

〈T (ζ, ζ∗) φ1(z1, z
∗
1) . . . φm(zm, z

∗
m)φ̄1(z

∗
1 , z1) . . . φ̄m(z∗m, zm)〉C ,

〈T (ζ, ζ∗) φ1(z1, z
∗
1) . . . φm(zm, z

∗
m)〉UHP , (2.55)

have the same singularities in ζ. Here the notation φ̄k(w, w̄) stands for a primary

field with conformal weights (h̄k, hk) if the field φk(w, w̄) has weights (hk, h̄k).

We want to argue that, in a way made precise below, we can think of a correlator

on the UHP as a correlator on the full complex plane by reflecting all fields at the real

axis. We will denote this procedure, which is due to Cardy [Car84] as the doubling

trick.
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Figure 2.4: Cardy’s doubling trick to relate correlators on the UHP and the full
complex plane. Both correlators have the same singularities in ζ.

The relation (2.55) extends to correlators with several T and T̄ fields as well

(fig. 2.4). In this case T̄ on the UHP becomes a T on the LHP after reflection.

Correspondingly L̄−n reflects to L−n and so forth. Note that the reflection of T

itself is the identity, since it is a (2, 0) quasiprimary field.

Recall the procedure outlined in section 2.2 that gave rise to differential equations

on the correlators. The precise formulation of Cardy’s doubling trick is the following:

Imagine a correlator of n primary fields in a minimal model on the UHP. Dress one

of the primary fields, say φ1, with L−n’s so that it becomes a null state. This gives

rise to a differential equation on the UHP correlator. The doubling trick implies

that this differential equation is exactly the same as the corresponding equation of

the φ1–null state in a full plane correlator with 2n primary fields as in (2.55).

We will see in the next section how we can arrive at the same picture by deforming

contours on the UHP. The contour of a charge Ln will turn into an L̄n integral after

hitting the boundary.

To obtain the correlators in minimal models we will later construct the conformal

blocks, that is all solutions to the null state differential equations. The doubling

trick tells us that we can use the same set of functions (in different combinations)

to describe both full plane and UHP correlators.

A unifying approach to treat correlation functions on the full plane, the UHP

and more general two dimensional surfaces (e.g. non–orientable ones) from the point

of view of three dimensional topological field theory has been developed by Felder

et al. [FFFS99].

Hilbert space formulation

There are two equally important Hilbert space formulations of the theory on the

UHP. One is the bulk description obtained by radial quantisation around a point

z0 with Im(z0) > 0. From this point of view the boundary is an out-state. In the

other formulation the Hilbert space is centered at a point on the boundary. Here
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the boundary condition is encoded in the composition of the Hilbert space.

We will address the bulk construction first. Even though T (z0, z
∗
0) and T̄ (z0, z

∗
0)

are linked via analytic continuation, there is no local relation between the two. That

is, we cannot express T̄ (z0, z
∗
0) as a function of T (z0, z

∗
0) and a finite number of

derivatives thereof. Correspondingly there is no direct relationship between Ln(z0)

and L̄n(z0) acting on fields (or states) at z0 and we have a situation exactly equivalent

to the bulk, with two copies of Vir acting on the Hilbert space:

Vir ⊗ Vir .H(z0) for Im(z0) > 0. (2.56)

Intuitively this is what we expect from the statistical mechanics point of view.

There the Hilbert space at z0 describes the possible microscopic configurations on

small circles centered at z0. In this sense the stucture of the Hilbert space is a local

property of the theory and should not be influenced by the boundary unless it passes

directly through z0.

To give an example of an out-state that describes a boundary, consider the unit

disc, centered at zero. The boundary is the unit circle, and a basis for the corre-

sponding boundary states is given by the so–called Ishibashi states [Ish89]. Let u be

the coordinate on the unit disc and z on the UHP. Then z = f(u) = −iu−1
u+1

maps

the unit disc to the UHP. One verifies that the UHP-boundary condition T = T̄

becomes e2iθT (u, u∗) = e−2iθT̄ (u, u∗) for u = eiθ. In particular we see that the con-

dition for a boundary to be conformal depends on the shape of the boundary. Recall

the definition (2.23) of the operators Ln. For a contour running on the circular

boundary one can check that the T -boundary condition on the unit disc implies

Ln = L̄−n. We are thus looking for a state 〈B| with the property 〈B|Ln = 〈B|L̄−n.
The Ishibashi states 〈〈i| solve this condition and can be constructed as follows:

Choose a Vir⊗Vir highest weight state |i〉 ∈ H which has the same left/right con-

formal weight (hi, hi). Let vk be a basis of the Vir-module M(hi, c), s.t. each vk is

of the form L−n1 . . . L−nN |i〉 and v0 is the highest weight vector |i〉. Then the inner

product matrix gk` = 〈vk|v`〉/〈v0|v0〉 is real. With G=g−1 the Ishisbashi state, as an

out–state, is given by

〈〈i| =
∑
k,`

Gk`〈vk ⊗ v`| = 〈i|+ . . . (2.57)

That it has the required property can be seen in two ways. First of all, by direct

computation one can show that 〈〈i|(Ln − L̄−n)|vm ⊗ vn〉 = 0 for all m,n. A more

conceptual proof due to Watts [prW] is to understand an Ishibashi state as an inter-

twiner of two Vir representations. Since the Hilbert space is built from irreducible
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representations, by Schur’s lemma the left and right representation have to be equal.

The space of intertwiners is spanned by projectors on the individual irreps. Written

as a vector in the Hilbert space7 the projector takes the form (2.57).

Two facts are worth pointing out: Firstly, by construction there is exactly one

Ishisbashi state for every diagonal primary bulk field. Secondly, from the above

consideration it seems that the set of conformal boundary conditions forms a vector

space. However, as we will see later in section 5.3, there are additional constraints

which reduce this continuum to a discrete set of possible conformal boundary con-

ditions.

Let us now proceed by constructing the Hilbert spaceH(x0) around a point x0 on

the real axis. From the previous section we know that on the UHP T (z, z∗) = T̄ (z∗, z)

holds for all z∈C. Define the action of Ln(x0) and L̄n(x0) by contour integration

as in (2.23). Consider the contour γ(t) = R exp(it) to be a full circle around x0,

which does not intersect any other field insertions. Values of T and T̄ for the half

of the contour which lie outside the UHP are obtained by analytic continuation. By

reversing the direction of integration one quickly checks that, for any n and any

z0 ∈ C,

Ln(z0) =
1

2πi

∫ 2π

0

(ζ − z0)
n+1T (ζ, ζ∗)

∣∣∣
ζ=γ(t)

γ′(t)dt

=
−1

2πi

∫ 2π

0

(ζ − z0)
n+1T̄ (ζ∗, ζ)

∣∣∣
ζ=γ(−t)

γ′(−t)dt = L̄n(z
∗
0) , (2.58)

since we have γ(−t) = γ(t)∗. In particular this implies that for x0 ∈ R the identity

Ln(x0) = L̄n(x0) holds inside any correlator. We conclude that Ln(x0) and L̄n(x0)

describe the same operator on H(x0). Thus, in contrast to the bulk (2.56), only one

copy of Vir acts on a Hilbert space centered on the boundary:

Vir .H(x0) for x0 ∈ R. (2.59)

Invoking again the state field correspondence we can interpret the highest weight

states ofH(x0) as primary fields living on the boundary. Correspondingly descendent

states become descendent fields. One may question whether the Hilbert space H(x0)

is composed of highest weight representations. However just as in the bulk, the

highest weight property is equivalent to the energy being bounded from below. To

see this, consider the conformal transformation z = f(w) = exp( iπ
R
w) from an

7 Actually the Ishibashi state 〈〈i| is not really a state, but only an element of EndM(hi, c)
(to be seen as the completion of M(h, c)⊗M(h, c)∗). As a formal element in the completion of
M(h, c)⊗M(h, c) it would have infinite norm. In this thesis we will nonetheless think of it as a
state, keeping in mind this subtlety.
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infinite strip of width R (coordinate w, left boundary is the imaginary axis, the

right boundary is the imaginary line through R∈R) to the UHP (coordinate z). As

for the infinite cylinder (2.40) we obtain the Hamiltonian as

Hstrip(R) =

∫ R

0

Tyy(x, y)dx =
π

R

(
L0 −

c

24

)
. (2.60)

In this expression the two semicircular integration contours of T and T̄ on the UHP

originating from
∫
Tyy have been combined into a full circular integration of T ,

represented by L0. Whenever an Ln appears without argument it is a shorthand for

Ln(0).

The Hilbert space depends on precisely which conformal boundary condition we

have on either side of the strip. We label the boundary conditions with a, b and the

Hilbert space with Hab.

Back on the UHP this corresponds to having the conformal boundary condition

a on the positive real axis and b on the negative real axis. The fields corresponding

to the states in Hab are now interpreted as boundary (condition) changing fields,

which we will denote by ψ(ab)(x).

From the point of view of correlation functions the existence of boundary chang-

ing fields can be inferred as follows: As a bulk field φ(z, z∗) approaches the boundary

the correlator will display a singular behaviour characteristic for the boundary con-

dition at that part of the real line. If the boundary condition changes at zero, then

the correlator will in general display a different singular behaviour for z → 0 − ε

and z → 0 + ε. The only places where we allow the correlator to have disconti-

nuities/singularities is at the insertion points of other fields or at boundaries. In

the present situation, on top of the singularity induced by the boundary, we have a

discontinuity in the z → 0± ε behaviour. This we interpret as a boundary changing

field.

If the boundary condition is a on both sides of the strip, then on the UHP the

whole real line carries the same boundary condition a. In this case we interpret the

fields corresponding to the states in the Hilbert space Haa as boundary fields living

on the a–boundary, denoted by ψ(aa)(x).

Formally fields living on a given boundary and boundary changing fields are

treated on the same footing. The only difference is in interpretation, since it is more

intuitive to think of ψ(aa)(x) as a degree of freedom of the a–boundary, than as a field

changing the a–boundary condition to the a–boundary condition. In the following,

the term “boundary field” can refer to either of the two possibilities.

Consider a semi disc D on the UHP centered at zero. As in the bulk we demand
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the Hilbert space Hab to be complete in the sense that a (bulk or boundary) field

outside D cannot tell the difference between a collection of fields inside D or an

appropriate state |χ〉 placed at zero. Placing either a bulk field or two boundary

fields inside D gives rise to two new OPEs.

We can expand a bulk field φ(x+iy) (scaling dimension ∆ = h+h̄) close to a

boundary with boundary condition a in terms of boundary fields ψ
(aa)
k (x) as follows:

φ(x+ iy) =
∑
k

aBφ
k (2y)hk−∆

(
ψ

(aa)
k (x) + c1y(L−1 ψ

(aa)
k )(x) + . . .

)
(2.61)

This defines the bulk-boundary couplings αBφ
k . For two boundary fields ψ

(ab)
i (x)

and ψ
(bc)
j (y), with x>y, we get the short distance expansion

ψ
(ab)
i (x)ψ

(bc)
j (y) =

∑
k

C
(abc)k
ij (x− y)hk−hi−hj

(
ψ

(aa)
k (y) + c1(x− y)(L−1 ψ

(ac)
k )(y) + . . .

)
,

(2.62)

defining the boundary structure constants C
(abc)k
ij .

In chapter 6 we will see how the three sets of structure constants Cij
k , aBi

k ,

C
(abc)k
ij describing a conformal field theory on the upper half plane can be calculated

in the case of minimal models.

As in the bulk some simple amplitudes are already fixed by global conformal

invariance, i.e. by Möbius transformations (2.2) with a, b, c, d∈R. The resulting

correlators are

〈ψ(aa)
i (x)〉aUHP = δi,0〈1〉aUHP ,

〈ψ(ab)
i (x)ψ

(ba)
j (y)〉aUHP = δi,j C

(aba)1
ii 〈1〉aUHP · (x− y)−2hi ; x>y ,

〈φ`(x+iy)〉aUHP = δJ`,0
aB`

1 〈1〉aUHP · (2y)−∆` ; y>0 ,

〈ψ(ab)
i (u)ψ

(bc)
j (v)ψ

(ca)
k (w)〉aUHP = C

(bca)i
jk C

(aba)1
ii 〈1〉aUHP

· (u−v)hk−hi−hj(u−w)hj−hi−hk(v−w)hi−hj−hk ; u>v>w ,

〈ψ(aa)
i (r)φ`(x+iy)〉aUHP = aB`

i C
(aaa)1
ii 〈1〉aUHP

· (2y)−∆`
(
(x−r)2 + y2

)−hi(x−r − iy

x−r + iy

)J`
; y>0 . (2.63)

Here ∆` and J` are the scaling dimension and the spin of the bulk field φ`. An

important assumption we made when writing down (2.63) is that only the identity

on a given boundary 11a has scaling dimension h=0. This is only true for a special

set of boundary conditions, which will be called “pure”. All other allowed boundary
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conditions are superpositions of pure ones, and for these the assumption fails. We

will come back to that in section 5.3. With the assumption that the identity is

unique, one can always pick a basis of boundary fields, s.t. the boundary two point

functions take the above form. The label a in the UHP correlator 〈. . .〉aUHP stands

for the boundary condition at infinity. When writing down correlators we assume

that there is no field insertion at infinity and hence the correlator is nonzero only if

the boundary condition is the same at left/right infinity.



Chapter 3.

OPE on Curved Boundaries

In the previous section we have considered the behaviour of boundary fields under

transformations that map the real line to itself, i.e. preserve the boundary on the

UHP.

This chapter deals with conformal maps that change the shape of the boundary.

There is some freedom in the definition of the transformation behaviour of boundary

fields. In the choice we make boundary fields will only see reparametrisations of the

boundary, and not deformations leaving the boundary length invariant.

We will only consider sufficiently well behaved boundaries (to be made precise

below), essentially we demand the boundary to be smooth. With the above definition

for boundary fields we find that the boundary–boundary OPE on a curved boundary

is identical to the UHP. The local boundary shape enters in the bulk–boundary

OPE through the boundary curvature and derivatives thereof. Global aspects like

the boundary length or the presence of other boundaries enter only on the level of

one–point functions of boundary fields. This is consistent with the idea that the

OPE depends only on local properties of the theory and all global information is

encoded in the one–point functions.

In the final section of this chapter two applications of the formalism are presented.

3.1 Transformation behaviour of boundary fields

In the bulk (2.3) two numbers were assigned a field: The scaling dimension ∆

describes the behaviour under global rescalings and the spin J the behaviour under

global rotations. For a primary bulk field ∆ and J are linked to the left/right

conformal weights via ∆ = h+h̄ and J = h−h̄. We will now define similar quantities

for boundary fields.

On the UHP let t(x) denote the restriction of the stress tensor T (z, z̄) to the

boundary. Since T = T̄ on the real line there is no ambiguity. A primary boundary
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field ψ(x) has the OPE

t(x)ψ(y) =
( hψ

(x− y)2
+

1

x− y

∂

∂y

)
ψ(y) + reg(x− y) . (3.1)

The main difference to the corresponding bulk formula (2.17) is the absence of the

complex conjugate term, since only one copy of Vir acts on boundary fields. The

transformation behaviour corresponding to (3.1) is, for a conformal map f(z) :

UHP → UHP,

ψ(x)
x7→x′=f(x)−−−−−−→ f ′(x)hψψ(x′) . (3.2)

In particular this tells us that the scaling dimension of a primary boundary field is hψ.

In addition we can assign a spin sψ to the boundary field and demand the behaviour

under a global rotation by angle θ to be ψ(x) → eisψθψ(x). For a primary boundary

field ψ(x) of scaling dimension hψ and spin sψ the transformation behaviour under

an arbitrary analytic function f : UHP → C then is

ψ(x)
x 7→x′=f(x)−−−−−−→|f ′(x)|hψeisψargf ′(x)ψ(x′)

= f ′(x)
hψ+sψ

2 (f ′(x)∗)
hψ−sψ

2 ψ(x′) . (3.3)

We will now investigate two implications of the transformation behaviour (3.3).

First consider the unit disc with a bulk field inserted at zero and a boundary field

at eiθ. The disc (coordinate u) can be transformed back to the UHP using a Möbius

transformation f : disc → UHP

z = f(u) = −iu− 1

u+ 1
f(eiθ) = tan θ

2

f ′(u) =
−2i

(u+ 1)2
f ′(eiθ) =

e−i(θ+π/2)

2(cos θ
2
)2
. (3.4)

The one-bulk one-boundary field correlator on the UHP is given in (2.63). For the

correlator on the disc we get

〈φ(0)ψ(eiθ)〉disc = f ′(0)hφ(f ′(0)∗)h̄φf ′(x)
hψ+sψ

2 (f ′(x)∗)
hψ−sψ

2
〈φ(i)ψ(tan θ

2
)〉UHP

〈1〉UHP

· 〈1〉disc

= C̃e−iθ(s+J) , (3.5)

for some constant C̃. First of all we note that the correlator (3.5) will be single
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Figure 3.1: Two limits of the disc two-point function and their corresponding situ-
ations on the UHP2

valued only for

s+ J ∈ Z . (3.6)

One might imagine situations involving disorder fields in which it is desirable to pick

up a sign, say, when taking the boundary field once around the disc. This thesis

will, however, only be concerned with local fields and we demand all correlators to

be single valued.

By just looking at (3.3) the choices s = ±h look quite natural. They correspond

to the boundary field transforming with f ′(x)h or (f ′(x)∗)h, respectively. In this case

correlators would be (anti–) analytic functions in u=f(x) even for curved boundaries.

In the light of (3.6) it is however clear that neither of the two choices would in general

be consistent with single valuedness of the correlator and is unsuitable for local fields.

Another conclusion we can draw from (3.6) is that fermionic1 bulk fields can only

couple to fermionic boundary fields.

As a second implication of the transformation behaviour (3.3) consider the

boundary two point function on the unit disc. We take the disc to have two differ-

ent boundary conditions a and b and the two fields to be the associated boundary

1 Here fermionic is meant to denote fields of half–integer spin s ∈ Z+ 1
2 .
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changing fields (see figure 3.1)2. Again we use the transformation (3.5) to relate the

disc correlator to the UHP correlator given in (2.63). Due to the requirement x>y

in (2.63) there are two domains:

θ1 > 0 :〈ψ(ab)
i (eiθ1)ψ

(ba)
i (1)〉disc = C

(bab)1
ii 〈1〉bdisce

−iπ
2
(sab+sba)e−iθ1sba

(
sin θ1

2

)−2hi

θ2 < 0 :〈ψ(ab)
i (1)ψ

(ba)
i (eiθ2)〉disc = C

(aba)1
ii 〈1〉adisce

−iπ
2
(sab+sba)e−iθ2sba

(
− sin θ2

2

)−2hi (3.7)

For the correlator to be continuous on the disc we demand the limits as θ1 → π and

θ2 → −π to coincide. It follows that

C
(bab)1
ii 〈1〉bdisc = e2πisba C

(aba)1
ii 〈1〉adisc . (3.8)

This relation is quite interesting since it links boundary structure constants and

identity one-point functions on the unit disc. Thinking of path integrals, 〈1〉adisc can

be interpreted as the partition function of the unit disc with boundary condition

a. In chapter 6 it is shown that, independent of the normalisation of the fields,

in general one has C
(bab)1
ii 6=C

(aba)1
ii . In particular it would be inconsistent to set all

〈1〉adisc to one.

We will mainly be concerned with minimal models. In this case all bulk fields

have integer spin J ∈ Z. The aim later is to work out the structure constants of

local fields. Since neither fermions nor disorder fields will enter our considerations,

it is a perfectly good choice to demand

s = 0 (3.9)

for all boundary fields.

3.2 OPEs on curved boundaries

In this section we will compute the bulk-boundary OPE next to a smoothly curved

boundary. In fact we demand the boundary to be analytic in a sense made precise

below. The reason for this restriction is that such boundaries look straight when

one gets close enough and the leading behaviour of the bulk-boundary OPE remains

2 This figure also illustrates a problem with the notation. Inside correlators we order boundary
fields s.t. more positive insertion points are more to the left. In (2.62), (2.63) we defined the notation
s.t. for x > y, ψ(ab)(x)ψ(bc)(y) is an allowed combination, whereas ψ(ba)(x)ψ(cb)(y) is not. When
drawing a picture, however, the ordering is inversed, i.e. ψ(ab)(x)ψ(bc)(y) appears as ψ(bc)(y)ψ(ab)(x),
which looks wrong. This point should be kept in mind when translationg correlators into pictures.
In schematic illustrations we will sometimes circumvent this problem by having the real axis point
to the left, as e.g. in (5.20)–(5.22) or (A.70).
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unchanged. This is not true for example for corners on the boundary (see [Car89a])

or fractal boundaries (see [Car98]), which can also modify the leading asymptotics

as a bulk field approaches the boundary.

In the previous section we have seen that correlators on any simply connected

subset of the plane can be computed by mapping it back to the UHP. However in

situations where the map to the UHP is not known explicitly it might still be useful

to have a power series expansion of the correlator, and this is provided by the OPE.

Consider for example a surface with several disjoined boundaries. The OPE is a local

property and does not change if additional boundaries are introduced. The map to

the UHP on the other hand might no longer exist. From the point of view of the

OPE all global properties are encoded in the one-point functions on the boundary.

An example of this will be given in section 3.4.

Descendent fields on curved boundaries

For the calculations that follow it will be useful to introduce the arc-length map γ.

Consider a region R of the complex plane with boundary B of length L. Initially the

arc-length map γR : [0, L]→B is defined as an invertible map from the real interval

[0, L] to the boundary B, s.t.
∣∣ d
ds
γR(s)

∣∣ = 1. If there exists a complex neighbourhood

U ⊃ [0, L] and an analytic function γ : U→B s.t. γ
∣∣
[0,L]

=γR, we call B an analytic

boundary. To fix the direction of the tangent γ̇(s):= d
ds
γ(s) we demand that points

z with Im(z)>0 are mapped to the interior of the region R.

Now let f : R→C be a conformal transformation. Then the reparametrisation f̃

of the boundary induced by f can be written as

f̃ = γ̂−1 ◦ f ◦ γ . (3.10)

Here γ(s) is the arc-length map for R and γ̂(s) is the arc-length map for f(R). f̃(s)

has the property d
ds
f̃(s)=|f ′(γ(s))|.

In section 2.3 we obtained boundary fields on the UHP via the state field corre-

spondence. The space of fields living on the real line with boundary condition a is

given by the conformal families [ψ
(aa)
i ]. Descendents are obtained by contour inte-

gration of T , i.e. by action of all L−m(x). A more intrinsic way to define descendents

of boundary fields is as follows: Define t(x) to be the stress tensor on the boundary.

For the UHP we take it to be the restriction of T (z, z̄) to the real line.
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On an arbitrary boundary we define the modes of a boundary field χ(s) as

t(s+d) χ(s) =
∞∑
m=1

(`−mχ)(s) · dm+2 , (3.11)

where d is the oriented distance between t and χ, measured in arc-length. On the

UHP one can check that both definitions agree: `−mχ=L−mχ.

Up to now we only defined t(s) on the boundary of the UHP. To define it on a

general (analytic) boundary we take the transformation behaviour to be

t(s)
s′=f̃(s)−−−−→ f̃ ′(s)2 · t(s′) + c

12
{f̃ ; s} · 11 . (3.12)

For a point x on the boundary of the UHP we have T (x)=T̄ (x)=t(x). The

corresponding condition for a general boundary can be obtained by using (3.12)

with the arc-length map γ. Let x be a point on the real line and u=γ(x) a point on

the curved boundary. Then

t(u) = γ′(x)2 · T (u, u∗) + c
12
{γ;x} · 11 = (γ′(x)∗)2 · T̄ (u, u∗) + c

12

(
{γ;x}

)∗ · 11 .
(3.13)

In particular, since the relation between T and T̄ is now more complicated, the

choice t(u) = T (u, u∗) would not be natural on curved boundaries.

In (3.13) we used the property that, if the real line is mapped to the curved

boundary with the arc-length map, no boundary reparametrisation is induced.

Hence the boundary stress tensor does not change. Equally, with the choice (3.9)

primary boundary fields transform as ψ→f̃ ′(s)hψ(s′). Consider the equation

t(s+d) ψ(s) =
∞∑
m=1

(`−mψ)(s) · dm+2 . (3.14)

Let f be a conformal transformation that does not reparametrise the boundary:

f̃(s)=s. Under such a map the lhs of (3.14) does not change. Recursively we see

that none of the descendent fields changes under a transformation with f̃≡id.

Boundary–boundary OPE

With the choice of basis in the set of boundary fields we made with (3.11) and (3.12),

the boundary-boundary OPE ψ(s+d) ψ(s) is independent of the boundary shape

and identical to the corresponding OPE on the UHP. As described in appendix A.1
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Figure 3.2: Mapping of the UHP to a region with curved boundary

we get

ψ
(ab)
i (s+d)ψ

(bc)
j (s) =∑

k

C
(abc)k
ij dhk−hi−hj ·

{
ψ

(ac)
k (s) + d · hi−hj+hk

2hk
· (`−1 ψ

(ac)
k )(s)

+ d2 ·
( (hi−hj+hk)(hi−hj+hk+1)

4hk(2hk+1)
· (`−1`−1 ψ

(ac)
k )(s) + Aαij ψ

(ac)
α (s)

)
+ . . .

}
.

(3.15)

Here ψ
(ac)
α (s) denotes the level two quasi–primary state given in table A.1 and the

coefficient Aαij can be found in (A.11). The expansion is valid for d > 0, i.e. one

reaches the field ψ
(ab)
i (s + d) by moving from ψ

(bc)
j (s) for a distance d along the

boundary, in the direction indicated by γ′(s).

Bulk–boundary OPE

One way to obtain the bulk-boundary OPE for curved boundaries is to use the arc-

length map to transform the OPE from the UHP to the curved boundary. Say we

have a bulk field φi(w) and u is the closest point to w on the curved boundary. We

can always shift γ such that γ(0)=u. Let z=x+iy be the point that is mapped to w

(see fig. 3.2).

When evaluating the OPE on the UHP, there is a slight complication because

the bulk field at z=x+iy has to be expressed in terms of boundary fields at 0, and

not x. The expansion in terms of fields at x is given in appendix A.1 and is of the

form:

φi(x+iy) =
∑
k

aBi
k (2y)hk−∆

∑
N

yN · ψk,N(x) (3.16)

The field ψk,N(x) can be translated back to the origin using ψk,N(x) =
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exp(xL−1)|k,N〉. Expanding out the exponential we find

φi(x+ iy) =
∑
k

aBi
k (2y)hk−∆

∑
N,k

yNxk
1

k!
· L−1

k|k,N〉 . (3.17)

For brevity, let us denote the field corresponding to the state k!−1L−1
k|k,N〉 with

χN,k(0). Now we apply the conformal transformation γ to both sides of (3.17).

The lhs picks up the factor γ′(x+iy)hφ(γ′(x+iy)∗)h̄φ . Since the arc-length map does

not rescale the boundary, the RHS of (3.17) is not affected by the transformation.

Rearranging terms we get

φi(w) = γ′(x+iy)−H(γ′(x+iy)∗)−H̄
∑
k

aBi
k (2y)hk−∆

∑
N,k

yNxk · χN,k(0) . (3.18)

The coordinates x and y have to be expressed in terms of the distance to the

curved boundary d=|w−u|. The relation is

x+ iy = γ−1
(
γ(0) + i · d · γ′(0)

)
, (3.19)

where x and y are real. This has to be substituted back into (3.18) and Taylor–

expanded in d. The resulting expression is the bulk-boundary OPE for curved

boundaries. To second order in d we get

φ(d) = e−Jθ
∑
ψ

aBφ
ψ (2d)hψ−∆

(
ψ(u) + d ·

( iJ
hψ

· `−1ψ(u) +
hψ + ∆

2
· θ̇ ψ(u)

)
+ d2 ·

( −2J2 − hψ
2hψ(2hψ + 1)

· `−1`−1ψ(u) +
iJ(hψ + ∆ + 1)

2hψ
· θ̇ `−1ψ(u)

+
3h2

ψ + 6∆hψ + 5hψ + 3∆2 + 7∆

24
· θ̇2 ψ(u) +

iJ

2
· θ̈ ψ(u)

+
4(3J2 −∆ + hψ − 2∆hψ − hψ

2)

c− 10hψ + 2c hψ + 16hψ
2 α(u)

)
+ · · ·

)
. (3.20)

Here the sum runs over all primary fields living on the a–boundary. The angle θ

denotes the direction of the tangent to the boundary in u, i.e. γ′(0)=eiθ and θ̇ is

the boundary curvature. The dot stands for the derivative w.r.t. the arc-length,

i.e. ḟ = d
ds
f(γ(s)). The field α = (L−2 − 3

2(2hψ+1)
(L−1)

2)ψ is the level two quasi-

primary descendent of ψ given in table A.1.

Another way to arrive at (3.20) is to write down a general expression for the

bulk-boundary OPE (3.16), where the coefficients of the fields are taken to depend

on the curvature, and require that both sides transform in the same way under

infinitesimal conformal transformations. This approach is more conceptual than the
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one presented above, but the author has not been able to cast the resulting formulas

describing the infinitesimal transformations into a convenient form. This remains

for future work.

Some remarks concerning (3.20) are in order. First note that in the case of

degenerate representations (3.20) may contain null-states. This manifests itself in

singularities of the coefficients, e.g. that of `−1ψ for hψ=0. In this case the correct

thing to do is to leave out all null vectors from the rhs. Second, applying a global

rescaling to both sides of (3.20) shows that the term multiplying dN can only contain

combinations of the form θ(n1) . . . θ(nk) · `−m1 . . . `−m`ψ(u) where n1 + · · ·+nk +m1 +

· · · + m` = N . Here θ(n) denotes the nth derivative of θ(s) w.r.t. to arc-length. In

particular, as opposed to the case of a straight boundary, the primary field ψ(u) can

appear in all orders of the expansion.

3.3 Boundary one-point functions on the cylinder

Our aim is to compute a power series expansion of correlators in the presence of

curved boundaries. With the various OPEs (2.28), (3.15), (3.20) any correlator

can be reduced to a sum of boundary one-point functions. In this section we con-

sider one–point functions on analytic boundaries of simply connected subsets of the

complex plane.

It follows from the Riemann mapping theorem that for any simply connected

proper subset M of C we can find an analytic bijection f : M → UHP. On the UHP

the only boundary field with non-vanishing one–point function is the identity (we

will come back to this point below). Since under the conformal map f a field in the

conformal family [ψ] will be transformed into a linear combination of fields in the

same conformal family, only fields in [11] can have non-vanishing one-point functions3

on ∂M . The transformation behaviour of arbitrary descendent fields under a general

conformal map f can be computed with a procedure due to Gaberdiel [Gab94]. This

enables us to express one–point functions on ∂M in terms of 〈1〉aUHP.

At least in the case of the semi–infinite cylinder it is also possible to obtain

the one–point functions without resorting to the UHP. It would be an interesting

problem for future research to try to generalize the method to arbitrary curved

boundaries.

From now on we will consider the cylinder obtained from the UHP by identifying

the imaginary axis with a vertical line passing through the real point L. Note that

3 Recall from section 2.1 that we were taking n–point functions to be expectation values w.r.t. to
the state corresponding to the 11–operator. In non-unitary theories this will in general not be the
state of lowest energy.



3.3. Boundary one-point functions on the cylinder 43

this procedure does not influence the OPE on the UHP as this is a local property of

the theory.

The map u = γ(w) = L
2π
e2πiw/L from the semi–infinite cylinder to a disc of

radius L
2π

is one of the few cases where the arc-length map is actually a bijection. It

follows the boundary correlators on the semi-infinite cylinder are identical to those

on the disc. At this point it is important to notice that to transform one–point

functions we need the coordinate transformation to be one–to–one everywhere on

the surface. Whereas to compute the OPE on a curved boundary it was enough

to know that the conformal map is defined locally, the one–point functions depend

on global information. In particular the arc–length map does in general not extend

to the full surface and cannot be used to transform n–point functions of boundary

fields.

To motivate the construction on the cylinder recall that on the UHP itself we

can obtain the descendent boundary fields via contour integration

(`nχ)(x) =

∫ ���6ζ
x (ζ − x)n+1T (ζ)χ(x) . (3.21)

To compute the one-point function 〈(`−nχ)(x)〉UHP for n≥1 one can take the contour

off to infinity resulting in

〈(`−nχ)(x)〉UHP = 0 ; for all χ(x) and n≥1. (3.22)

The only primary field with non-zero one-point function is the identity itself:

〈1〉UHP 6=0. In the periodic geometry of the cylinder this argument fails. One problem

is that the function (ζ − x)n+1 used in (3.21) is not periodic and thus not defined

on the cylinder.

For simplicity we will consider fields at x=0 in the following. We want a function

h(ζ) that is periodic h(ζ)=h(ζ +L) and behaves as h(ζ) ∼ ζ for ζ close to zero. We

choose

h(ζ) =
L

2πi

(
e

2πi
L
ζ − 1

)
. (3.23)

The next step is to compute the contour integrals taking the role of (3.21) on the

cylinder ∫ ���6ζ
0 h(ζ)n+1T (ζ)χ(0) . (3.24)

In Appendix A.2 the expectations value of these contour integrals are computed,
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with the result

∫ ���6ζ
0 h(ζ)n+1〈T (ζ)χ(0)〉cyl =


− c

24

(
iL
2π

)n
· 〈χ(0)〉cyl for n≤− 2 and χ(0) ∈ [11]

0 for n≤− 1 and χ(0) /∈ [11]

? otherwise

(3.25)

Finally, to make contact with the descendent fields we can expand h(ζ)n+1 in powers

of w

h(ζ)−n+1 =
∞∑
k=0

a(n)k · ζk−n+1 (3.26)

where the first few coefficients are

a(n)0=1 , a(n)1=
2π
iL

n−1
2
, a(n)2=

(
2π
iL

)2 (n−1)(3n−4)
24

, a(n)3=
(

2π
iL

)3 (n−1)2(n−2)
48

.

Combining (3.25) and (3.26) yields, for β ∈ [11] and n≥2,

− c

24

(2π

iL

)n
〈β〉cyl =

∞∑
k=0

a(n)k · 〈`k−nβ〉cyl (3.27)

For n = 2 and β = 11 this gives

− c

24

(2π

iL

)2

〈11〉cyl = 〈`−211〉cyl + a(2)1〈`−111〉cyl + a(2)2〈`011〉cyl + . . . (3.28)

Now the last two terms and all the terms abbreviated by the dots will just be zero,

since Ln|0〉=0 for n ≥ −1. As a first check we can verify that this is exactly what

is obtained by directly transforming the stress tensor from the cylinder to the UHP

(e.g. use the map (A.27) together with the transformation behaviour of t given in

(3.12)).

For the higher descendents the procedure can be iterated. E.g.

− c
24

(
2π
iL

)3〈11〉cyl = 〈`−311〉cyl + a(3)1〈`−211〉cyl

− c
24

(
2π
iL

)4〈11〉cyl = 〈`−411〉cyl + a(4)1〈`−311〉cyl + a(4)2〈`−211〉cyl

− c
24

(
2π
iL

)2〈`−211〉cyl = 〈`−2`−211〉cyl + a(2)1〈`−1`−211〉cyl

+ a(2)2〈`0`−211〉cyl + a(2)4〈`2`−211〉cyl (3.29)
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with resulting expressions

〈`−2〉cyl = − c
24

(
2π
iL

)2〈1〉cyl , 〈`−3〉cyl = 0 , 〈`−4〉cyl = 0 ,

〈`−2`−2〉cyl = c
24

(
c
24

+ 11
60

)(
2π
iL

)4〈1〉cyl . (3.30)

This result is in agreement with the calculations in [Gab94].

By a residue computation similar to the one presented in appendix A.2, one

can show that for n>0: a(n+2)n=
(

2π
iL

)n
. This implies recursively that, for n≥3,

〈`−n〉cyl=0.

3.4 Two examples

OPE on a disc

This is really an example when not to use the above formalism, but it does provide

a nontrivial check. We will test the formalism in two cases: the correlator of two

boundary fields on a disc of circumference L and the one–point function of a bulk

field in the same geometry. In both cases the correlators can be computed exactly

via the Möbius transformation to the UHP and as a power series expansion using

the OPE on curved boundaries.

For two boundary fields the exact correlator on a disc of circumference L is

〈ψ(s+d)ψ(s)〉adisc,L = C
(aaa)1
ψψ 〈1〉adisc,L ·

∣∣L
π

sin πd
L

∣∣−2hψ ,

= C
(aaa)1
ψψ 〈1〉adisc,L · d−2hψ

(
1 +

hψ
12

(Ad)2 +
hψ(5hψ+1)

1440
(Ad)4 + . . .

)
.

(3.31)

where A:=2π
L

. It is enough to calculate the boundary–boundary OPE restricted to

the conformal family of the identity [11], since only these fields can have non-vanishing

one–point functions. The result is given in (A.14) and reads

ψ(aa)(s+d)ψ(aa)(s) = C
(aaa)1
ii d−2hψ

·
{

11 + d2 · 2hψ
c
· t(s) + d3 · h

c
· (`−1t)(s)

+ d4 ·
(

3h
10c
· (`−1`−1t)(s)− 6h(5h+1)

5c(5c+22)
· γ(s)

)
+ . . .

}
+ . . . . (3.32)

Here t(s) is the stress tensor on the boundary and γ(s) is the quasi-primary field
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γ(s)=`−411− 5
3
· `−2`−211. The boundary one-point functions are given by

〈t(s)〉disc,L = c
24
A2〈1〉 , 〈γ(s)〉disc,L = − c

24
5c+22

72
A4〈1〉 ,

〈`−1t(0)〉disc,L = 〈`−1`−1t(0)〉disc,L = 0 . (3.33)

Combining (3.32) and (3.33) reproduces expression (3.31).

Next consider the correlator 〈φ(r)〉disc,L of a spinless bulk field φ at radius r on a

disc of circumference L. From the map to the UHP we obtain

〈 φ
(
L
2π
−d
)
〉adisc,L = aBφ

1 〈1〉adisc,L · (2d)−∆
(
1− 2π

L
d
)−∆

= aBφ
1 〈1〉adisc,L · (2d)−∆ ·

(
1 + ∆

2
· Ad+ ∆(∆+1)

8
(Ad)2

+ ∆(∆+1)(∆+2)
48

(Ad)3 + ∆(∆+1)(∆+2)(∆+3)
384

(Ad)4 + . . .
)
. (3.34)

where d= L
2π
−r is the distance to the boundary on the disc and we have again A=2π

L
.

The arc-length map for a disc of circumference L is γ(s)= L
2π
eisL/2π; the boundary

curvature is constant: θ̇(s)=2π
L

. This implies that all higher derivatives vanish, and

expression (3.20) simplifies considerably. To obtain the coupling of the bulk field

φ to the conformal family of the identity [11] to fourth order, one can start from

the corresponding OPE on the UHP given in (A.25). Altogether the bulk-boundary

OPE is, when restricted to [11] and with θ̇(s) ≡ const, to fourth order in d:

φ(d) =Bφ
1 · (2d)−∆ ·

{
11 + d · ∆

2
θ̇ · 11

+ d2 ·
(∆(3∆+7)

24
θ̇2 · 11− 4∆

c
· t(0)

)
+ d3 ·

(∆(∆+2)(∆+5)
48

θ̇3 · 11− 2∆(∆+2)
c

θ̇ · t(0)
)

+ d4 ·
(

∆(15∆3+210∆2+845∆+938)
5760

θ̇4 · 11− ∆(3∆2+19∆+22)
6c

θ̇2 · t(0)

+ 2∆
5c
· `−1`−1t(0)− 24∆(5∆+2)

5c(5c+22)
· γ(0)

)
+ . . .

}
(3.35)

Substituting (3.33) into (3.35) one verifies that the various powers of ∆ combine

exactly in the right way to reproduce (3.34).

We see that in this simple case the method of computing an approximation to

the correlator through the curved boundary OPE is much more complicated that

the direct calculation. It is nonetheless interesting to observe how the OPE and the

one-point functions join together to give the correct answer.
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Fluctuating Boundaries

In this example the bulk-boundary OPE for curved boundaries is applied to inves-

tigate the effect of averaging over many different boundaries. One can think of two

kinds of random variables, fast and slow ones. Here the fields appearing in the n-

point functions of CFT are the fast variables, while the boundary shape is varying

only slowly. This distinction has to be made since we neglect dynamic effects from

the moving boundary and treat the setup at each instance in time as quasi-static.

The quantity we want to investigate is the connected correlator of two bulk fields

at a small distance d from the boundary

G(s, 0) =
〈φ(s, d)φ(0, d) 〉a

〈1〉a
− 〈φ(s, d)〉a 〈φ(0, d)〉a

〈1〉a〈1〉a
. (3.36)

Suppose the boundary condition a allows only the conformal family of the iden-

tity [11] to live on the boundary. Let us consider first the correlator (3.36) on

the UHP, i.e. a straight non-fluctuating boundary. Recall the bulk-boundary OPE

(3.35) from the previous example. Irrespective of the scaling dimension of the bulk

field, the large s behaviour of G(s, 0) will be given by the boundary stress tensor

〈t(s)t(0)〉aUHP=
c
2
s−4〈1〉aUHP:

G(s, 0) ∼
(
aBφ

1 ∆
c
(2d)2−∆

)2 · 〈t(s)t(0)〉aUHP

〈1〉aUHP

∝ s−4 . (3.37)

We will denote the average over the slow variables by a bar X. Suppose that the

boundary is fluctuating s.t. θ(s) = θ̇(s) = 0 and assume further that the fluctuations

are scale invariant. We expect the curvature to scale like θ̇(s)θ̇(0)=A · s−2 for some

constant A. In this case the leading behaviour of the correlator (3.36) is no longer

given by the two point function of the stress tensor, but by that of the curvature

instead. Making again use of the OPE (3.35) we find

G(s, 0) ∼
(
aBφ

1 ∆
4
(2d)1−∆

)2 · θ̇(s)θ̇(0) ∝ s−2 . (3.38)

In this case the bulk-boundary OPE for curved boundaries simplified the calculation

of the average quantities. To use a conformal map to the UHP in the present case,

one would have to average over functions and worry about which measure to use.



Chapter 4.

Conformal Blocks

In this and the following two chapters we present a calculational scheme to obtain

the correlation functions of a CFT. For the approach to be applicable, the CFT has

to fulfil several assumptions. The main one is that the symmetry algebra A decom-

poses the Hilbert space into finitely many representations. Very loosely speaking,

this property reduces the problem of finding the correlators to solving a system of

equations with only finitely many unknowns.

The method to compute correlators presented here is only one of many. Other

examples are the path integral for the free boson, fermion, ghost– antighost system

[YBk], or the Coulomb gas formulation by which Dotsenko and Fateev first found

the minimal model bulk structure constants [DFa84]. In Liouville theory one has

to deal with continuous families of representations, but the structure constants can

nonetheless be calculated, as demonstrated in [PTe99, FFZ00].

The approach we are going to take naturally splits into two parts. The first

part, which is covered in this chapter, depends only on the representation theory

of the algebra A. The outcome will be a collection of bases of conformal blocks

and matrices describing their behaviour under change of basis. Next the conformal

blocks have to be put together with the correct coefficients to form the correlators.

The second part of the procedure, treated in the next chapter, is the “physical”

input, i.e. to fix the coefficients we demand that the various limits one can take in

a given correlator is consistent with the corresponding OPEs.

The method outlined below is not applicable to all CFTs. To give an idea of

the assumptions that enter the construction and to show how the calculation of

structure constants in chapter 6 might generalise to extended symmetry algebras A,

this and the next chapter are not specialised to the Virasoro case. In this chapter a

selection of notations and results of Moore and Seiberg is presented. We will follow

closely the papers [MSb89a, MSb89b].
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4.1 Chiral algebra

To motivate the construction of chiral vertex operators, in this chapter we restrict

ourselves to CFTs without boundaries.

The formalism that will be introduced below relies heavily on the fact that all

correlators can be expressed through operators acting on some Hilbert space1 H.

Our first assumption thus is:

(A1) Let H denote a vector space, equipped with a definite inner product and

an orthogonal basis vi. There exists an H s.t. for every field φi(z, z̄) in the

conformal field theory we can find a linear operator φ̂i(z, z̄) acting on H with

the property

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉

=
∑
k1,..kn

〈v0|φ̂1(z1, z̄1)|vk1〉〈vk1| . . . |vkn〉〈vkn|φ̂n(zn, z̄n)|v0〉
〈vk1 |vk1〉 . . . 〈vkn|vkn〉

(4.1)

where the rhs is supposed to be well defined whenever |z1| > · · · > |zn|.

With this assumption operators and fields can be thought of as equivalent objects.

We will drop the hat and denote both by φ.

The holomorphic, or chiral, fields of the CFT under consideration generate sym-

metries of the theory. For a good introduction into CFT with emphasis on this point

one can refer to the review [Gab99] by Gaberdiel.

Every CFT has at least one chiral field, the energy momentum tensor T (z). If

there are more such fields, we can restrict our attention to primary chiral fields J i(z).

Define the modes of the field J i(z) via contour integration

J im =

∫ ���6ζ
0 ζhi+m−1J i(ζ); . (4.2)

Let A be the algebra generated by the modes of the energy momentum tensor

Lm and of the chiral fields J im. For the following arguments we do not require A to

be the maximal chiral algebra, i.e. only the modes of a proper subset of chiral fields

might be included in A. This will be important in the treatment of the D-series

minimal models, where only the Virasoro symmetry will be used, even though other

chiral fields are present.

The same construction as for A can be repeated for anti-holomorphic fields J̄ i(z̄).

We assume the resulting algebra Ā to be identical to A.

1 We will call H an Hilbert space, even though we include non-unitary theories in the treatment
given below.
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Next we make the assumption that our CFT is rational in the sense that the

space of states H is organised into a finite number of irreducible representations of

A⊗A, i.e.

(A2) Let A be the algebra generated by the modes of the energy momentum ten-

sor and the modes J im of finitely many and not necessarily all Vir-primary

chiral fields. Let Ā be the antichiral counterpart of A. We assume A ∼= Ā.

Let Hp denote an irreducible highest weight representation of A. We assume

that the action of A ⊗ A decomposes the space of states into a finite sum of

representations:

H =
N⊕

p,q=1

MpqHp ⊗Hq (4.3)

Here Mpq denotes the multiplicity of the pair Hp ⊗Hq.

Some relations for the modes J im will be useful later. Let J(z) be a Vir-primary

chiral field and φ(z, z̄) an arbitrary A-primary field. The OPE of J and φ is

J(ζ)φ(z, z̄) =

hJ−1∑
m=0

(ζ−z)−hJ+m · (J−mφ)(z, z̄) + reg(ζ−z) . (4.4)

As in section 2.1, the notation (Jkφ)(z, z̄) refers to the contour integral being centered

at z, i.e.

(Jkφ)(z, z̄) =

∫ ���6ζ
z (ζ−z)hi+k−1 J(ζ)φ(z, z̄) . (4.5)

From the OPE (4.4) we obtain the commutator of an arbitrary mode Jn with φ(z, z̄)

[Jn, φ(z, z̄)] =

hJ−1∑
m=0

(
hJ+n−1

hJ−m−1

)
· zn+m · (J−mφ)(z, z̄) . (4.6)

Here the binomial is defined via (1+x)a=
∑∞

k=0

(
a
k

)
xk, i.e.

(
a
0

)
=1 and for k>0:(

a
k

)
=(k!)−1 · a(a−1)(a−2) · · · (a−k+1). Using a contour deformation as in fig. 4.1b

we can re-express (J−mφ)(z, z̄) through commutators. For hJ>m≥0 we get

(J−mφ)(z, z̄) =

hJ−m−1∑
k=0

(
hJ−m−1

hJ−m−k−1

)
(−1)k · zk · [J−m−k, φ(z, z̄)] . (4.7)
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Inserting the result in (4.6) leads to the formula

[Jn, φ(z, z̄)] =

hJ−1∑
r=0

{ r∑
s=0

(−1)r+s
(
hJ+n−1

hJ−s−1

)(
hJ−s−1

hJ−r−1

)}
· zr+n · [J−r, φ(z, z̄)]

(4.8)

Note that any commutator [Jn, φ] can be expressed through commutators with n in

the range n = 1−hJ , . . . , 0. E.g., for a spin one field hJ=1 we find [Jn, φ]=zn[J0, φ]

and for the stress tensor T : [Ln, φ]=(n+1)zn[L0, φ]− nzn+1[L−1, φ] (c.f. (2.25)).

We will also use the notion of a conjugate representation and of hermitian con-

jugation. The conjugate representation i∨ of an irrep i of A is the unique irrep

s.t. the identity (scalar) representation occurs in the tensor product i∨⊗i. For a

state A ∈ Hi with A=Ja1
−m1

. . . Jak−mk |i〉 we define A∨=Ja1
−m1

. . . Jak−mk |i
∨〉.

Hermitian conjugation was already defined in (2.35). For the more general situa-

tion of a extended chiral algebra we modify this definition slightly. For anA–primary

field we set φi(z, z̄)
† = z̄−2hiz−2h̄i ·φi∨(z̄−1, z−1). On modes we retain formula (2.39):

Jm
† = J−m.

4.2 Chiral vertex operators

Here we will give two ways to think about chiral vertex operators (CVOs): One

is constructive, as matrix elements of linear operators, and one is algebraic, as

intertwiners between A-representations.

To motivate the construction of CVOs rewrite the following correlator of primary

fields φi, φj, φk, φ` in the operator formalism:

lim
r→∞

r2(hi+h̄i)〈φi∨(r, r)φj(z, z̄)φk(w, w̄)φ`(0, 0)〉 = 〈i|φj(z, z̄)φk(w, w̄)|`〉 . (4.9)

Denote by Pp ⊗ Pq the projector on Hp ⊗Hq in H. Then (4.9) can be rewritten as

a finite sum:

〈i|φj(z, z̄)φk(w, w̄)|`〉 =
N∑

p,q=1

〈i|φj(z, z̄)Pp ⊗ Pqφk(w, w̄)|`〉 (4.10)

Let us assume for the moment that the chiral algebra is just the Virasoro algebra

A = Vir and leave larger chiral algebras for later. If we replace the projectors by a
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basis of Hp ⊗Hq the correlator (4.10) becomes∑
p,q

∑
~P , ~P ′, ~Q, ~Q′

a~P ~P ′ b ~Q~Q′ · 〈i|φj(z, z̄)L−~P L̄− ~Q|p, q〉 〈p, q|L~P ′L̄ ~Q′ φk(w, w̄) |`〉 . (4.11)

The factors a~P ~P ′ , b ~Q~Q′ take care of the fact that the L’s acting on the highest weight

state |p, q〉 do not necessarily form an orthonormal set.

The individual three-point functions in (4.11) can be reduced to a three-point

function involving only highest weight states by commuting L’s. Doing this we see

that the result is of the form:

〈i|φj(z, z̄)φk(w, w̄)|`〉

=
N∑

p,q=1

Cpq ·
(∑
~P , ~P ′

ã~P ~P ′(i, j, k, l) · z
hi−hj−hp+|~P |whp−hk−h`+|

~P ′|
)

·
(∑
~Q, ~Q′

b̃ ~Q~Q′(i, j, k, l) · z̄h̄i−h̄j−hq+|
~Q| w̄hq−h̄k−h̄`+|

~Q′|
)

=
N∑

p,q=1

Cpqfp(z, w)gq(z̄, w̄) (4.12)

where ã~P ~P ′ and b̃ ~Q~Q′ (and hence fp and gq) are determined solely by the commutation

relations of the L’s. The power series defining the functions fp(z, w) and gq(z̄, w̄)

converges for |z| > |w| by assumption (A1).

From this point of view the idea behind CVOs is to construct all possible func-

tions that could arise when inserting a sum over projections into a correlator. These

functions are called conformal blocks, and the hope (which will be made an as-

sumption later) is that for a given correlator there are only finitely many conformal

blocks. As the main goal of CFT is to find the correlator from the symmetry, the

above improves our situation dramatically. Whereas before an n-point correlator

was an unknown function in 2n real variables, it has now been reduced to a finite

bilinear combination of functions whose power series expansion follows directly from

the symmetry algebra.

We will now define CVOs to have the same commutation relations with the

elements of A as a corresponding field in the CFT. That is, for a field φ(z, z̄) whose

chiral half transforms in the highest weight representation Hj one constructs the

CVO

Vi
jk(·, z) : Hj ⊗Hk −→ Hi (4.13)
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Figure 4.1: Different contour deformations to move modes inside a CVO three-point
function

as follows: Pick three states A ∈ Hi, B ∈ Hj, C ∈ Hk and write down the matrix

element

〈A|Vi
jk(B, z) |C〉 . (4.14)

Define

Vi
jk(L−1B, z) =

d

dz
Vi
jk(B, z) (4.15)

and if α,β,γ are Virasoro highest weight states fix, for some number2 |Vα
βγ|:

〈α|Vi
jk(β, z)|γ〉 = |Vα

βγ|zhα−hβ−hγ (4.16)

Then one uses contour deformations as in fig. 4.1 to manipulate the general matrix

element (4.14) and to relate it to a few basic ones.

Let us now derive some consequences of this definition. First of all note that

a general matrix element (4.14) can be reduced to one involving only Vir–primary

fields. That can be seen by combining the commutation relations (4.7), (4.8) for

J(z)=T (z) and (4.15), (4.16). This determines the operator Vi
jk up to the constants

|Vα
βγ| in (4.16). If A = Vir then there is only one of these and we have defined

Vi
jk by its matrix elements up to an overall normalisation. So, in the Virasoro case

the space of possible V : Hj ⊗ Hk → Hi has either dimension 0 or 1. The case of

dimension zero can occur if a relation forces the normalisation constant to vanish.

The easiest example involves the vacuum representation with h=0. It has a null

2 The notation |Vα
βγ | does not imply that it has to be a positive number. In this thesis it will

however always be real.
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vector at level 1, L−1|0〉 = 0 and we find

0 = 〈i|Vi
j0(z)L−1|0〉 = − d

dz
〈i|Vi

j0(z)|0〉 = |Vi
j0| (hj−hi) zhi−hj−1 . (4.17)

So |Vi
j0| = 0 unless hi=hj.

However for A ⊃ Vir an A-irrep can contain infinitely many Vir-irreps. In fact

this is the interesting case because otherwise the space of states H, even though it

is now organised in irreps of a larger algebra A, would still only consist of finitely

many Vir-irreps and thus be a minimal model. This latter possibility is the case for

the D– and the E–series minimal models.

So up to now our CVO Vi
jk is only determined up to infinitely many constants.

To see how this can possibly be reduced to finite number let us look at the case with

one extra chiral field J(z). For a general matrix element 〈A|Vi
jk(B, z)|C〉 we can

use contour deformations as in fig. 4.1b to make B A-primary. Next employ (4.8)

to move all Jn’s with n>0 from the left side of V to the right and then use (4.8)

once more to express all J−n’s with n ≥ hJ through J0, . . . , J1−hJ . We are left with

a matrix element of the form

〈i| (J0)
m Vi

jk(|j〉, z) (J1−hJ )
nhJ−1 . . . (J−1)

n1(J0)
n0 |k〉 . (4.18)

To get any further we assume the presence of null vectors in the modules Hi, Hk

which allow us to reduce the strings of Jn in (4.18) to a finite number of basic three

point functions. Example: In the case of WZW models the zero modes of the currents

Ja(z) form a Lie algebra. In an integrable highest weight irrep Hk, the action

of the zero modes on the highest weight vector |k〉 generates a finite dimensional

representation of this Lie algebra. Let J0 be the raising operator. Then 〈i|(J0)
M =

0 = (J0)
N |k〉 forM,N large enough. Since for a current we have hJ=1, (4.18) implies

that any matrix element can be reduced to the form 〈i|(J0)
mVi

jk(|j〉, z)(J0)
n|k〉.

There can thus at most be M ·N independent CVOs of type Vi
jk.

In general we denote the dimension of the space of possible CVOs by Njk
i, i.e.

Njk
i = dim

(
Vi
jk : Hj ⊗Hk → Hi

)
. (4.19)

We assume that all CVOs which can occur in the theory we are looking at are

determined in terms of finitely many constants, i.e. Nij
k<∞. This will be part of

(A3) in the end of this section.

If Njk
i > 1 we can pick a basis in the space of CVOs V : Hj⊗Hk→Hi and

introduce an extra index to distinguish the different linearly independent CVOs:
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Vi
jk,a(·, z). It will be convenient to make a particular choice of basis: Let N = Nij

k.

We can find N basic triples of states on which the normalisation of the CVO can be

chosen arbitrarily

(α1, β1, γ1), (α2, β2, γ2), . . . , (αN , βN , γN) (4.20)

with αm ∈ Hi∨ , βm ∈ Hj, γm ∈ Hk. It is always possible to make all α, β, γ Vir–

primary, so we demand that they are. We choose a basis Vi
jk,a(·, z) of CVOs with

the property

〈αn|Vi
jk,a(βn, z)|γn〉 = δa,n · V a · zhα−hβ−hγ ; V a ∈ R . (4.21)

Furthermore we will link the choice of basis between the following six types of CVOs:

Vi
jk(·, z) , Vi

kj(·, z) , Vj∨

ki∨(·, z) , Vj∨

i∨k(·, z) , Vk∨

i∨j(·, z) , Vk∨

ji∨(·, z) . (4.22)

To do so note that the normalisation of Vk∨

ji∨ , say, can be chosen freely3 on the triples

(γ∨n , βn, α
∨
n), where the individual α, β, γ are the same as in (4.20). Similar results

hold for all other types of CVOs in the list (4.22).

This leads us to a natural identification of bases and normalisations in the spaces

of CVOs of the types listed in (4.22). E.g. for a basic triple (αn, βn, γn) chosen from

3 This can be seen as follows: Let VABC denote the matrix element 〈A|Vi
jk(B, z)|C〉. Relations

between the matrix elements obtained by commuting modes take the form
∑

ABC M
ABC
n VABC = 0.

For z ∈ R+ and in our normalisation of chiral fields MABC
n is a real matrix. Furthermore in each

row n there are only finitely many entries ABC s.t. MABC
n 6= 0. Let M be the matrix of all such

relations. We need not keep all rows in M . It is sufficient to keep rows with only Vir–primary
fields α, β, γ. To see this let VABC be a CVO involving Vir–descendents. Then there is a linear
differential operator DABC s.t. VABC = DABCVαβγ where α, β, γ are the primary states associated
to A,B,C. The functional form of Vαβγ is given in (4.16) and thus DABC can be replaced by a
number dABC . For a relation we get the equalities 0 =

∑
MABCVABC =

∑
MABCdABCVαβγ =∑

M̃αβγVαβγ . Since we demanded M to be complete, the relation
∑
M̃αβγVαβγ = 0 is already

present in M . From hereon we restrict M to involve only Vir–primary states. A choice V a
αβγ

of matrix elements for the CVO Vi
jk is consistent with the commutation relations of A if and

only if M.V a = 0. It follows that Nij
k = dim kerM . Consider the conjugate of each relation:

0 = (
∑
Mαβγ

n Vαβγ)∗ =
∑
Mαβγ

n z̄−2hβ 〈γ∨|Vk∨

ji∨(β, z̄−1)|α∨〉. This defines a set of relations for
the matrix elements of Vk∨

ji∨ :
∑
Mαβγ

n z2hβVγ∨βα∨ = 0. In fact repeating the above argument for
Vγ∨βα∨ , the completeness of M implies that these are all relations for Vk∨

ji∨ . Let D be the diagonal

matrix Dαβγ
αβγ = z2hβ . Then Nk∨j

i∨ = dim ker(M.D) = dim kerM = Nij
k. Furthermore, since it is

consistent to choose a set of CVOs Vi
jk,a with property (4.21), the above argument tells us that

it is equally consistent to choose a basis Vk∨

ji∨,a with 〈γ∨n |Vi
jk(βn, z)|α∨n〉 = δa,n · V a · zhγ−hβ−hα .

To obtain a similar result for exchanging the bottom two indices Vi
jk ↔ Vi

kj one can for example
consider the translation/rotation ζ → z − ζ.
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(4.20) we get:

〈αn|Vi
kj,a(γn, z)|βn〉 = δn,a · V a · zhα−hγ−hα

〈β∨n |V
j∨

i∨k,a(α
∨
n , z)|γn〉 = δn,a · V a · zhβ−hα−hγ

. . . (4.23)

An immediate consequence3 of the identification of bases for the CVOs in (4.22) is

that

Njk
i = Nkj

i = Nki
j∨ = Ni∨k

j∨ = Ni∨j
k∨ = Nji∨

k∨ (4.24)

If one of the three representations is the identity H0, the space of CVOs Vj
i0 is zero

dimensional if i 6=j and one dimensional if i=j. We choose the normalisation to be

〈i|Vi
i0(|i〉, z)|0〉 = 1 . (4.25)

Since the CVOs in the list (4.22) are all normalised in the same way, this implies

in particular that 〈i|Vi
0i(|0〉, z)|i〉=〈i|i〉=1. In the convention used in this thesis the

normalisation of the highest weight vector in the A–irrep Hi and the A⊗A–highest

weight vectors in the space of states H are not linked. I.e. for a ∈ H, a=i⊗ı̄ we can

have 〈a|a〉 6= 1.

The CVOs can also be interpreted as intertwiners between the representations

Hj ⊗ Hk and Hi. If ρi, ρj are representations of A on Hi,Hj the linear map Φ :

Hi → Hj is an intertwiner if for any A ∈ A, ρi(A)Φ = Φρj(A).

To turnHj⊗Hk into a representation of A we need a co-product ∆ : A → A⊗A.

This can be constructed from the contour deformation in fig. 4.1a. Writing this in

terms of modes, we see that an operator Jm, with a large contour encircling z and

0 acts on the individual field insertions at z and 0 as

∆(Jm) = 11⊗Jm +
∞∑
k=0

(
hJ+m−1

k

)
zhJ+m−k−1 · Jk+1−hJ⊗11 (4.26)

where in a ⊗ b the left component a is understood to act on the field at z in the

sense of eqn. (4.5) and the right component b acts on the field at 0. By evaluating

∆([L2, L−2]) on the state |j〉⊗|k〉 we see that the co-product (4.26) preserves the

central charge. The usual definition ∆(X) = X⊗11 + 11⊗X does not have this

property.

The CVOs introduced above are now intertwiners by construction: ρV = Vρ.

In more detail (and a slight struggle with notation), for all states α ∈ Hi, β ∈ Hj,
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γ ∈ Hk and all modes Jm ∈ A we have

〈α| ρi(Jm) Vi
jk(·, z) |β〉⊗|γ〉 = 〈α|Vi

jk(·, z) (ρj ⊗ ρk)(∆(Jm)) |β〉⊗|γ〉 . (4.27)

If for a triple of irreducible highest weight representations Hi,Hj,Hk we can find a

nonzero intertwiner Vi
jk 6= 0 we say Hj and Hk can fuse to Hi.

In the next section we will need to sum over all representations occurring in

the fusion of two given ones. To make these sums finite, as well as the individual

dimensions Nij
k, we make the assumption

(A3) Let R0 be the set of all A-irreps that occur in the space of states H. Denote

by R its closure under fusion, i.e. when Hj,Hk ∈ R then all Hi that Hj and

Hk can fuse to are also contained in R. We assume that the total number of

such Hi is finite, i.e.

for all i, j ∈ R :
∑
p∈R

Nij
p <∞ (4.28)

We furthermore assume that R is closed under conjugation, i.e. i∈R ⇒ i∨∈R.

Let us summarise what we have done so far. We demanded that the correlators

of the CFT in question have an operator description (assumption (A1)). Then we

defined a symmetry algebraA generated by (some of) the chiral fields of the CFT. By

assumption (A2) our CFT is rational in the sense that the action ofA⊗A decomposes

the space of states H into a direct sum of finitely many irreps Hp⊗Hq. For a given

field in the CFT we constructed CVOs to have the same commutation relations with

the modes in A and then interpreted them as intertwiners of A-representations. By

assumption (A3) a CVO is completely determined by only finitely many numbers.

4.3 Braiding and Fusion

We will now proceed to build conformal blocks from CVOs. Consider a chain of

CVOs

〈αi|Vi
j1p1

(β1, z1)V
p1
j2p2

(β2, z2) . . .V
pn−1

jnk
(βn, zn)|γk〉 (4.29)

where αi ∈ Hi, βm ∈ Hjm , γk ∈ Hk. As in (A1) we assume that this function

converges for |z1| > |z2| > · · · > |zn| > 0. We will also assume that all chains with

two or more CVOs are linearly independent4 as functions of z1, . . . , zn. Since the

4 One would suspect that the linear independence of chains of two or more CVOs as functions
in z1, . . . , zn is linked to the linear independence of the CVOs as operators Hj ⊗Hk → Hi for fixed
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CVOs in general involve fractional powers of z, (4.29) may be multivalued. We define

(4.29) initially to be the power series evaluated for zm ∈ R+ and z1 > z2 > · · · > zn,

so that no ambiguities arise from the fractional powers. Values outside this domain

have to be obtained by analytic continuation.

For calculations it is convenient to introduce a graphical notation for the confor-

mal blocks. Denote

Vi
jk(·, z) = i

j

z
k : Hj ⊗Hk −→ Hi (4.30)

then the chain of operators in (4.29) becomes

i

j1

z1

p1

j2

z2

p2 · · · pn−1

jn

zn
k (4.31)

Evaluating this with the states β1, . . . , βn, γk and taking the inner product with αi

then gives exactly the expression (4.29).

Consider the following chiral block, with w, z ∈ R+ and w > z:

i

k, b

w
q

j, a

z
` : Hk ⊗Hj ⊗H` −→ Hi (4.32)

This operator is an intertwiner Hk ⊗Hj ⊗H` → Hi , again by construction of the

CVOs. We can construct another intertwiner Φ : Hk ⊗Hj ⊗H` → Hi by analytic

continuation. Start with the intertwiner

i

j, a

z
p

k, b

w0

` : Hj ⊗Hk ⊗H` −→ Hi . (4.33)

which is initially defined for z > w0 > 0. Then analytically continue5 w0 anti–

clockwise around z up to the point w in (4.32). The resulting operator, which we

will denote by Φ, is an intertwiner Hk ⊗Hj ⊗H` → Hi. This can again be shown

by contour deformation.

We now assume6 that the set of intertwiners in eqn. (4.32) is complete in the sense

z. But no general theorem is known to the author.
5 That is, analytically continue each matrix element as a function of w0
6 In the case of A = Vir this can be shown to follow from (A1) and the fact that a conformal

block involving descendent states can always be expressed as a linear differential operator acting
on the block with only primary states, as described in [MSb89a]. No general proof is known to
the author.
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that the newly constructed intertwiner Φ can be expressed as a linear combination

thereof. This defines the braiding matrix B and we get the operator identity

i

j, a

z
p

k, b

w
`

(1)
=
∑
q

B(ε)

pq

[
j k

i `

]cd
ab

i

k, c

w
q

j, d

z
` (4.34)

where ε denotes the direction of analytic continuation, as is detailed below. The

initial domains of definition of both sides of (4.34) do not intersect and we have

to be careful what precisely we mean by “=”. In the rest of this chapter (but

not necessarily elsewhere in the text), whenever “=” means “equal upon analytic

continuation” it is marked with a superscript to describe the move. The move will

always be starting from the lhs and ending at the rhs. In particular in (4.34) what

is meant is:

(1) Choose four vectors α ∈ Hi, β ∈ Hj, γ ∈ Hj, δ ∈ Hk. Fix three values

z, w0, w1 ∈ R+ with w1 > z0 > w0. Evaluate the operator on the rhs for

α, γ, β, δ at w1, z. Next fix a path P running from w0 to w1 anti–clockwise

(if ε = +) or clockwise (if ε = −) around z0. Starting at w0 continue the

α, β, γ, δ-matrix element on the lhs as a function of w along P to w1. The

result is the same as on the rhs.

This will be written in a clearer but less precise way as

(1) continue w anti–clockwise (for ε = +) or clockwise (for ε = −) around z.

One property of the braiding matrix that can be deduced immediately is its

invertibility: if we continue w around z and then follow back the same path, we did

nothing and get back the original function. Expressed in terms of B this means

∑
r

∑
s,t

B(ε)

pr

[
j k

i `

]st
ab

B(−ε)
rq

[
k j

i `

]cd
st

= δp,qδab,cd . (4.35)

We can also (almost) work out the braiding matrices involving the identity repre-

sentation. To do so recall that we required the defining triples of states (α, β, γ) in

(4.20) to be Vir–primary. Now a four point block involving an identity representa-

tion reduces to a three point function and SL(2)-invariance fixes its functional form.
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E.g. we get, for the particular choice of basis introduced in the previous section:

i

j, a

z
k

k

w
0 (αa, βa, γa, |0〉) = V a · (z − w)hi−hj−hk(z − w)n(αa)−n(βa)−n(γa)

i

k, a

w
j

j

z
0 (αa, βa, γa, |0〉) = V a · (w − z)hi−hj−hk(w − z)n(αa)−n(βa)−n(γa)

(4.36)

Here n(αa) ∈ Z denotes the level of αa in Hi. In terms of the braiding matrix we

have

i

j, a

z
k

k

w
0 (1)

= B(ε)

kj

[
j k

i 0

]a0
a0

i

k, a

w
j

j

z
0 , (4.37)

where (1): continue w in direction ε around z. Carrying out the analytic continuation

in (4.36) explicitly gives the result

B(ε)

kj

[
j k

i 0

]a0
a0

= eiπε(hi−hj−hk) · ξaijk , (4.38)

where we defined the sign ξaijk as ξaijk = (−1)n(αa)+n(βa)+n(γa).

The three-point B’s will appear several times, so it is convenient to introduce an

abbreviation

B(ε)

kj

[
j k

i 0

]a0
a0

=: Ωi
jk,a(ε) = ξaijk · eiπε(hi−hj−hk) . (4.39)

Similarly, in the normalisation of CVOs we chose, from

0
i∨

z
i

j, a

w
k (|0〉, αa, βa, γa)

= V a · zhj−hi−hkwhi−hj−hk(z − w)hk−hi−hj

· zn(βa)−n(αa)−n(γa)wn(αa)−n(βa)−n(γa)(z − w)n(γa)−n(αa)−n(βa) (4.40)

we get

B(ε)

ij∨

[
i∨ j

0 k

]0a

0a

= Ωk
ij,a(ε) . (4.41)
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It is worth noting two facts about the Ω’s and ξ’s just introduced. First, neither sees

the difference between a representation i and its conjugate i∨, since both hi = hi∨

and nα = nα∨ . Second, (and all this heavily depends on the normalisation of CVOs

we chose) any sign ξ involving an identity representation H0 is +1.

The two remaining braiding matrix elements can be obtained by the method

outlined above as:

i

j, a

z
k

0

w
k : B(ε)

ki

[
j 0

i k

]0a

a0

= 1

i

0

z
i

j, a

w
k : B(ε)

ik

[
0 j

i k

]a0
0a

= 1 (4.42)

Now we turn to another transformation of conformal block: fusion. Using

Vk
k0(β, 0)|0〉 = |β〉 ∈ Hk, one can verify

Vi
jk,a(α, z)V

k
k0(β, w)|0〉 = Vi

i0(V
i
jk,a(α, z − w)|β〉, w)|0〉 (4.43)

by applying the generator of translations exp(−wL−1) (which is invertible) to both

sides. To see that (4.43) is true for any state in H0, consider the following series of

transformations:

Vi
jk,a(α, z)V

k
k0(β, w)V0

00(χ, ζ)|0〉
(∗)
= Vi

jk,a(α, z)V
k
0k(χ, ζ)V

k
k0(β, w)|0〉

(∗)
= Vi

0i(χ, ζ)V
i
jk,a(α, z)V

k
k0(β, w)|0〉 = Vi

0i(χ, ζ)V
i
i0(V

i
jk,a(α, z − w)|β〉, w)|0〉

(∗)
= Vi

i0(V
i
jk,a(α, z − w)|β〉, w)V0

00(χ, ζ)|0〉 (4.44)

where (*): The direction of analytic continuation does not matter as all braiding

matrix elements have been computed to be equal to one just before.

Setting ζ = 0 in the first and last equation we obtain, for an arbitrary state

|χ〉 ∈ H0:

Vi
jk,a(α, z)V

k
k0(β, w)|χ〉 = Vi

i0(V
i
jk,a(α, z − w)|β〉, w)|χ〉 (4.45)

Note that in (4.45) we can just write “=” because the power series on both sides

are defined for z, w ∈ R+ and z > w. Furthermore (4.44) overall did not introduce

any monodromy, so that no analytic continuation is involved and the rhs of (4.45)

is just a resummation of the lhs. Eqn. (4.43) is thus not only valid on the vacuum,

but on any state |χ〉 ∈ H0, i.e. the following operator identity holds:
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zζ w

Re

Im

Figure 4.2: Analytic continuations to obtain the fusion matrix

i

j, a

z
k

k

w
0 = i

w

i

j, a

z−w
k

0 (4.46)

We have gathered all the ingredients for the general fusion matrix. The following

is a repetition of the calculation (4.44) in graphical notation, this time involving

nontrivial braiding matrices:

i

j, a

z
p

k, b

w
`

`

ζ
0

(1)
= Ωp

k`,b(+) i

j, a

z
p

`, b

ζ
k

k

w
0

(2)
=
∑
q,c,d

Ωp
k`,b(+)B(+)

pq

[
j `

i k

]cd
ab

i

`, c

ζ

q
j, d

z
k

k

w
0

=
∑
q,c,d

Ωp
k`,b(+)B(+)

pq

[
j `

i k

]cd
ab

i

`, c

ζ

q
w

q
j, d

z−w
k

0

(3)
=
∑
q,c,d

Ωp
k`,b(+)B(+)

pq

[
j `

i k

]cd
ab

Ωi
`q,c(−) i

w

q, c
j, d

z−w
k

`

`

ζ
0 (4.47)

where the analytic continuations are (fig. 4.2): (1) ζ anti–clockwise around w, (2)

ζ anti–clockwise around z, (3) w clockwise around ζ, keeping z−w fixed.

Setting ζ=0 in the first and last expression gives the fusion procedure:

i

j, a

z
p

k, b

w
` =

∑
q,c,d

Fpq

[
j k

i `

]cd
ab

i
z

q, c
j, d

z−w
k

` (4.48)
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with

Fpq

[
j k

i `

]cd
ab

= Ωp
k`,b(+)B(+)

pq

[
j `

i k

]cd
ab

Ωi
`q,c(−) (4.49)

Note that for the same reason as in (4.45), no analytic continuation is involved, and

the rhs of (4.48) is just a resummation of the lhs.

When a conformal block has enough points one can imagine analytic continuation

along different, but equivalent7 paths. Each path corresponds to an expression

involving the B and F matrices. Since the final function does not depend on which

of the equivalent paths has been chosen, this leads to a large number of nontrivial

identities on the braiding and fusion matrices. A detailed study of these relations,

called polynomial equations, together with a proof that the a priori infinite set of

resulting equations are generated by a finite number, can be found in the papers by

Moore and Seiberg, e.g. [MSb89b].

In the following we will mainly be working with the fusion matrix, so rather than

elaborating on the polynomial equations we will restrict ourself to presenting some

symmetry properties and a recursion relation for the F’s. The derivation has been

shifted to Appendix A.3.

The indices inside the F-matrix can be permuted according to the following rules:

Let ε denote the sign ε = ξaijp ξ
b
klp ξ

c
ilq ξ

d
jkq, then

Fpq

[
j k

i `

]cd
ab

= ε · Fpq∨

[
i∨ `

j∨ k

]dc
ab

= ε · Fp∨q

[
k j

`∨ i∨

]cd
ba

= Fp∨q∨

[
` i∨

k∨ j

]dc
ba

(4.50)

This, together with (4.35) and (4.49) allows us to invert the fusion matrix:

∑
rst

Fpr

[
j k

i `

]st
ab

Fr∨q

[
k `

j∨ i∨

]cd
ts

= δpqδacδbd ;
(
F

[
j k

i `

]−1)cd
rq,st

= Fr∨q

[
k `

j∨ i∨

]cd
ts

(4.51)

For the recursion relation we suppose the theory contains some representations ∆,

which are sufficiently simple to work out all fusion matrices involving at least one

∆. If the ∆’s generate all representations in the theory by mutual fusion, this

allows us to obtain all fusion matrices by a recursive procedure. Let k+∆ be any

representation that appears in the fusion of k and ∆. We then have the relation

7 In the sense that the two sets of continuation paths can be deformed into each other without
intersecting any CVO insertion points.
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Fpq
"
j k+∆

i `

#cd
ab

=
X

r,s;efghm

F(k+∆)∨, r

"
∆ `

k∨ p∨

#ef
xb

Fps
"
j k

i r

#gh
ae

Frq
"
s ∆

i `

#cm
gf

Fs∨, k+∆

"
k ∆

j∨ q∨

#dx
hm

(4.52)

The recursion runs on the index k. Suppose for a fixed k we know the matrices

F[i`; jk] for arbitrary (allowed) i, j, `. Then (4.52) gives us all matrices F[i`; j(k+∆)].

Knowing these we can proceed to (k+∆)+∆ etc.

4.4 The Virasoro case

For the remainder of the thesis we will restrict ourselves to the Virasoro algebra

A=Vir at central charge c=1−6(t+t−1−2) where t=p/q and p, q are coprime integers

≥ 2. As mentioned in section 2.2, for these values of c one can find a finite set of

irreps that close under fusion. They are labelled by Kac-labels (r, s). Let i=(ri, si),

etc, and define a function N c
ab(r) as

N c
ab(r) =

1 : |a−b| < c < min(a+b, 2r−a−b) , a+b+c odd

0 : otherwise

The Verlinde fusion numbers are

Nij
k = N rk

rirj
(p) · N sk

sisj
(q) +N p−rk

rirj
(p) · N q−sk

sisj
(q) ∈ {0, 1} . (4.53)

There are (at least) two routes to obtain numbers for the F-matrix elements. The

first method implements the recursion relation and is aimed mainly at numerical

studies. The second method uses the fact that the B-matrices form representations

of braid groups, which may also be realised by a quantum group.

For the first route consider the chiral fields φ1,2 and φ2,1. All representations of the

minimal theory can be obtained through repeated fusion of these fields. Furthermore

a four-point correlator involving one of the above fields satisfies a second order

differential equation. This can be solved and the F-matrix can be read off explicitly.

Consider the minimal model M(p, q). The highest weight representations have

weights hr,s=
1
4t

(drs
2−d11

2) where t=p/q and drs=r−st. The Kac labels run over

r=1...p−1, s=1...q−1 and h has the symmetry hr,s=hp−r,q−s.

Consider the case φ1,2. For the representation x = (r, s) let x+ denote the
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representation x+=(r, s+1), with weight h+
k and similar x−=(r, s−1). Then we find

〈i|Vi
jk−(1)Vk−

k(12)(x)|1, 2〉 = xh
−
k −hk−h12 · (1− x)h

+
i −hj−hk

× 2F1

(
1
2
(1−di+dj+dk), 1

2
(1−di−dj+dk); 1+dk; x) ,

〈i|Vi
jk+(1)Vk+

k(12)(x)|1, 2〉 = xh
+
k −hk−h12 · (1− x)h

+
i −hj−hk

× 2F1(
1
2
(1−di+dj−dk), 1

2
(1−di−dj−dk); 1−dk; x) . (4.54)

The corresponding result for φ2,1 can be obtained by using the fact that M(p, q) and

M(q, p) are identical when swapping the Kac-labels of all fields (r, s) ↔ (s, r). In

the formulas this amounts to replacing t→ t−1 and d→ −t−1d.

The transformation properties of the hypergeometric functions can now be used

to obtain the F–matrices. In the following formula ∆ stands for either (2, 1) or (1, 2).

If j stands for (r, s) then j ±∆ is (r ± 1, s) and (r, s ± 1) respectively. Altogether

one gets:

F

[
j ∆

i `

]
=

(
F`−∆,j−∆ F`−∆,j+∆

F`+∆,j−∆ F`+∆,j+∆

)
= · · · (4.55)

for ∆ = (2, 1):

=

0BBBB@
Γ

“
t−1dj

”
Γ

“
1−t−1d`

”
Γ

“
1
2t

(t−di+dj−d`)
”

Γ
“

1
2t

(t+di+dj−d`)
” Γ

“
−t−1dj

”
Γ

“
1−t−1d`

”
Γ

“
1
2t

(t−di−dj−d`)
”

Γ
“

1
2t

(t+di−dj−d`)
”

Γ
“
t−1dj

”
Γ

“
1+t−1d`

”
Γ

“
1
2t

(t−di+dj+d`)
”

Γ
“

1
2t

(t+di+dj+d`)
” Γ

“
−t−1dj

”
Γ

“
1+t−1d`

”
Γ

“
1
2t

(t−di−dj+d`)
”

Γ
“

1
2t

(t+di−dj+d`)
”

1CCCCA

for ∆ = (1, 2):

=

0BBB@
Γ(−dj) Γ(1+d`)

Γ
“

1
2
(1+di−dj+d`)

”
Γ

“
1
2
(1−di−dj+d`)

” Γ(dj) Γ(1+d`)

Γ
“

1
2
(1+di+dj+d`)

”
Γ

“
1
2
(1−di+dj+d`)

”
Γ(−dj) Γ(1−d`)

Γ
“

1
2
(1+di−dj−d`)

”
Γ

“
1
2
(1−di−dj−d`)

” Γ(dj) Γ(1−d`)
Γ

“
1
2
(1+di+dj−d`)

”
Γ

“
1
2
(1−di+dj−d`)

”

1CCCA

Depending on the fusion rules between i, j,∆, ` none or only one of the above matrix

elements may be allowed.

The recursion formula (4.52) now reads:

Fpq

[
j k + ∆

i `

]
=
∑
r,s

Fk + ∆, r

[
` ∆

p k

]
· Fps

[
j k

i r

]
· Frq

[
s ∆

i `

]
· Fs, k + ∆

[
k ∆

j q

]
(4.56)

The index range of the sum in (4.56) is determined through the requirement that the

eight diagrams associated to the four F-matrices exist. The independent conditions
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on r, s are: Npk
r ·Nl∆

r 6= 0, Njk
s ·Nq∆

s 6= 0 and Nrs
i 6= 0. In particular the maximal

range of the summation indices is r = `±∆ and s = q ±∆. Depending on i, j, k, p

it may however be smaller than that.

Concerning the second route to obtain F, it can be found in the literature that the

quantum 6j–symbols of sl(2)q are related to the minimal model F-matrices [AGS89b,

FFK89, FGP90]. There is a catch, however, since the quantum group formulation

gives the matrix structure of F, but not the associated normalisation of the CVOs.

This has to be obtained by some other means, for example by explicit calculation

of Coulomb gas integrals, as done by Dotsenko and Fateev in [DFa84]. The result of

combining the two formulas and adapting to the notation used in this thesis (just)

fits on one page and can be found in appendix A.4.

One can now check, at least numerically, that both methods indeed lead to the

same result for the F’s. Note that in the present normalisation the F–matrices are

all real.

Identities satisfied by the fusion matrices will be useful in the calculation of the

structure constants and some are listed in appendix A.5. These and many more can

be found in the lecture notes by Moore and Seiberg [MSb89a]. Here we just state

the pentagon identity:

∑
s

Fqs

[
j k

p b

]
Fp`

[
i s

a b

]
Fsr

[
i j

` k

]
= Fpr

[
i j

a q

]
Fq`

[
r k

a b

]
(4.57)



Chapter 5.

Sewing Constraints

In the previous chapter we have constructed all functions which, for a given collection

of fields, are consistent with the commutation relations of the symmetry algebra A.

Conformal blocks constitute a basis in the space of these functions. In this chapter

we will investigate how the conformal blocks have to be combined to form physical

correlators. This will lead to a set of relations for the structure constants, called

sewing constraints.

For example a correlator of four bulk fields can be written as

〈φi(z1, z
∗
1)φj(z2, z

∗
2)φk(z3, z

∗
3)φ`(z4, z

∗
4)〉

=
∑
p,q

cpq 0
i

z1
i∨

j

z2

p
k

z3
l

l

z4
0 0

ı̄

z∗1

ı̄∨
̄

z∗2

q
k̄

z∗3

¯̀
¯̀

z∗4

0 (5.1)

where the sums run over all p for which Njp
i∨Nk`

p 6= 0 and over all q s.t. N̄q
ı̄∨Nk̄ ¯̀

q 6=
0. The first aim of this chapter is to see how the constants appearing in the

(bi–)linear combinations of conformal blocks are related to the structure constants

in the OPE of primary fields. Secondly, the basis of conformal blocks chosen in (5.1)

is not the only one available. Each basis will result in a particular combination of

OPE structure constants for the linear coefficients. The transformation matrices

derived in the previous chapter describe the change of basis between the different

sets of blocks. This will lead to polynomial equations on the structure constants,

called sewing– or duality constraints.
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5.1 Structure constants

The OPE allows us to express the product of two nearby fields χa(x), χb(y) through

a sum of fields of the form

χa(x)χb(y) =
∑
c

Cc
ab(x−y) · χc(y) (5.2)

The chiral algebra A will fix the functional form of the C’s and give a large

number of relations between the different OPE coefficients. Loosely speaking the

structure constants are the input in the OPE which is not fixed by requiring consis-

tency with the action of A on both sides of (5.2).

More precisely there are (at least) three different ways of thinking about structure

constants. In listing them we ignore all notational complications, such as those

arising from non-diagonal fields and multiplicities.

(A) Structure constants are the coefficients of three point functions of primary

fields:

〈φi(z, z̄)φj(w, w̄)φk(0, 0)〉

= Cijk|z − w|2(hk−hi−hj)|w|2(hi−hj−hk)|z|2(hj−hi−hk) (5.3)

(B) Structure constants determine the leading behaviour of the OPE:

φi(z, z̄)φj(w, w̄)

=
∑
k

Cij
k |z − w|2(hk−hi−hj)φk(w, w̄) + (higher terms) (5.4)

(C) Structure constants give the linear combination of CVOs that make up the

operator description of a primary field:

φi(z, z̄) =
∑
j,k

Cij
k Vk

ij(|i〉, z)⊗ Vk
ij(|i〉, z̄) (5.5)

We will be working with (B), as it is the most convenient and intuitive when

deriving the sewing constrains. (B) does have to be treated with care though – we

will come back to that in a moment.

First it should be mentioned that it is (C) that extends most easily beyond the

case A = Vir. Moore and Seiberg use this definition of structure constants in their

proof of the naturality theorem [MSb89c]. The main reason why (C) is superior to

(A) and (B) is the following: It might happen that two A–primary fields φi and

φj couple to a family [φk], in such a way that the first term in the OPE is not the
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primary field φk, but a descendent. In this case the coefficient of (z−w)hk−hi−hj

would be zero and cannot be used to define the structure constant. In other words

the three point function of three A–primaries might vanish, but might be nonzero

for some descendents.

In a fully fledged notation for (C) we would have to give a name α to each

distinct pair of representations Hrα⊗Hr̄α in the space of states H and accommodate

two types of multiplicities: of representations in the space of states and of CVOs for

a given triple of representations. One possible notation would be:

φα(z, z̄) =
∑
β,γ,a,b

d γαβ,ab · V
rγ
rαrβ ,a

(|rα〉, z)⊗ V
r̄γ
r̄αr̄β ,b

(|r̄α〉, z̄) (5.6)

where the V⊗V –terms act on Hα⊗Hβ → Hγ. Also we have used d instead of C to

denote the structure constants. This is because the relation to (A) and (B) is no

longer immediate (for a start d has two indices to many).

For the rest of the text we will restrict ourselves to A = Vir. In this case one

can show that the three numbers defined in (A)–(C) have the same meaning. In (A)

one can compute the leading behaviour w, w̄ → 0 directly, or by inserting the OPE

(B). Comparing the two yields Cijk = Cij
k Ckk

1 . Alternatively one can replace the

three primary fields in (A) by the sums of CVOs given in (C). This gives a product

of three structure constants Ckk
1 Cij

k Ci1
i . The last one has to be equal to one as

it describes multiplication by the identity field. We again end up with the previous

relation.

Let us now focus on the structure constants as defined by (B). First the notation

has to be refined to handle pairs of representations in H which occur with mul-

tiplicities. Denote with R the set of all representations of Vir entering the model

under consideration (in the sense of (A4) in section 4.3), i.e. all representations in

the Kac-table. Let F be the set of all pairs of representation Hi⊗Hj in H, without

multiplicities. I.e. an element r ∈ F corresponds to a pair of representations (i, ı̄).

To keep notation at bay we will often use i ∈ F to denote the pair (i, ı̄). The two

representations have conformal weights hi, hı̄ or, for better readability, hi, h̄i.

To specify a primary field uniquely, an element i ∈ F gets an additional index

iα to account for possible multiplicities. That is, φiα , φiβ , . . . are distinct primary

fields that transform in the same representation Hi⊗Hı̄. As Vir–highest weight

representations are self-dual, we can always pick a basis of primary fields s.t. the

two point function satisfies the following orthogonality condition:

〈φiα(x)φjβ(y)〉 = δi,jδα,βf(x− y) (5.7)
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Now we can point out the first subtlety in definition (B). Suppose we have some

correlator f(z, w)=〈· · ·φiα(z, z̄)φjβ(w, w̄) · · ·〉. Next suppose that f(z, w) presents

us with a leading behaviour A · (z−w)a(z̄−w̄)b in the limit z→w. Then from

a=hk−hi−hj, b=h̄k−h̄i−h̄j we can identify which element k ∈ F this corresponds

to, but not necessarily which primary field φkγ . So all we learn is

A =
∑
γ

Ciαjβ
kγ . (5.8)

Thus in a way the duality constraints will be less restrictive if H contains fields with

multiplicities.

The next subtlety is that we do not only want the leading behaviour of f(z, w)

but we want to identify all primary fields which contribute in the limit z → w. That

is we want to be able to write

f(x, y) =
∑
k∈F

Ak · (z − w)hk−hi−hj(1 + a1 · (z − w) + · · · )

· (z̄ − w̄)h̄k−h̄i−h̄j(1 + b1 · (z̄ − w̄) + · · · ) (5.9)

The constants Ak are precisely the coefficients of the conformal blocks and it is

essential for the duality constraints that they can be extracted unambiguously. This

will work fine unless there are two weights hk1<hk2 which differ by an integer. Then

the contribution of the primary field hk2 will occur with the same power, (z−w)a

say, as a descendent in the hk1–family. The coefficient Ak2 can however still be

extracted. Since we know the constant Ak1 we can just subtract the contribution of

the descendent from the number in front of (z − w)a to obtain Ak2 . In deriving the

constraints we do not actually have to do this calculation, but we will use the fact

that the Ak are well–defined.

Let us fix some notation used in the following. The vacuum expectation value of

the UHP with boundary condition a imposed on the real line will be denoted with

〈1〉aUHP. The vacuum expectation value of the full complex plane with no boundaries

present will be denoted with 〈1〉 or 〈0|0〉.

The leading terms in the bulk–bulk, bulk–boundary and boundary–boundary

operator product expansions of primary fields are, in this order:

φiα(z)φjβ(w) =
∑
k,γ

Ciαjβ
kγ (z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄j

(
φkγ (w) + · · ·

)
|z|>|w|

(5.10)
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φiα(x+ iy) =
∑
k,γ

aBiα
kγ · (2y)hk−hi−h̄i ·

(
ψ

(aa)
kγ

(x) + · · ·
)

y > 0

(5.11)

ψ
(ab)
iα

(x)ψ
(bc)
jβ

(y) =
∑
k,γ

C
(abc)kγ
iαjβ

· (x− y)hk−hi−hj ·
(
ψ

(ac)
kγ

(y) + · · ·
)

x > y

(5.12)

The omissions stand for an infinite sum of descendents of the primary field in

question. A method to work out the coefficients of the descendent fields is described

in appendix A.1. Eqns. (5.10)–(5.12) define the three sets of structure constants

which are necessary to compute the correlation functions of minimal models: the

bulk structure constants Ciαjβ
kγ with three bulk fields iα, jβ, kγ, the bulk-boundary

couplings aBiα
kγ with boundary condition a, bulk field iα and boundary field kγ

and the boundary structure constants C
(abc)kγ
iαjβ

with boundary conditions a, b, c and

boundary fields iα, jβ, kγ.

5.2 Duality constraints

It has already been pointed out in section 2.3 that one has to distinguish between

pure and mixed boundary conditions. On a pure boundary condition the identity is

the unique boundary field with weight h=0. In the derivation of the constraints for

the structure constants below, we restrict ourselves to pure boundary conditions.

To illustrate the method used to obtain the sewing constraints, the constraint

arising from two bulk fields in the presence of a pure boundary is derived in detail

[CLe91]. For simplicity suppose there are only diagonal primary fields without mul-

tiplicities. Say the bulk fields have distance d from each other and distance y from

the boundary. There are two limits we can compare. First we can take the two

bulk fields to approach each other. The bulk OPE (5.10) then gives the asymptotics

for d → 0. The resulting sum of primary bulk field can be expanded in terms of

boundary fields using (5.11). As there is no other boundary field to couple to, only

the identity has a non-vanishing contribution. We obtain the asymptotics

〈φi(d+iy)φj(iy)〉aUHP ∼
d→0

∑
m

Cij
m aBm

1 〈1〉aUHP · d2hm−2hi−2hj (2y)−2hm . (5.13)

On the other hand we could expand the two bulk fields in terms of boundary fields,

resulting in the y → 0 asymptotics. We are left with a sum of boundary two point

functions, of which the primary boundary fields will appear in the leading term for
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y → 0. We get:

〈φi(d+iy)φj(iy)〉aUHP ∼
y→0

∑
`

aBi
` aBj

` C
(aaa)1
`` 〈1〉aUHP · (2y)2h`−2hi−2hj d−2h` . (5.14)

We can express the complete functional dependence of the two-point correlator

through the appropriate conformal blocks. Recall that, due to Cardy’s doubling

trick mentioned in section 2.3, a bulk field at iy on the UHP corresponds to two

insertions of CVOs, one at iy and one at the reflected point −iy. Here we write the

correlator as a linear combination of two different bases of blocks, each adapted to

one of the asymptotic behaviours (5.13), (5.14):

〈φi(d+iy)φj(iy)〉aUHP =
∑
p

cp · 0
iy

p
i

d

j

p

−iy

p
i

d

j

0

〈φi(d+iy)φj(iy)〉aUHP =
∑
q

dq · 0
d−iy

q
i

2iy
i

q

−iy

q
j

2iy
j

0 (5.15)

where are functional arguments of the blocks (i.e. the external legs) are set to the

respective highest weight vectors.

There is another subtlety at this point. We have defined products of CVOs as a

convergent power series for positive, real and ordered insertion points. In (5.15) we

have complex arguments, so we have to specify an analytic continuation. E.g. for

the first line we start with some a > b > 0 and continue a to iy and b to −iy.
The CVOs have been normalised in (4.25) to have the asymptotics

i

j

z
k |j〉⊗|k〉 = zhk−hi−hj

(
|i〉+ a1 z · L−1|i〉+ . . .

)
, 〈i|i〉 = 1 . (5.16)

Using this we can determine the asymptotics of the two-point correlator given in

terms of conformal blocks (5.15) as

〈φi(d+iy)φj(iy)〉aUHP ∼
d→0

∑
p

cp · e−iπhp · d2hp−2hi−2hj (2y)−2hp

〈φi(d+iy)φj(iy)〉aUHP ∼
y→0

∑
q

dq · eiπ(hq−hi−hj) · d−2hq (2y)2hq−2hi−2hj (5.17)
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Comparing this to (5.13), (5.14) fixes the values cp and dq in terms of structure

constants. We can also perform the basis transformation explicitly in (5.15) in

terms of F-matrices:

0
iy

p
i

d

j

p

−iy

p
i

d

j

0 = 0
i

d+iy
i

j

iy

p
i

d−iy
j

j

−iy
0

=
∑
q

B(+)

pq

[
j i

i j

]
0

i

d+iy
i

i

d−iy
q

j

iy

j
j

−iy
0

=
∑
q

eiπ(hp+hq−hi−hj)Fpq

[
i i

j j

]
0
d−iy

q
i

2iy
i

q

−iy

q
j

2iy
j

0 (5.18)

Reinserting this relation into the expression for the correlator (5.15) gives a linear

relation between cp and dq, which translates in a (nonlinear) constraint on the struc-

ture constants. Below the constraint is listed, together with a picture detailing the

different limits that have been taken on each side

ji

aaBi
` aBj

`

〈1〉a
C

(aaa)1
``

=

ji

〈1〉a

Cij
m

aBm
1

a

aBi
` aBj

` C
(aaa)1
`` =

∑
m

Cij
m aBm

1 · Fm`

[
i i

j j

]
(5.19)

There are certainly infinitely many different ways to take limits in correlators re-

sulting in infinitely many constraints for the structure constants. It is the work

of Sonoda [Son88b] (for correlators in Riemann surfaces without boundaries) and

Lewellen [Lew92] (who extends the treatment to surfaces with boundaries) to show

that of all constraints that can be obtained by taking different limits, only finitely

many are independent. Once these are satisfied all others hold automatically.

The method used by Sonoda and later Lewellen to obtain this result, was to

take a given Riemann surface with field insertions and cut it apart into a few basic

building blocks (this corresponds to taking a certain limit in the correlator). If all
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different cuttings give the same answer this is equivalent to all different limits being

consistent. They showed that all different cuttings can be related to each other

by a finite number of elementary moves. Each of these moves corresponds to a

fundamental sewing constraint.

For orientable surfaces without boundaries there are only two fundamental con-

straints. The four point function on the sphere at genus zero and the one-point

function on the torus at genus one. In the presence of boundaries we get four more

constraints. At genus zero the new fundamental constraints arise from consider-

ing four boundary fields, two boundary/one bulk field and two bulk/one boundary

field. At genus one the additional conditions arises from the one point function on

the cylinder. In this thesis we only consider orientable surfaces. The additional

constraints for non-orientable surfaces are given in [FPS93, PSS95a, PSS95b].

Below is a list of all fundamental sewing constraints for genus zero, as given by

Lewellen [Lew92]. First we give the constraints in “light” (i.e. multiplicity free and

diagonal fields) notation, together with pictures detailing the limits.

For four boundary fields i, j, k, `:

a b c d a
i j k

〈1〉a

C
(bcd)q
jk

`

C
(abd)`
iq

C
(ada)1
``

= a b c d
i `

C
(abc)p
ij

a
kj

C
(cda)p
k`

C
(aca)1
pp

〈1〉a

C
(bcd)q
jk C

(abd)`
iq C

(ada)1
`` 〈1〉aUHP =

∑
p

C
(abc)p
ij C

(cda)p
k` C(aca)1

pp 〈1〉aUHP · Fpq

[
j k

i `

]
(5.20)
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For one bulk field i and two boundary fields p, q:

a
p q

a b

i

bBi
`

C
(aba)1
qq

〈1〉a

C
(abb)q
p`

=
q

a
p

aBi
k

a b

〈1〉a
C

(aaa)1
kk

i
C

(aba)k
pq

bBi
` C

(abb)q
p` C(aba)1

qq 〈1〉aUHP =
∑
k,m

aBi
k C(aba)k

pq C
(aaa)1
kk 〈1〉aUHP

· eiπ(2hm+ 1
2
hk−hp−hq−2hi+

1
2
h`)

· Fkm

[
q i

p i

]
Fm`

[
i i

p q

]
(5.21)

For two bulk fields and one boundary field:

a aB`
t

k

i

`

aBk
q

C
(aaa)i
qtC

(aaa)1
ii

〈1〉a

=

C
(aaa)1
ii

Ck`
p

aBp
i

ai

〈1〉a

k `

aBk
q aB`

t C
(aaa)i
qt C

(aaa)1
ii 〈1〉aUHP = ei

π
2
(ht−hi−hq−2h`)

∑
p,r

Ck`
p aBp

i C
(aaa)1
ii 〈1〉aUHPe

iπhr

· Fpr

[
i `

p k

]
Fpq

[
` r

k k

]
Frt

[
` `

q i

]
(5.22)

For four bulk fields:

Cij
s Ck`

s
Css

1

〈1〉j k

`i

= Ctt
1 〈1〉
Ci`

t

Cjk
t

j k

`i

Cij
s Ck`

s Css
1 〈1〉 · Fst

[
j k

i `

]
= Cjk

t C`i
t Ctt

1 〈1〉 · Fts

[
` k

i j

]
(5.23)

To compare the above formulas to the corresponding expressions in Lewellen’s paper

two remarks are in order: The form of the constraints given here is slightly different

from [Lew92]. Firstly, the definition of the boundary OPE (5.12) differs slightly
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and the labels have to be permuted correspondingly. Second, different limits of the

correlators were chosen in (5.20)–(5.23) with the result that the expectation value of

the identity field cancels from all expressions. Otherwise (5.20)–(5.23) are equivalent

to the corresponding equations in [Lew92].

In “heavy” notation, including multiplicity labels and non-diagonal fields the

corresponding constraints read:

For four boundary fields iα, jβ, kγ, `δ and boundary conditions a, b, c, d:

∑
ε

C
(bcd)qε
jβkγ

C
(abd)`δ
iαqε

C
(ada)1
`δ`δ

〈1〉aUHP =
∑
p

(∑
ν

C
(abc)pν
iαjβ

C
(cda)pν
kγ`δ

C(aca)1
pνpν 〈1〉

a
UHP

)
Fpq

[
j k

i `

]
(5.24)

For two boundary fields pν , qε and one bulk field iα:∑
δ

bBiα
`δ C

(abb)qε
pν`δ

C(aba)1
qεqε 〈1〉

a
UHP

=
∑
k

(∑
γ

aBiα
kγ C(aba)kγ

pνqε C
(aaa)1
kγkγ

〈1〉aUHP

)

·
∑
m

eiπ(2hm−2hi−hp−hq+ 1
2
(hk+h`)) · Fkm

[
ı̄ q

i p

]
Fm`

[
i ı̄

p q

]
(5.25)

For two bulk fields iα, jβ and one boundary field kγ:∑
ρ

Ciαjβ
mρ aBmρ

kγ C
(aaa)1
kγkγ

〈1〉aUHP

=
∑
p,q

(∑
ν,ε

aBiα
pν aBjβ

qε C(aaa)kγ
pνqε C

(aaa)1
kγkγ

〈1〉aUHP

)

·
∑
r

ei
π
2
(hk+hp−hq−2hr+hm−h̄m−hi+h̄i+hj+h̄j) · Fqr

[
k ̄

p j

]
Fpm

[
ı̄ r

i j

]
Frm̄

[
ı̄ ̄

m k

]
(5.26)

For four bulk fields iα, jβ, kγ, `δ:∑
ε

Ciαkγ
qε Cjβ`δ

qε Cqεqε
1 〈1〉

=
∑
p,p̄

(∑
ν

Ciαjβ
pν Ckγ`δ

pν Cpνpν
1 〈1〉

)

· eiπ(hi−h̄i+h`−h̄`−hp+h̄p−hq+h̄q)Fpq

[
j `

i k

]
F̄pq̄

[
̄ ¯̀

ı̄ k̄

]
(5.27)
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The constraints have been derived using notation and techniques for calculating with

conformal blocks presented in the previous chapter. To illustrate the method, the

calculation that leads to constraint (5.26) is given in appendix A.6.

Next consider the two genus one constraints in the case of no field insertions,

i.e. the torus and cylinder partition functions. For the torus (circumferences R and

L) we get the condition that the partition function of the bulk theory has to be

modular invariant:

trHe
−2πR

L
(L0+L̄0−

c
12

) = trHe
−2πL

R
(L0+L̄0−

c
12

) (5.28)

For a cylinder of length R and circumference L we get the condition [Car89b]:

〈a|e−
2πR
L

(L0+L̄0−
c
12

)|b〉 = trHabe
−πL
R

(L0−
c
24

) (5.29)

where Hab is the space of states of a strip with boundary conditions a and b.

Let E be the set of all diagonal bulk fields E = {φiα |i=ı̄}. Recall that a conformal

boundary state 〈a| can be written as a linear combination of Ishibashi states (see

eqn. (2.57))

〈a| =
∑
iα∈E

giαa 〈〈iα| (5.30)

where the sum runs over all diagonal bulk fields iα. If we also writeHab =
∑

j nja
bHj

and make use of the modular transformation properties of the characters, we obtain

the formula [Car89b] ∑
iα∈E

giαa (giαb )∗〈iα|iα〉Sij = nja
b . (5.31)

To make the connection between giαa and the structure constants we have to link

the normalisations in the bulk and boundary CFT: We demand that the one-point

function in unit disk geometry is given by the inner product with a boundary state:

aBiα
1 〈1〉adisc = 〈φiα(0, 0)〉adisc = 〈a|iα〉 = giαa 〈iα|iα〉 (5.32)

Recall from (2.31) and (2.37) the relations φiα(0, 0)|0〉 = |iα〉 and

〈iα|iα〉=Ciαiα
1 〈0|0〉. Thus the giαa are not independent quantities, but can be ex-
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pressed as

giαa =
aBiα

1 〈1〉adisc

Ciαiα
1 〈0|0〉

. (5.33)

We have now introduced all the objects we aim to determine by solving the sewing

constraints:

Ciαjβ
kγ , aBiα

pβ , C(abc)rγ
pαqβ

, 〈1〉adisc , 〈0|0〉 (5.34)

Of course the sewing constraints cannot determine the quantities (5.34) uniquely,

but at most up to rescalings1 of the fields. The effect of rescaling on the struc-

ture constants can be summarized as follows: suppose we change (suppressing the

multiplicity indices)

φi → αiφi , ψ
(ab)
p → βabp ψ(ab)

p , 〈0|0〉 → µ2〈0|0〉 . (5.35)

Then the structure constants change according to

Cij
k → αiαj

αk
Cij

k , aBi
p → αi

βaap

aBi
p , C(abc)r

pq →
βabp β

bc
q

βacr
C(abc)r
pq

giαa → (αiµ)−1giαa , 〈1〉adisc → µ〈1〉adisc . (5.36)

The behaviour of giαa follows from (5.31), where the rhs is normalisation independent.

The rescalings are a symmetry of the sewing constraints in the sense that, if we

have a solution for all quantities in (5.34), then the rescaled versions (5.36) form a

solution as well2.

5.3 Cylinder partition function

As mentioned in the previous section, we have to distinguish two kinds of boundary

conditions: pure– or Cardy–boundary conditions and mixed boundary conditions.

Pure boundary conditions are characterised by the property that they have a unique

1 In fact in the presence of multiplicities not only rescalings are possible, but also linear combi-
nations of equivalent fields. This fact will be used when choosing a suitable basis of primary fields
to solve the D–series sewing constraints.

2 There are two subtleties hidden in (5.36), both connected to choosing imaginary scale factors.
If αi is imaginary we have to reintroduce the sign σ(i) from eqn. (2.37), which was set to one in
section 2.1. This is necessary to insure that 〈i|i〉 → |αi|2µ2〈i|i〉 even though Cii

1 → αi
2 Cii

1 . If
µ is imaginary, say µ = i for simplicity, the inner product itself changes sign, i.e. 〈a|b〉 → −〈a|b〉.
These two subtleties have to be taken into account to verify that (5.31) is invariant under the
rescalings (5.35).
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(sl(2)–invariant) vacuum. In other words, there is only one weight zero field on a

pure boundary a: n0a
a=1.

Once we know all pure boundary conditions, we can generate all mixed ones as

superpositions thereof. If Zab denotes the partition function of a strip with pure

boundary conditions a, b, the partition functions of mixed boundary conditions are

of the form

Zmixed =
∑

a,b pure

ka · kb · Zab (5.37)

for ka, kb ∈ Z+
0 . In particular on a mixed boundary x we have n0x

x>1: We get one

weight zero field from each identity field on the pure boundaries that make up x.

In more physical terms, for pure boundary conditions the correlators obey the

cluster decomposition principle, whereas for mixed boundary conditions they do in

general not.

In this section we will be concerned with finding all pure conformal boundary

conditions. Equation (5.31) places strong constraints on the field content and the

possible boundary conditions of the theory on the strip. This was first exploited

by Cardy [Car89b] and later extended to more general situations in [BPZ98, BPPZ98,

BPPZ99]. The result is that the matrices nia
b form an integer valued representation

of the fusion algebra. Here we will follow closely the arguments concerning this point

from [BPPZ98], specialised to the case of minimal models.

It will be helpful to fix a specific scaling of the diagonal bulk fields φiα∈E and

the bulk vacuum. We choose

〈0|0〉 = S1
1 , Ciαiα

1 =
Si

1

S1
1 for all iα ∈ E . (5.38)

Then we can define quantities ψiαa which are rescaled versions of giαa :

ψiαa = aBiα
1 〈1〉adisc ,

aBiα
1 =

ψiαa
ψ1
a

(5.39)

The second equation follows from the first, since for iα=11 it reads ψ1
a=〈1〉adisc. In

terms of ψiαa the cylinder constraint (5.31) takes the more convenient form

∑
iα∈E

Si
j

Si
1ψ

iα
a (ψiαb )∗ = nja

b . (5.40)

In section 2.3 we argued that changing the boundary conditions along the real line

gives rise to a nontrivial field insertion. Consequently n1a
b = δa,b. Substituting this
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into (5.40) shows that the ψiαa are orthonormal:∑
iα∈E

ψiαa (ψiαb )∗ = δa,b (5.41)

We now make the assumption that the ψiαa are also complete, i.e. form an ON-basis:∑
a∈B

ψiαa (ψjαa )∗ = δiα,jβ (5.42)

where the sum runs over the set of all pure conformal boundary conditions B. In par-

ticular there are as many diagonal bulk fields as pure conformal boundary conditions

|B|=|E|.

At this point (5.42) is a technical assumption to make the rest of the calculation

work. To motivate why with this assumption we will not neglect a large class of

conformal boundary conditions, let us deviate slightly from the course of arguments

in [BPPZ98] and elaborate a bit on (5.42).

Let, for the following discussion, a “theory” denote a solution to the list of

quantities (5.34), which solves the sewing constraints (5.24)–(5.29).

Since the vectors ψa are orthonormal, if there are |E| of them, they automatically

form an ON-basis. The only problems with assumption (5.42) can thus come form

theories which have less than |E| conformal boundary conditions. On the other

hand, if we have a theory with |E| boundary conditions, we can construct a new

solution to all sewing constraints by restricting the theory to a subset of these

boundary conditions. So the assumption entering formula (5.42) can be phrased

more precisely as “In every theory the set of ψiαa can be extended to an ON-basis

s.t. (5.40) is satisfied”.

In an attempt to prove or disprove this statement one can look at the remaining

sewing constraints. To start with, rewrite (5.26) with kγ=1 and the remaining F–

matrix multiplied to the other side. By the fusion rules aBiα
1 can be nonzero only

if i=ı̄, so all phases cancel. We get

aBiα
1 aBjβ

1 =
∑
kγ∈E

(
Ciαjβ

kγ Fk1

[
i i

j j

])
· aBkγ

1 , (5.43)

which looks as though the B’s want to form an algebra, separately for each boundary

condition a. Now suppose (5.43) does indeed define an algebra. Then this algebra

is associative, commutative, finite dimensional (with dimension |E|) and has a *-
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structure3. As a general result in representation theory4, there are then exactly

|E| one-dimensional representations, i.e. (5.43) has exactly |E| sets of solutions for

the aBiα
1 . Furthermore5 we can always find an orthogonal |E|×|E|–matrix ψiαa

s.t. aBiα
1 = ψiαa /ψ

1
a. On the other hand we will show below that the converse holds

as well: If the ψiαa form an ON-basis then (5.43) defines an algebra.

The assumption is thus equivalent to the statement “In every theory (5.43) de-

fines an algebra”. This is interesting, because the validity of (5.42) can now be

verified entirely in terms of bulk–data and does not involve the theory on the UHP

at all.

To prove this statement it would be enough to demonstrate associativity of (5.43).

Written out completely, the associativity condition (BiBj)Bk = Bi(BjBk) evaluates

to

∑
tτ∈E

Ciαjβ
tτ Ctτkγ

mµ Ft1

[
j j

i i

]
Fm1

[
k k

t t

]

=
∑
sσ∈E

Cjβkγ
sσ Csσiα

mµ Fs1

[
j j

k k

]
Fm1

[
l l

i i

]
, (5.44)

which is quite similar to the bulk duality relation (5.27). In fact, for the diagonal

modular invariant bulk theory (the A–series) one can show that (5.27) implies (5.44).

It follows that for the A-series the conformal boundary conditions found by Cardy

in [Car89b] are indeed the only possible solution to the sewing constraints.

For the D-series the explicit solution (by construction, see chapter 6) shows that

(5.43) defines an algebra. However for non-diagonal theories, the author is not aware

of a way to deduce the associativity of (5.43) from (5.27).

A possible solution might come from Moore and Seiberg’s naturality theorem

[MSb89c]. Let Mk` be the number of bulk fields transforming in Hk⊗H`. The

theorem states that either the field content is of the form Mk` = δk,π(`) for some

permutation π(`), or there are additional chiral fields in the theory so that the

3 The *-operation is an anti–linear anti–homomorphism. It has the property that A∗A=0 ⇒
A=0. Its existence can be seen as follows: Let ĝiα

be the generators of an algebra X with structure
constants akγ

iαjβ
defined by (5.43). Define the *-operation on generators as (ĝiα)∗ = ĝiα . Using

(5.38) and (A.49) we see that a11
iαjβ

=δiα,jβ
. Let A =

∑
biα
ĝiα

be a general element in X. Then

A∗A =
∑

(biα)∗bjβ
· akγ

iαjβ
· ĝkγ

. The coefficient of ĝ11 is given by
∑
|biα

|2. Thus, A6=0 ⇔ A∗A6=0.
4 To be more specific we use that an n–dimensional commutative *-algebra can always be written

in terms of n orthogonal projectors PaPb = δabPa.
5 Let akγ

iαjβ
denote the structure constants of the algebra (5.43) as in footnote 3. Associativity

and commutativity imply the matrix equation aiαajβ
= ajβ

aiα . The matrices aiα can thus be
simultaneously diagonalised, which is done by ψiα

a . That the eigenvalues of aiα are of the form
ψiα

a /ψ1
a follows from a

kγ

iα1 = δiα,kγ
.
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chiral algebra can be extended. The argument presented above should apply for the

maximally extended algebra, and one could try to draw conclusions for the situation

with restricted symmetry from this point of view. It would be interesting to pursue

this line of thought in future research.

After this short digression we return to the line of argument in [BPPZ98]. Using

completeness of the ψa’s one can verify that the matrices (ni)a
b form a representation

of the Verlinde fusion algebra

ni · nj =
∑
k∈R

Nij
knk . (5.45)

Furthermore, from (5.40) we see that ni=ni
T (since ni is real).

It follows that an orthonormal and complete solution to (5.40) is equivalent to

finding N0–valued matrices ni with n1=11, ni
T = ni that form a representation of

the fusion algebra.

In the next chapter we state the solution to this problem for the A– and D–series

minimal models without going into details of the complete classification.

Now it is also possible to verify that, if the ψa form an ON-basis, (5.43) does

indeed define an algebra. To do so, note that the ratios ψiαa /ψ
1
a also represent an

algebra. In fact

ψiαa
ψ1
a

· ψ
jβ
a

ψ1
a

=
∑
kγ∈E

(∑
b∈B

ψiαb ψ
jβ
b (ψ

kγ
b )∗

ψ1
b

)
· ψ

kα
a

ψ1
a

(5.46)

i.e. in terms of bulk-boundary couplings B we have

aBiα
1 aBjβ

1 =
∑
kγ∈E

Miαjβ
kγ · aBkγ

1 , Miαjβ
kγ =

∑
b∈B

ψiαb ψ
jβ
b (ψ

kγ
b )∗

ψ1
b

. (5.47)

The structure constants M define the so-called Pasquier, graph fusion or classifying

algebra [Pas87, PSS96, FSc97a, BPPZ99]. In particular it follows that (5.43) defines

an algebra6.

6 Suppose we have a set of numbers M̃kγ

iαjβ
, about which we only know that aBiα

1 aBjβ

1 =∑
M̃

kγ

iαjβ
· aBkγ

1 for all a. Then from (5.39), the fact that ψ is an ON-matrix and inverting (5.46)
it follows that M̃ = M .



Chapter 6.

Minimal Model Structure Constants

In this chapter we will calculate the bulk– and boundary structure constants for the

A– and D–series minimal models. The rough procedure will be as follows: We use

the set of allowed boundary conditions, the boundary field content and the bulk field

content as an input in the calculation. The first and most difficult step is to find the

boundary structure constants. Once these are known, the sewing constraints can be

inverted and the bulk–boundary couplings and bulk structure constants can be read

off directly. It is worth pointing out that the sewing constraints are over determined

and the construction given below is not a proof that the final expressions for the

structure constants actually solve all the constraints. The statement is rather: If

a solution to the sewing constrains exist it can be brought to the given form by

appropriately redefining the fields. In particular, for the A– and D–series at least,

the solution to the sewing constraints is unique in this sense. Extensive numerical

tests have been performed with the expressions for the structure constants presented

here, and no contradiction with the full set1 of sewing constraints (5.24)–(5.27) was

found.

In each of the following steps we will treat the A–series first, as it will have all

essential features, and then turn to the D-series.

As already pointed out in section 4.1, the Deven minimal models have a larger

symmetry algebra (a W–algebra, see [EFHHNV92, BSc92] and references therein) that

contains the Virasoro algebra as subalgebra. In principle one could understand these

CFTs in terms of the W-algebra, with W-algebra chiral blocks and F–matrices. To

obtain all conformally invariant boundary conditions in this case one has to consider

boundary conditions that break part of the extended symmetry. An appropriate

formalism has been developed by Fuchs et al. in [FSc99a, FSc99b, FSc00]. But since

the Hilbert space of the D-series minimal models is finitely reducible with respect to

1 It should be mentioned that the one point genus one constraints are not included in (5.24)–
(5.27). The solution has not been tested against these constraints, but it seems unlikely that it
would fail, since the consequence would be that minimal models do not exist.
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the Virasoro algebra alone, it is possible and indeed simple to use only the Virasoro

symmetry.

6.1 Boundary conditions and boundary fields

In this section we exploit the sewing constraint arising from the cylinder partition

function (5.29). More precisely we summarise the solution to the condition (5.40)

obtained in [BPZ98], which will give us the list of conformal boundary conditions

and their respective field content, in short the matrix nia
b.

General construction

First choose an odd integer p ≥ 2 and an integer q ≥ 2 coprime to p. We will

construct the cylinder partition function of a minimal model with the following

central charge:

c = 1− 6
(p− q)2

pq
(6.1)

Let A be the adjacency matrix of the Dynkin diagram associated to the Lie-algebra

Ap−1 and G be the adjacency matrix for a Lie-algebra with Coxeter number q. For

X=A or X=G define the matrix valued functions Vn(X) recursively via

Vn(X) = V2(X)Vn−1(X)− Vn−2(X) ; V1(X) = id and V2(X) = X (6.2)

The Vn are called fused adjacency matrices.

Let α be an odd node of A and β be any node of G. Then a=(α, β) labels the

possible boundary conditions. Let a=(α, β) and b=(ᾱ, β̄). Then the partition func-

tion of a cylinder of circumference L and length R with (pure) boundary conditions

a and b is given by:

Za|b =
∑

r=1..p−1
s=1..q−1

Vr(A)α
ᾱVs(G)β

β̄ · χr,s(q) ; q = exp(−πL/R) (6.3)

When we take into account the identity χr,s = χp−r,q−s for Virasoro characters we

can rewrite (6.3) in the following unique way:

Za|b =
∑

i=(r odd,s)

nia
b · χi(q) (6.4)

In [BPZ98] the genus one sewing constraint for a cylinder with no field insertions
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was analysed with the result that G has to be the adjacency matrix of an A–D–E

type Dynkin diagram or of a tadpole diagram.

The numbers nia
b can be interpreted as the number of times the representation i

occurs in between the boundary conditions a and b and they thus describe the field

content on the boundary (in this case the real line).

A-series

For the pair of Lie algebras (Ap−1, Aq−1) one finds nia
b = Nia

b, i.e. the field content

is just given by the Verlinde fusion numbers [Car89b]. Distinct boundary conditions

are given by pairings of an odd node in the first A-diagram with any node in the

second (recall that p is odd):{ is1 s2 is · · · is sp−1
, is1 is2 is · · · is isq−1

}
(6.5)

There is a distinguished boundary condition, which we will call 1–boundary, that

corresponds to the first node in each A-diagram, i.e. the (1, 1)-node.

There are no fields with multiplicity and there is a unique field i=a between

the a– and 1–boundary: a 1i ⇒ i=a. The formula nia
b = Nia

b can be

understood as saying that the representations i that can live between the a– and

b–boundary are exactly those occurring in the fusion of the representations a and b:

a 1 ba b → a bi .

D-series

Here q has to be an even number and the boundary conditions are given by pairings

of an odd node in the A-diagram with any node in the D-diagram: is1 s2 is · · · is sp−1
, is1 is2 is · · · ��

@@
is is

is
q
2

q
2+1

 (6.6)

The total number of boundary conditions is 1
4
(p − 1)(q + 2). Again the boundary

condition associated with the first node of each diagram, i.e. the (1, 1)-node, will get

a special name. It will be called ω so that it is not confused with the 1–boundary

in the A-series.

When looking at the D-series boundary field content one observes the following:

The boundary conditions can be organised in two categories. In the first case, which

we will denote as ‘i-type’ boundaries, a boundary condition x=(α, β) is associated

with an odd node α of the A-diagram and any node β of the D-diagram except for
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the two at the split end. The second case we will call ‘n-type’. An n-type boundary

a is associated with any odd A-node and one of the two end nodes in the D-diagram.

i-type: is is is · · · ��
@@
is s

s n-type: s s s · · · ��
@@
s is

is (6.7)

The names i-type and n-type stand for ‘invariant’ and ‘non-invariant’ and are related

to the Z2–symmetry of the D-diagram.

Carrying through the procedure outlined in the beginning of this section, one

finds that an n-type boundary a=(α, β) has exactly one field living on a ω ,

denoted by au (‘unique’). It has representation labels (α, q
2
).

An i-type boundary x=(α, β) has two fields living on x ω . Their Kac-

labels are (α, β) and (α, q− β) and they will be denoted by xe and xo (x ‘even’ and

x ‘odd’), respectively. The labelling is arbitrary, but we choose to always give the

identity field on the ω–boundary an ‘even’ label.

For definiteness we will fix a specific even/odd labelling for boundary fields. It

will turn out later that the structure constants involving only i-type boundaries

have an explicit Z2–symmetry that sends even fields to themselves and odd fields

to minus themselves. This symmetry is not assumed, but a consequence of the

constraints and the gauge we choose. Following the arguments in [Rue99] we would

like the ground state, i.e. the state of lowest conformal weight, for each pair of

boundary conditions to be invariant under that symmetry. This can be achieved for

all pairs x ω with x=(α, β) an i-type boundary by assigning e/o-labels to the

two representations living between these boundary conditions in the following way:

xe =

(α, β) : α < p
2

(α, q − β) : α > p
2

xo =

(α, q − β) : α < p
2

(α, β) : α > p
2

(6.8)

As discussed in [Rue99] the physical motivation for this choice comes from relating

the Z2–action to the effect of a disorder line stretching from boundary to boundary

on a cylinder and trying to interpret the resulting amplitude as a partition function.

It is also found there that in general it is not possible to fix a labelling s.t. the ground

state is invariant for all possible pairs of boundary conditions.

The conformal weight of a highest weight representation with Kac-labels (r, s) is

given by hr,s = 1
4pq

((qr − ps)2 − (p− q)2). Thus with definition (6.8) we find:

h(xo)− h(xe) =
∣∣(α− p

2
)(β − q

2
)
∣∣ > 0 (6.9)
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boundary types `–labels field content

i–i x y` e,o n`x
y = N`xe

ye + N`xe
yo = N`xo

yo + N`xo
ye

n–i a y` u n`a
y = N`au

ye = N`au
yo

n–n a b` u βa 6= βb : n`a
b = N`au

bu if s` ≡ 3 mod 4
and n`a

b = 0 otherwise
βa = βb : n`a

a = N`au
au if s` ≡ 1 mod 4

and n`a
b = 0 otherwise

Table 6.1: Field content and labels between the two types of boundary conditions.

In particular the ω–boundary itself is of i-type and it has two fields living on it,

the identity ωe=1 and the field ωo with h(ωo) = (p
2
−1)( q

2
−1). We see that h(ωo) is

integer for q
2
+1 even (the “Deven” case) and half-integer for q

2
+1 odd (the “Dodd”

case).

We will now proceed to assign e/o/u-labels to all boundary fields, not just the

ones adjacent to the ω–boundary, in the following way: Any field adjacent to an

n-type boundary will get the label u. In this case no multiplicities occur. In the

case x y`δ where both x and y are of i-type, the possible representations ` are

those that occur in the fusion of xe, ye (which is the same set as in the fusion of

xo, yo) or xe, yo (which is the same as xo, ye). If ` occurs in the xe, ye–fusion it gets

an e-label, i.e. δ=e and if it occurs in the xe, yo–fusion an o-label δ=o. If ` occurs

in both fusions, this representation has multiplicity two and the two corresponding

fields have labels `e and `o.

The field content between different boundary conditions is summed up in ta-

ble 6.1 listing the numbers nia
b from (6.4) for the different cases (here the repre-

sentation ` has Kac-labels ` = (r`, s`) and the boundary conditions a, b have labels

(αa, βa) and (αb, βb)).

Notice the double role of the e/o/u–indices: When x is a boundary condition,

then xe, xo or xu denote the even/odd/unique field living between the x– and ω–

boundary. In particular xe and xo denote different representations. If ` is a repre-

sentation, then `e, `o or `u all denote the same representation and distinguish fields

with multiplicities by labelling one as even and the other as odd.

Ordering of boundary conditions

The constraint equations (5.24)–(5.27) allow for a large amount of gauge freedom of

the structure constants. Here we find a particular set of structure constants and show

that any solution of the constraints can be transformed into this set by a regauging.
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For the construction of the structure constants presented here an ordering of the

boundary conditions has to be introduced. Let x=(α, β) and y=(ᾱ, β̄). Then we

define:

x < y ⇔ (β < β̄) or (β = β̄ and α < ᾱ) (6.10)

6.2 Boundary structure constants

It turns out that for both, the A– and D–series it is possible to find the bound-

ary structure constants by only considering the sewing constraint arising from four

boundary fields (5.24).

The procedure to solve the constraints is similar in the A– and D–series. First

the freedom to rescale the boundary fields is used to fix some structure constants to

convenient values. Next a subset of the full set of equations arising from the four

boundary fields sewing constraint (5.24) is considered and shown to determine all

remaining structure constants.

As a starting point we use

(a) the field content obtained in section 6.1

(b) the assumption that all two-point functions 〈ψ(ab)
iα

(x)ψ
(ba)
iα

(y)〉 are nonzero, i.e.

C
(aba)1
iαiα

6=0 for all a, b, iα that are allowed by (a).

An interpretation of assumption (b) is that a zero two-point function implies that

the field in question can be removed from the theory and hence we effectively have

a field content different from what we demanded in (a). This can be seen as follows:

Suppose C
(aba)1
iαiα

=0 for some choice of a, b, iα. Consider a correlator which contains

the field ψ
(ab)
iα

. Any correlator can be expressed as a sum of conformal blocks with

coefficients given as products of structure constants. It is always possible to take

a limit of this correlator where all bulk fields are taken to the boundary and then

all boundary fields except for ψ
(ab)
iα

are taken together. In the end we are left with

the two-point function 〈ψ(ab)
iα

(x)ψ
(ba)
iα

(y)〉. Thus in this limit the coefficient in front

of each conformal block contains the factor C
(aba)1
iαiα

, which is zero. Therefore any

correlator involving ψ
(ab)
iα

vanishes and this field can as well be removed from the

theory.

A–series

In this case one can almost guess the solution. The sewing constraint involving

four boundary fields can be rewritten (see (A.71) for details) so that the two point
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structure constants cancel. The resulting equation

C
(bcd)q
jk C

(abd)`
iq =

∑
p

C
(abc)p
ij C

(acd)`
pk Fpq

[
j k

i `

]
(6.11)

bears a curious resemblance to the pentagon identity2 obeyed by the F-matricies,

Fcq

[
b d

j k

]
Fb`

[
a d

i q

]
=
∑
p

Fbp

[
a c

i j

]
Fc`

[
a d

p k

]
Fpq

[
j k

i `

]
(6.12)

Indeed, setting

C
(abc)k
ij = Fbk

[
a c

i j

]
∀a, b, c, i, j, k (6.13)

turns (6.11) into (6.12) and is thus a solution of the sewing constraint.

It is more work to show that it is the only solution (up to rescaling) of (6.11).

This calculation is presented in appendix A.7.

In the form (6.13) the boundary structure constants are symmetric under re-

flection, i.e. C
(abc)k
ij =C

(cba)k
ji . This follows from the F-matrix idenities collected in

appendix (A.5).

Note that all parameters in the F-matrices refer to irreducible highest weight

representations. The identification (6.13) was only possible because in the A–series

there is a one-to-one correspondance between boundary fields resp. boundary con-

ditions and highest weight representations. This is not the case for the D-series and

the solution there takes a much more complicated form.

D-series

Again we only present the results for the boundary structure constants, the calcula-

tion has been shifted to appendix A.7. In the gauge we chose there, two conditions

have to be satisfied before the boundary–boundary coupling ψ
(xy)
iα
ψ

(yz)
jβ

→ ψ
(xz)
kγ

can

exist. First the corresponding Verlinde fusion number Nij
k has to be nonzero and

second the e/u/o-labels {α, β, γ} have to be one of the sets {u, ∗, ∗}, {e, e, e} or

{e, o, o} (where ∗ stands for any label). From this even/odd–coupling rule we see

immediately that the boundary structure constants involving only i-type boundaries

have a Z2–symmetry of the form ψ
(xy)
`e
→ ψ

(xy)
`e

and ψ
(xy)
`o
→ −ψ(xy)

`o
.

We can also give the behaviour of the boundary structure constants under re-

2 (6.12) has been obtained from (4.57) by relabelling indices and using (4.50).
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flection. Define the sign ε(x, y, iα) to be

ε(x, x, io) = Fxoxo

[
xe ωo

i xe

]
= ±1 and ε(x, y, iα) = 1 in all other cases. (6.14)

Then a boundary structure constant is related to its reflected counterpart by

C
(xyz)kt
irjs

=
ε(x, y, ir)ε(y, z, js)

ε(x, z, kt)
· C(zyx)kt

jsir
. (6.15)

In the following ω stands for the boundary condition associated to the (1, 1)

pair of nodes in the diagram (6.6) and µ for (1, q
2
). Consequently µu = (1, q

2
) and

ωo = (1, q−1). Let the constants A, Ba, Cx be given by

A = Fµu1

[
µu µu

ωo ωo

]
, Ba = Fµuau

[
ωo au

µu `

]
where µ a`u ,

Cx = Fxe1

[
ωo ωo

xo xo

]
for x of i-type , Cx = Fxu1

[
ωo ωo

xu xu

]
for x of n-type . (6.16)

Here `u can be any field living on µ a , Ba turns out to be independent of the

specific choice made. With these definitions, the structure constants involving the

boundary condition ω take the following form:

• Two-point functions with ω

C(ωxω)1
xuxu = 1 C(ωxω)1

xexe = 1 C(ωxω)1
xoxo = A · Cx (6.17)

• For x any type and y of n-type:

C
(ωxy)yu
xu`u

= 1 C
(ωxy)yu
xe`u

= 1 C
(ωxy)yu
xo`u

=
A

By

Fxeyu

[
ωo yu

xo `

]
(6.18)

• For x, y of i-type and x≤y:

C
(ωxy)ye
xe`e

= 1 C
(ωxy)yo
xe`o

= 1

C
(ωxy)yo
xo`e

= Fxeyo

[
ωo ye

xo `

]
C

(ωxy)ye
xo`o

= A · Cy · Fxeye

[
ωo yo

xo `

]
(6.19)

All structure constants involving the ω–boundary, which are not covered in this list
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can be obtained by

C
(ωxy)yγ
xα`β

= ε(x, y, `β) ·
C

(ωxω)1
xαxα

C
(ωyω)1
yγyγ

C
(ωyx)xα
yγ`β

. (6.20)

For the general boundary structure constants we distinguish two cases. First, for

x, z of n-type and y of i-type we get:

C
(xyz)ku
iuju

= Fyek

[
xu zu

i j

]
+
Bx

Bz

· Fxuyo

[
ye ωo

i xu

]
Fyezu

[
zu ωo

j yo

]
Fyok

[
xu zu

i j

]
(6.21)

In all other cases we have

C
(xyz)kt
irjs

=
C

(ωxy)yβ
xαir

C
(ωyz)zγ
yβjs

C
(ωxz)zγ
xαkt

Fyβk

[
xα zγ

i j

]
. (6.22)

The rhs does not depend on the specific choice of α, β, γ as long as the combinations

{α, r, β}, {β, s, γ} and {α, t, γ} are allowed by the even/odd coupling rule. The

structure constant in the denominator is then automatically nonzero.

Note in particular that if x, y, z are all of n-type or if the fields ir, js, kt are even,

the solution takes the same form as in the A-series (see eqn. (6.13)):

C
(xyz)ke
ieje

= Fyek

[
xe ze

i j

]
and C

(xyz)ku
iuju

= Fyuk

[
xu zu

i j

]
(6.23)

In fact this form also holds for all mixed cases with only e/u field labels, except

when the boundaries x, z are of n-type and y is of i-type, when we obtained (6.21).

6.3 Bulk field content

At this point we have completely determined the boundary theory. The next step

is to find which bulk theory, if any3, it matches to. The classification of boundary

conditions and their field content establishes a one–to–one correspondence between

boundary conditions and diagonal bulk fields (see section 5.3). In this approach

specifying the possible boundary conditions is equivalent to giving the diagonal part

of the bulk partition function, and from the A–D–E–classification in [CIZ87] one

knows which off-diagonal parts have to be added to make it modular invariant.

In this section we make the observation that the modular invariant bulk field

3 Just looking at the cylinder partition function, [BPZ98] gave an A–D–E–T classification
of the boundary conditions for minimal models. T stands for a tadpole graph, which has to be
discarded, since there is no modular invariant bulk theory with a matching diagonal field content.



92 Minimal Model Structure Constants

content is, at least for the A– and D–series, also the maximal consistent one, in a

sense made precise below.

The sewing constraint (5.25) can be rewritten in the form:∑
δ

bBiα
`δ C

(abb)qε
pν`δ

=
∑
k,γ

aBiα
kγ C

(aab)qε
kγpν

·
∑
m

eiπ(2hm−2hi−hp−hq+ 1
2
(hk+h`))

· Fkm

[
ı̄ q

i p

]
Fm`

[
i ı̄

p q

]
(6.24)

Suppose now there is a boundary condition a and a bulk field iα s.t. iα does not

couple to any boundary field on the a–boundary, i.e. aBiα
kγ =0 for all kγ. In the

detailed treatment of the A– and D–series below it will be argued that (6.24) implies

that iα does not couple to any boundary: xBiα
kγ =0 for all x and kγ.

With an argument similar to that justifying assumption (b) in the previous sec-

tion, it follows that the bulk field iα can be removed from the theory: Any n-point

function has a limit in which we take all bulk fields to the boundary. In this limit

the factors in front of the conformal blocks contain the product of the B’s of all bulk

fields, and in particular aBiα
kγ , which is zero. Thus any n-point function involving

the field iα is identically zero and iα can be removed from the theory.

Eqn. (6.24) also limits the maximal multiplicity of a given representation i⊗ı̄ in

the bulk spectrum. Let a be the boundary with the least number of boundary fields

living on it. Suppose by the fusion rules i⊗ı̄ can couple to N boundary fields on a,

i.e. N=
∑

k Nīı
k · nkaa. Denote these boundary fields by k1, . . . , kN . Next suppose

that there are M bulk fields i1, . . . , iM transforming in the representation i⊗ı̄. We

can change the basis in the M–dimensional space of these fields by an orthogonal

transformation (w.r.t. to the metric gαβ=Ciαiβ
1 ). This will leave the two-point

functions invariant. By the algorithm leading to the QR-decomposition of a matrix

one can show that with an appropriate change of basis the bulk field i2 does not

couple to the boundary field k1, the bulk field i3 does not couple to k1, k2 and so on.

If M>N , then iM does not couple to any boundary field on the a–boundary and

can, by the above argument, be removed from the theory.

Using this idea we can now determine the maximal bulk field content consistent

with (6.24) in the case of the A– and D–series, and find that it is precisely the

modular invariant one found in [CIZ87].

A-Series

For the A–series the boundary condition with the fewest fields living on it is the

1–boundary, with only the identity field. In this case (6.24) reads (we use (6.13) to
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s=q−1

s=1
A

s=1
Deven

s=q−1

s=1
Dodd

s=q−1

Figure 6.1: Modular invariant bulk field content in the minimal model M(p, q) with
p odd, a) for the A–series b) for Deven, i.e. q

2
+1 even and c) for Dodd, i.e. q

2
+1 odd.

The picture indicates the left–right pairing of representations (r, sl)⊗(r, sr). r takes
only odd values and the pairing is the same for all r.

replace the boundary structure constants)

bBiα
` = 1Biα

1
∑
m

eiπ(2hm−2hi−2hb+
1
2
h`) · F1m

[
ı̄ b

i b

]
Fm`

[
i ı̄

b b

]
. (6.25)

The first conclusion is that every bulk field iα has to couple to the 1–boundary:
1Biα

1 6=0. Otherwise the lhs is zero for any boundary condition b and the field iα

is not present in the theory. Say iα transforms in i⊗ı̄. For i and ı̄ to fuse to the

identity we need i=ı̄ and thus the A–series cannot contain any bulk fields with spin.

Next we note that, since the 1–boundary contains exactly one field, every bulk field

has to occur with multiplicity one.

These are all the restrictions that arise from (6.25) and thus the maximal con-

sistent field content is one diagonal bulk field i⊗i for every representation i in the

Kac-table (see fig. 6.1). This is precisly the A–series modular invariant bulk field

content.

D-Series

In the D–series, the boundary with the least number of boundary fields is the ω–

boundary, with two fields, the identity ωe=11 and the field ωo.

For an arbitrary boundary x consider (6.24) with a=ω, b=x, pν=xν , qε=xε. The

`δ sum reduces to one element and we get:

xBiα
`δ C

(ωxx)xε
xν`δ

= ωBiα
1 C

(ωωx)xε
1xν ·

(
F’s

)∣∣∣
k=1

+ ωBiα
ωo C(ωωx)xε

ωoxν ·
(

F’s
)∣∣∣
k=ωo

(6.26)

In appendix A.7 it is argued that that all boundary structure constants appearing
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in (6.26) are nonzero if they are allowed by fusion and the even/odd coupling rule.

To avoid xBiα
`δ = 0 for all x, `δ the bulk field iα thus has to couple to either 11

or ωo on the ω–boundary. Say iα transforms in i⊗ı̄. Suppose iα is a field with spin,

i.e. i 6=ı̄. Then i and ı̄ cannot fuse to the identity and hence it follows that ωBiα
1 =0.

So for the field iα to exist we need ωBiα
ωo 6=0. This is only possible if the fusion

i, ı̄ → ωo exists, i.e. only for pairs with Kac-labels i=(r, s) and ı̄=(r, q − s). From

(6.26) with x=ω, `δ=xν=ωo, xε=1 we obtain (compare also with (6.9)):

ωBiα
ωo = ωBiα

ωo · e2πi(h̄i−hi) = ωBiα
ωo · e2πi(

p
2
−r)( q

2
−s) (6.27)

For the exponential to be +1 we need q
2
− s to be even (recall that for the D-series

p is always odd and q always even).

Suppose next that iα is diagonal and that it cannot fuse to ωo: Nii
ωo = 0.

Define the operation “*” on Kac-labels i = (r, s) as i∗ = (r, q−s). Then (6.26) with

x=ω, `δ=11, xν=xε=ωo, together with (A.46) gives

ωBiα
1 = ωBiα

1 · F1i∗

[
i ωo

i ωo

]
Fi∗1

[
i i

ωo ωo

]
· e2πi(hi∗−hi−hωo ) = ωBiα

1 · eiπ(s+1) (6.28)

Consequently diagonal fields i⊗i with ωBiα
ωo = 0 can only occur for i = (r, s) with

s odd.

The only bulk-representations that allow coupling to both fields on the ω–

boundary are the pairs i⊗i where i has Kac-labels (r, q
2
) and only in this case can

multiplicity two occur. All other bulk fields have multiplicity one.

This is precisely the D–series modular invariant bulk field content. Note that the

only case in which some bulk fields have multiplicity greater than one is for diagonal

fields in the representation (r, q
2
) with q

2
+1 even, i.e. in Deven models. Figure 6.1

gives a graphical representation of the field content.

6.4 Bulk boundary couplings

In the previous section we argued, that for our boundary condition of choice, the

one with minimal field content, aBiα
kγ , as a matrix in α and kγ, can be brought to

triangular form. That it then automatically has to be diagonal can be seen from

(5.26) with m=11, kγ=11, i=j, i.e.

Ciαiβ
11 =

∑
pν

aBiα
pν · aBiβ

pν · C(aaa)11
pνpν Fp1

[
ı̄ ı̄

i i

]
. (6.29)
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We normalised the bulk fields s.t. Ciαiβ
11 =δα,β Ciαiα

11 . If the F-matrix elements in

(6.29) are nonzero, this imples that aBiα
pν is diagonal as a matrix in α and pν .

With this choice of basis the bulk–boundary couplings can be read off from (6.24).

A-series

The A–series bulk–boundary couplings were first worked out (up to signs, in certain

cases) in [CLe91]. In the approach presented here, no sign ambiguities arise. For

the A–series there are no bulk fields with multiplicities and thus we do not need the

above argument; for a=1 (6.24) reads

bBi
` = 1Bi

1
∑
m

eiπ(2(hm−hb−hi)+ 1
2
h`)F1m

[
b i

b i

]
Fm`

[
i i

b b

]
, (6.30)

since from (6.13) we see that the boundary structure constants appearing in (6.24)

are equal to one. To fix the normalisation of the bulk fields, we require

1Bi
1 =

S1
i

S1
1 . (6.31)

Petkova has observed [prP] that up to a normalisation the aBi
k are just the S-

matrix elements Sa
i(k) for the torus with one operator insertion4. This S-Matrix

is given by equation (A.53) in the appendix. For k=1 it reduces to the S-matrix

implementing the modular transformation of characters: Si
j(1) = Si

j. Combining

(6.30) and (A.53), the relation between aBi
k and Sa

i(k) becomes:

aBi
k = ei

π
2
hk

(
Fa1

[
a a

k k

])−1

· Sa
i(k)

Sa
1

aBi
1 =

Sa
i

Sa
1 . (6.32)

The phase on the rhs cancels with the phases in Sa
i(k) and aBi

k is real.

D-series

As a first step to determine the bulk-boundary couplings we will choose a basis of

primary bulk fields s.t. each field couples either to 1 or to ωo on the ω–boundary,

but not to both simultaneously.

As we have seen when determining the D–series bulk-field content, this demand

is automatically enforced by the fusion rules except for diagonal bulk fields in the

4 see also [BPPZ99] for a general discussion of the relation between the sets of duality relations
in [Lew92] and [MSb89a]



96 Minimal Model Structure Constants

representation i⊗i where i has Kac-labels (r, q
2
) and we are looking at a Deven model.

In this case the corresponding bulk fields have multiplicity two. Denote these two

fields by iα, iβ. By change of basis we can achive ωBi1
ωo =0. For α=1, β=2 equation

(6.29) then reads

0 = aBi1
11 aBi2

11 · F11

[
i i

i i

]
. (6.33)

The F-matrix element is nonzero by appendix A.5 and thus aBi2
11 =0, as required. We

will denote bulk fields that couple to 1 on the ω–boundary as ‘even’ and bulk fields

that couple to the boundary field ωo as ‘odd’. The new bulk–boundary couplings

then fulfil ωBie
ωo =0 for the even bulk fields ie and ωBio

1 =0 for the odd fields io.

We are still free to rescale all the bulk fields iα. We use this freedom to set5:

ωBio
ωo =

Bi

A
· S1

i

S1
1 for diagonal odd fields io (i.e. i=ı̄)

ωBie
1 = ωBio

ωo =
S1

i

S1
1 · e

iπ
2
(hi−h̄i) for all other cases

ωBio
1 = ωBie

ωo = 0 from the coupling rule (6.34)

With this redefinition of the fields the sum on the rhs of (6.26) reduces to one

term. Using (6.26) with ε=δ and kγ=ωα the general bulk–boundary coupling takes

the form:

xBiα
`δ = ωBiα

ωα ·
∑
m

exp
(
iπ(2hm − 2hi − hxν − hxδ + 1

2
(hωα + h`))

)

· Fωαm

[
ı̄ xδ

i xν

]
Fm`

[
i ı̄

xν xδ

]
·



1 : α=e and δ=e or u

Cx
−1 : α=o and δ=o

Bx : α=o and δ=u

0 : otherwise

(6.35)

where ν=e if x is an i-type boundary and ν=u if x is an n-type boundary.

Note in particular that any bulk field can couple to a u–field on an n-type bound-

ary, but for an i-type boundary an even bulk field can only couple to an even bound-

ary field and an odd bulk field to an odd boundary field. This indicates that the

5 the odd diagonal fields are normalised differently from the odd fields with spin, so that the
xBiα

1 represent the Pasquier algebra as seen in section 6.6
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Z2–symmetry of the boundary structure constants for i-type boundaries carries over

to the bulk.

6.5 Bulk structure constants

The bulk structure constants for the A– and D–series minimal models have been

found in e.g. [DFa84, FKl89, Pet89, PZu94]. The difference in the approach taken here

is that we obtain the bulk structure constants directly from the known boundary

data, specifically from the sewing constraint (5.26).

A-series

Consider (5.19) in the form:

∑
`

aBi
` aBj

` C
(aaa)1
`` F̀n

[
j i

j i

]
= Cij

n aBn
1 (6.36)

Since by assumption only ψ
(11)
1 can exist on the 1-boundary, for a=1 the sum reduces

to one term `=1. Using F–matrix identities in appendix A.5 we obtain:

Cij
k =

1Bi
1 1Bj

1

1Bk
1 F1k

[
i j

i j

]
=

(
Fk1

[
i i

j j

])−1

. (6.37)

To compare the present normalisation of bulk fields to alternative choices it is helpful

to know the two-point function. For k=1 the above formula reduces to

Cii
1 =

S1
i

S1
1 . (6.38)

D-series

Take (5.26) with a=ω. The sum on the lhs then reduces to the term where
ωBmρ

kγ 6=0, i.e. kγ=ωρ. On the rhs the sum over pν and qε reduces to pν=ωα, qε=ωβ.

The r–sum is also reduced to one element. We are left with:

Ciαjβ
mγ = exp

(
iπ

2
(hωγ+hωα−hωβ+2(hj−hr)+hm−h̄m−hi+h̄i−hj+h̄j)

)
·
ωBiα

ωα ωBjβ
ωβ

ωBmγ
ωγ

· Fµuωγ

[
µu µu

ωα ωβ

]
Fωβr

[
ωγ ̄

ωα j

]
Fωαm

[
ı̄ r

i j

]
Frm̄

[
ı̄ ̄

m ωγ

]
(6.39)

where r=j if α=e and r=j∗ if α=o. Recall that for i = (r, s) the *-operation

was defined as i∗ = (r, q−s). The first F-matrix element in (6.39) implements an
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even/odd coupling rule for bulk fields, i.e. the only combinations for {α, β, γ} which

can be nonzero are {e, e, e} and {e, o, o}.
This implies that apart from other symmetries the bulk structure constants may

have there is a manifest Z2–symmetry which sends even bulk fields to themselves and

odd ones to minus themselves. Together with section 6.2 and 6.4 we can conclude

that any correlator with no or only i-type boundaries is manifestly invariant under

the Z2–symmetry e→ e and o→ −o applied to bulk and boundary simultaneously.

The bulk two-point function follows from (6.39) to be:

Ciαiα
1 =

S1
i

S1
1 for diagonal fields iα (i.e. i=ı̄)

Cioio
1 = A · Fi1

[
ωo ωo

ı̄ ı̄

]
· S1

i

S1
1 · (−1)s(io) for nondiagonal fields io (6.40)

where s(iα) = hi−h̄i ∈ Z is the spin of the bulk field φiα .

In [PZu94] it was shown that the minimal model bulk structure constants in the

A– and D–series are related by rational numbers, called relative structure constants.

Taking the explicit expression (6.39) together with the normalisation (6.40) we find

(numerical) agreement with these results. Also, for unitary models the signs of the

two-point structure constants in (6.40) are the same as in [PZu94], where they were

shown to lead to real bulk structure constants (in the unitary case).

Note that if all bulk fields are even the solution (6.39) takes the same form as in

the A-series:

Cieje
me =

(
Fm1

[
i i

j j

])−1

(6.41)

Together with equations (6.23) for the boundary structure constants and (6.35)

for the bulk-boundary couplings this illustrates another interesting point. If one

considers the even fields alone, that is all bulk and boundary fields that are invariant

under the Z2–symmetry mentioned above, they form a subalgebra (as the coupling

e, e → o is not allowed) and the structure constants are identical to the A-series in

the following way:

Consider the A-series boundary theory associated to the pair of diagrams

(Ap−1, Aq−1). In this theory consider only the boundary conditions (α, β) with α < p
2

and β < q
2

or α > p
2

and β > q
2

(compare to (6.8)) and the bulk fields i⊗i where i

has Kac-labels (r, s) with both r and s odd. Then this is a closed subset of fields

of the A-series theory and in the normalisation chosen its structure constants co-

incide with those of the invariant fields of the D-series theory (Ap−1, D q
2
+1). This
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correspondence seems natural from the point of view that the invariant part of the

D-diagram is an A-diagram.

Real structure constants

In the normalisation chosen in this thesis, the F-matrices are all real. This implies

first of all that all structure constants are real for the A–series, both for unitary

and non-unitary minimal models. In the D–series all bulk–bulk and boundary–

boundary structure constants are real, but not all bulk–boundary couplings. For the

boundary structure constants this follows from (6.17)–(6.22). For the bulk structure

constants we see from (6.41) that they are clearly real as long as only even fields are

involved. If odd fields are present consider (6.39) in the case Ciojo
me . The phase

factors cancel and we are left with a real expression. All other cases are real as

well, as can for example be seen by rotating indices using the three-point function

Ciαjβ
kγ Ckγkγ

1 =Cjβkγ
iα Ciαiα

1 .

For the D–series bulk-boundary couplings in (6.35) we can apply the identity

(A.52) to obtain the result:

(
xB(i⊗ı̄)α

`δ
)∗

= xB(ı̄⊗i)α
`δ (6.42)

This means that complex conjugation relates the bulk-boundary coupling for a bulk

field of spin s to that of the field of spin−s. In particular all bulk-boundary couplings

for diagonal bulk fields are real.

It is in general not possible to choose a basis of primary fields s.t. all structure

constants are real. To see this we construct a gauge invariant expression from the

sewing constraints which cannot be fulfiled by real structure constants. Consider

for example two diagonal bulk fields iα and mρ and a field jβ with spin one. Take

(5.26) with k=1 and a=ω. This forces pν=qε=ωo and r = ̄. We get:

∑
ρ

Ciαjβ
mρ ωBmρ

1 = ei
π
2 · Fωom

[
i ̄

i j

]
· ωBiα

ωo ωBjβ
ωo C(ωωω)1

ωoωo (6.43)

The F-matrix entry is real and will in general be nonzero, provided that all fusions

are allowed. As discussed in section 6.3 the spin one field jβ has to couple to ωo (i.e.
ωBjβ

ωo 6=0) and we can find a diagonal field iα that couples to ωo. The boundary

two-point function has to be nonzero by assumption (b) in section 6.2. Hence the rhs

is nonzero and some of the D-series structure constants will have nonzero imaginary

part.

We can however consider the following non-primary basis of bulk fields to obtain



100 Minimal Model Structure Constants

real structure constants: Diagonal (even or odd) bulk fields stay as they are and for

a pair φs, φ−s of nondiagonal bulk fields with spins ±s we define a new set of fields

as follows:

φr = 1
2
(φs + φ−s) φi = 1

2i
(φs − φ−s) (6.44)

The new fields φr and φi are no longer primary, but one finds that the coefficients

describing their behaviour under arbitrary conformal mappings are all real. Since

the OPE is linked to the transformation behaviour of the fields one expects the

coefficients appearing in the OPE to be real as well.

One can see explicitly from (6.42) that all bulk-boundary couplings xBφr
ψ and

xBφi
ψ are real and one can verify numerically that all bulk structure constants are

real in the new basis as well. This holds for both unitary and non-unitary models.

6.6 g-functions

The g–functions, or generalised ground state degeneracies, will be discussed in more

detail in section 7.1. They are defined by taking the R → ∞ limit in the cylinder

partition function (5.29),

Z(ab) ∼
R→∞

(ga · gb) · e−RE0(L) (6.45)

where E0(L) is the ground state energy and ga resp. gb is the factor of the ground

state degeneracy coming from the boundary a resp. b. Let φΩ be the field of lowest

conformal weight. Then the S-matrix (for Virasoro minimal models) satisfies SΩ
a >

0 ∀a. From (5.29) and (5.30) we get the relation ga · gb = gaΩ · gbΩ · 〈Ω|Ω〉. Thus

ga = gaΩ
√
〈Ω|Ω〉 =

aBΩ
1 · 〈1〉adisc√

CΩΩ
1 〈0|0〉

. (6.46)

Note that by (5.36) this expression is invariant under both rescaling of the fields and

rescaling of the identity-1-pt-functions.

The values of the unit-disc one point functions, or unit disc partition functions,

follow from (5.39):

〈1〉adisc = ψ1
a (6.47)

Recall that the ψ1
a were defined via the Pasquier algebra (5.47). It is worth pointing

out that (6.47) is valid only for the unit-disc. The dependence of the partition



6.6. g-functions 101

function on the geometry is discussed in [CPe88]. For the radius dependence of

(6.47) we would get 〈1〉xdisc · rc/6, where c is the central charge.

Substituting the explicit values of the structure constants (5.39) and (6.38)

(which in the case of spinless bulk fields holds for A– and D–series alike), the g-

functions become

ga = ψΩ
a /(S1

Ω)1/2 . (6.48)

In section 3.1 we already derived a constraint on the unit-disc partition functions.

It originated from requiring continuity of the two-point functions and read

C
(xyx)1
iαiα

〈1〉xdisc = C
(yxy)1
iαiα

〈1〉ydisc . (6.49)

Note that this expression relates partition functions with different boundary condi-

tions in the same geometry. Since both, the boundary structure constants and the

unit-disc partition functions have already been determined, this condition provides

a consistency check of the formalism.

A-series

For the A–series, the Pasquier algebra is just the Verlinde fusion algebra Mij
k=Nij

k.

Consequently the quantities ψia are equal to the S-matrix:

ψia = Sa
i (6.50)

In agreement with the original result by Affleck and Ludwig [ALu91], the g-functions

in this case are given by

ga = Sa
Ω/(S1

Ω)1/2 . (6.51)

The constraint (6.49) is equally satisfied, since from (6.13) we see

C
(xyx)1
ii /C

(yxy)1
ii =S1

y/S1
x.
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D-series

From the relations (5.39), (6.35) together with the constraint that the vectors ψx

form an orthonormal basis we get the following expression:

ψiαx = xBiα
1 ψ1

x , ψ1
x =


√

2 · S1
xe if x is of i-type

1√
2
· S1

xu if x is of n-type
(6.52)

Since the bulk-boundary couplings are known from (6.35) one can now check that

the ψ’s so defined are all real and verify numerically that they fulfil (5.40), with nix
y

on the lhs taken from section 6.1.

To verify the constraint (6.49) we use the structure constants in section 6.2. Let

x, y be i-type boundaries and a, b be n-type boundaries. In the different cases (6.49)

reads:

〈1〉xdisc

S1
xe

=
〈1〉ydisc

S1
ye

,
〈1〉xdisc

S1
xe

= 2 · 〈1〉
a
disc

S1
au

,
〈1〉adisc

S1
au

=
〈1〉bdisc

S1
bu

. (6.53)

One checks that this is consistent with (6.52).



Chapter 7.

Away from the Critical Point

As an application of the results obtained in the previous chapter we will consider the

conformal field theory perturbed away from the critical point. If the perturbation is

integrable, i.e. still allows for an infinite number of conserved charges, the results can

be compared to other methods in integrable systems. We will carry out a comparison

to thermodynamic Bethe ansatz results for the Lee-Yang model.

From the CFT side we use two methods to study the perturbed theory. The

first one, the truncated conformal space approach, is purely numerical. It has the

advantage that it is relatively straightforward and can give accurate information

still quite far away from the fixed point. It can, however, never give exact results.

The second method is conformal perturbation theory in the traditional sense, i.e. an

expansion of the perturbed action in terms of its coupling. We will see that the

integrals involved in the first few terms can be done explicitly.

7.1 g-functions in CFT

Of particular interest will be how the conformal boundary condition is affected

by the perturbation. A good indicator (in the sense that it is accessible in all

three methods), apart from the energy spectrum, is the so-called g-function. It

was introduced by Affleck and Ludwig [ALu91] as a measure of the ground state

degeneracy of a conformal boundary condition.

Consider the partition function of a classical statistical-mechanical system de-

fined on a cylinder of length R and circumference L. Among the characteristics of

the model might be a bulk mass scale M and boundary scales depending on the

boundary conditions α and β imposed at the two ends of the cylinder; we will high-

light the role of these quantities by denoting the partition function Zαβ(M,R,L). If

R is taken to infinity with all other variables held fixed, then

Zαβ(M,R,L) ∼ Aαβ(M,L) e−RE
circ
0 (M,L) , (7.1)
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where Ecirc
0 (M,L) is the ground state energy of the model on a circle of circumference

L. To derive this asymptotic R-dependence, it is sufficient to treat the boundary

conditions as boundary states |α〉 in a formalism where time runs along the length

of the cylinder, and states are propagated by a bulk Hamiltonian Hcirc(M,L):

Zαβ(M,R,L) =〈α| exp(−RHcirc(M,L)) |β〉 . (7.2)

At large R the contribution of the ground state |Ω〉 dominates, establishing (7.1)

and also giving

Aαβ(M,L) =
〈α|Ω〉 〈Ω|β〉
〈Ω|Ω〉

. (7.3)

The inner products appearing in (7.3) should in general contain a term corresponding

to a free-energy per unit length, i.e.

log(
〈Ω|α〉
〈Ω|Ω〉1/2

) = −Lfα + log(gα(M,L)) . (7.4)

This linear term can in principle be extracted unambiguously from the large L

behaviour of log( 〈Ω|α〉 ). The question is then whether the functions log(gα(M,L))

now contain universal information.

In the case M=0, i.e. for critical bulk, Affleck and Ludwig [ALu91] pointed out

that the UV and IR limits of these functions, log(gα(0, 0)) and log(gα(0,∞)), play

the role of a generalised ground state degeneracy for the UV and IR conformal

boundary conditions respectively. These can be easily calculated for many conformal

field theories, and can enable one to identify the boundary conditions uniquely.

The universality of the g-functions is however a somewhat delicate issue when

the model has a mass scale, either in the bulk or at the boundary. For example,

one could imagine that in some calculational schemes the boundaries acquire a finite

thickness, and so the effective cylinder length would decrease by some finite amount

δ to R− δ, in which case log(gα) would be altered

log(gα(M,L)) → log(gα(M,L)) +
πδ

12L
c(ML) , (7.5)

where c(ML) is related to the ground state energy on the circle by

Ecirc
0 (M,L) = fbulkL−

π

6L
c(ML) . (7.6)

So in search of potential universal information contained in the g–functions it seems
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that differences of log g, either between the UV/IR values of a given flow or of the

g–functions for different boundary condition along the flow, stand a better chance

of being independent of the scheme used to calculate them.

7.2 Truncated conformal space approach

The truncated conformal space approach (TCSA) was originally divised by Yurov

and Zamolodchikov in [YZa90]. The method was later adapted by Dorey et al. to sit-

uations with boundaries [DPTW97]. This section has two parts. First a quick review

of the theoretical workings of TCSA is given. As already said, the mathematics of

TCSA is straightforward enough, and the only difficult bit (apart from having the

idea in the first place, of course) is to not to get confused when writing the program.

So the second part of this section is devoted to a more detailed description of how

one could set up a TCSA program.

Some theory

The idea behind TCSA is to diagonalise the perturbed Hamiltonian numerically.

Consider an infinite strip of width R. At the fixed point the right/left boundary

conditions are a, b and the unperturbed Hamitonian is denoted as HCFT. We will

consider a perturbation by a relevant bulk field λ · φ(x, y) and a relevant boundary

field on the right boundary µ·ψ(0, y). The extension to perturbing both boundaries is

straightforward, but makes notation more cumbersome. The perturbed Hamiltonian

on the strip reads:

Hpert
strip = HCFT

strip + λ ·
∫ R

0

φ(x)dx+ µ · ψ(0) (7.7)

Transformed to the UHP this becomes:

Hpert = π
R

(
L0 − c

24
+ λ ·

(
R
π

)2−∆φ

∫ π

0

φ(eiθ, e−iθ)dθ + µ ·
(
R
π

)1−hψ ψ(aa)(1)
)

=
(
R
π

)−1
HCFT + λ

(
R
π

)1−∆φHbulk + µ
(
R
π

)−hψHbnd (7.8)

The perturbed Hamiltonian Hpert acts on the Hilbert space Hab. To work out its

matrix elements one has to compute 〈v1|Hpert|v2〉 for all v1, v2 ∈ Hab. Looking

at (7.8) we see that this involves calculating correlators with three boundary fields

or with one bulk and two boundary fields. The first is just a chiral 3pt function,

whereas the second requires a chiral 4pt function. If this is not available analytically,

it can be obtained by numerically solving the differential equation, by explicitly
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Figure 7.1: TCSA results (level 14, 135 states) for a bulk perturbation in the A-series
model M(5,6) on a strip with 11-boundary condition on either side. Ẽn−Ẽ0 is plotted
against r. (a) the perturbation by φ1,2 looks integrable and (b) the perturbation by
φ2,3 does not.

computing the power series according to (4.11), or by using a recursion relation for

conformal blocks due to Zamolodchikov [Zam84].

To accomplish the numerical diagonalisation we introduce an energy cutoff Emax.

All states with unperturbed energy higher than Emax are neglected and we are left

with a finite, truncated matrix Ĥpert. Note that the energy cutoff approximately

translates into a level cutoff on the conformal Hilbert space Hab, i.e. in each repre-

sentation we work only with states up to some level Nmax.

One can now, for example, plot the spectrum of the truncated perturbed Hamil-

tonian. To make the graphs reproducible one has to specify the normalisation of

the perturbing fields and give the results in terms dimensionless quantities. In the

following we will normalise perturbing fields ϕ(x) s.t. the two point function takes

the form 〈ϕ(x)ϕ(y)〉 = ±|x−y|ν , for some power ν. The minus sign is chosen when-

ever the plus sign does not lead to real coupling constants. If the field ϕ(x) has

self-coupling we can fix the remaining sign ambiguity by demanding that C>0 in

〈ϕ(u)ϕ(v)ϕ(w)〉 = C · |(u−v)(u−w)(v−w)|η.
In the case of a bulk perturbation one can for example use the parameters r =

R
π
· λ1/(2−∆φ) and µ̃ =

(
R
π

)1−hψµ. If the model develops a mass gap one can plot

En/M , where M is the mass of the lightest particle. If M is not known one can

resort to Ẽn = λ−1/(2−∆φ)En. Here En is the energy of the n’th excited state.

As an example the spectrum of M(5, 6) perturbed by (1,2) and (2,3) in the bulk

is shown in fig. 7.1. An interesting point is that by an heuristic argument one can

try to read off integrability of the perturbed theory. If it stays integrable, there

are infinitely many conserved quantities and the energy levels in the spectrum just

cross, without seeing each other, as they reorganise from the UV to the IR fixed

point spectrum. An example is show in fig. 7.1a. For a nonintegrable perturbation
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Figure 7.2: TCSA results (level 16, 504 states) for a boundary perturbation by ψ3,3

in the A-series model M(4,5) on a strip with boundary conditions (1,1) and (2,2).
(a) scaling functions Fn and (b) differences Fn − F0 plotted against r̃.

some of the lines will seem to repel each other, as in fig. 7.1b. One has to be careful

though not to confuse non-integrability and level repulsion due to truncation effects.

For massless perturbations all states will form a gapless continuum as R → ∞.

In this case it is better to plot the scaling functions Fn, which are defined in terms

of the energy levels En by

Fn(R, λ, µ) =
R

π
En(R, λ, µ) . (7.9)

If we are perturbing only the boundary we can use r̃ = R
π
·µ1/(1−hψ) as dimensionless

variable. As an example the perturbation of M(4, 5) on a strip with boundary

conditions (1,1) and (2,2) by the boundary field ψ3,3 is shown in fig. 7.2. In particular

we see in fig. 7.2b how the degeneracy of spectrum reorganises from its UV-value,

in this case given by the character

qc/24−h2,2χ2,2(q) = 1 q0 + 1 q1 + 2 q2 + 3 q3 + 4 q4 + 6 q5 + 8 q6 + . . . (7.10)

to its IR-value, given by the character

qc/24−h3,1χ3,1(q) = 1 q0 + 1 q1 + 2 q2 + 2 q3 + 3 q4 + 4 q5 + 6 q6 + . . . (7.11)

Thus the ψ3,3 perturbation changes the (2,2)–boundary condition to the (3,1)–

boundary condition.

There are several points worth mentioning. If the perturbation were to need UV

regularisation (i.e. ∆ ≥ 1 or h ≥ 1
2
), the ground state energy would not converge

as we took the truncation level Nmax to infinity. In this case only energy differences

have physical meaning. Also, the energy levels (fig. 7.2b) should become horizontal
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lines for R → ∞, representing the spectrum of the IR–fixed point. But at some

point the numerical data from the truncated Hamiltonian becomes unreliable and

we see a departure from the expected behaviour.

Writing a program

Here is a list of ingredients for a TCSA program. It can be written in the order

presented, but this is by no means the only way. For simplicity we assume that the

perturbing bulk field φ is diagonal, i.e. hφ=h̄φ and that we are only perturbing the

right boundary on the strip.

(i) First of all we fix the model we are working in, M(p, q) say. Let R be the list

of all Vir–highest weight representations occuring in the model.

(ii) Next we need a basis for each Vir–module i ∈ R, up to the truncation level

Nmax. Let {b(i)k} be such a basis. For convenience we take each element to

have the form b(i)k=L−n1 . . . L−nm|i〉 with n1> . . . >nm>0. To compute the

basis one can try to find a maximal set of b(i)k s.t. the inner product matrix

g(i)k` =
〈b(i)k|b(i)`〉

〈i|i〉
(7.12)

has nonzero determinant. Let G(i) = g(i)−1 be the inverse matrix.

(iii) For the boundary perturbation we need the chiral three-point functions. Let

i, j, k ∈ R. For each `,m in the respective basis, compute the matrix

M(i, j, k)`m =
〈b(i)`|φj(1)|b(k)m〉

〈i|φj(1)|k〉
. (7.13)

One way to obtain the matrix elements M is to first move all Ln’s to the right

by using the commutator [Ln − xnL0, φ(x)]=nhφ(x) in the form

Lnφj(1) = L0φj(1) + φj(1)(nhj + L0 − Ln) . (7.14)

We are left with a sum of terms of the form 〈i|φj(1)L−n1 . . . L−nm|k〉. The

L−n’s can now be annihilated on the left using

〈i|φj(1)L−n = (nhj − hi)〈i|φj(1) + 〈i|φj(1)L0 . (7.15)

With this procedure the 3pt-matrix element 〈b(i)`|φj(1)|b(k)m〉 is eventually

reduced to const · 〈i|φj(1)|k〉.
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We have now gathered all the information (b(i), G(i),M(i, j, k)) that can be

obtained from the representation theory alone.

(iv) The next step is to build a basis for the Hilbert space. We have to fix the

strip-boundary conditions a, b and compute which representations occur in

the Hilbert space Hab =
∑

k nkb
aHk as described in section 6.1. We can choose

a basis {vx|x=1, 2, . . . } of Hab of the form vx = |b(rx)kx , αx〉. Here rx is the

Vir–representation vx lives in and αx is a multiplicity index to distinguish states

in equivalent Vir–representations.

(v) The matrix form Hxy of the Hamiltonian Hpert of eqn. (7.8) is defined as

follows: Let
∑

y cyvy be a state in Hab. Then

Hpert
(∑

y

cyvy
)

=
∑
x

(∑
y

Hxycy
)
vx . (7.16)

Taking the inner product with another state 〈vz| gives the relation

〈vz|Hpert|vy〉 =
∑
x

〈vz|vx〉Hxy ⇒ Hxy =
∑
z

Gxz · 〈vz|Hpert|vy〉 . (7.17)

where Gxz is the inverse matrix to gzx=〈vz|vx〉. In terms of (7.12) it takes the

form Gxy=δix,iyG(rx)kx,ky/〈ix|ix〉. Here ix denotes the field (rx, αx) and iy the

field (ry, αy), i.e. the highest weight states for vx, vy. Relation (7.17) can be

evaluated for HCFT, Hbulk, Hbnd, as defined in (7.8). For HCFT this just gives

a diagonal matrix

HCFT
xy = δx,y ·

〈vx|L0 − c
24
|vx〉

〈vx|vx〉
. (7.18)

For Hbnd one can use the relation

〈vz|Hbnd|vy〉 =
〈b(rz)kz , αz|ψ(aa)(1)|b(ry)ky , αy〉

〈iz|ψ(aa)(1)|iy〉
〈iz|ψ(aa)(1)|iy〉

= M(rz, ψ, ry)kzky · C
(aaa)iz
ψiy

· 〈iz|iz〉 , (7.19)

where again iy denotes the field (ry, αy) and iz the field (rz, αz). The boundary

2pt–function cancels in (7.17) and the result is

Hbnd
xy = C

(aaa)ix
ψiy

∑
`

G(rx)kx`M(rx, ψ, ry)`ky . (7.20)

(vi) The most difficult part of the procedure is to obtain the matrix elements of
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the bulk perturbation Hbulk. We have to compute

Bzy :=

∫ π

0

dθ 〈vz|φ(eiθ, e−iθ)|vy〉 , Hbulk
xy =

∑
z

Gxz ·Bzy . (7.21)

First we need rules to commute Ln’s past the bulk field to reduce the correlator

to one involving only primary fields:∫ π

0

dθ〈α|Lnφ(eiθ, e−iθ)|β〉

=
n(2hφ−1)+|α|−|β|
n(1−2hφ)+|α|−|β|

(∫ π

0

〈α|L−nφ|β〉 −
∫ π

0

〈α|φL−n|β〉
)

+

∫ π

0

〈α|φLn|β〉 , (7.22)

∫ π

0

f(θ)〈i|φ(eiθ, e−iθ)L−n|β〉dθ

=
(
n(2hφ−1)−hi+|β|

) ∫ π

0

cos(nθ)f(θ)〈i|φ|β〉 −
∫ π

0

sin(nθ)f ′(θ)〈i|φ|β〉 (7.23)

Here n>0, |α〉, |β〉 are arbitrary states and |i〉 is a highest weight state. Note

that (7.22) cannot be applied if the denominator is zero. In this case, if n 6=2

we can replace Ln=
1

n−2
(Ln−1L1−L1Ln−1). If n=2 (this can only happen if 4hφ

is an integer), one can resort to (A.101). The rules (7.22)–(7.23) are derived

in appendix A.8. For each matrix element we are left with an integral of the

form ∫ π

0

f(θ)〈i|φ(eiθ, e−iθ)|j〉 dθ , (7.24)

where i, j are highest weight states and the function f(θ) can be expressed

as a finite linear combination of (sin θ)n and cos θ(sin θ)n. Let Sn and Cn be

defined as

Sn :=

∫ π

0

(sin θ)n〈i|φ(1, θ)|j〉dθ , Cn :=

∫ π

0

cos θ (sin θ)n〈i|φ(1, θ)|j〉dθ .

(7.25)

As described in appendix A.8, the null state of the perturbing bulk field can

be used to derive a recursion relation for Sn and Cn. As an example the



7.3. Conformal perturbation theory 111

calculation for φ≡φ1,2 is shown, with the results, for hφ<
1
2
,

hi 6= hj : Sn = C · 2
1+2hφ

3
√
π

Γ(
2hφ+3n+4

6
)

Γ(
2hφ+3n+7

6
)
, Cn = 0 .

hi = hj = h : Sn =
(2hφ−n+1)(2hφ+3n−2)

4hφ(hφ+4h+n−1) + 8h− n(3n−2)
· Sn−2 ,

Cn =
(2hφ−n+1)(2hφ+3n−2)

4hφ(hφ+4h+n) + 8h− 1− n(3n+4)
· Cn−2 . (7.26)

Here C is defined via 〈i|φ(1, θ)|j〉 ∼
θ→0

C · (2θ)h13−2h12 . In the case φ≡φ1,2,

for hi 6=hj the conformal block takes an easy enough form and the integrals

Sn, Cn can be given explicitly, whereas for hi=hj we have a recursion relation.

The initial values S0, S1, C0, C1 can be found e.g. by numerically integrating

(A.117).

Another useful case that can be calculated explicitly is when both |i〉,|j〉 are

equal to the vacuum |0〉. Then from 〈i|φ(eiθ, e−iθ)|j〉 = C · (2 sin θ)−2hφ we get,

for hφ<
1
2
,

hi = hj = 0 : Sn = C · 2−2hφ
√
π

Γ(1
2
−hφ+n

2
)

Γ(1−hφ+n
2
)
, Cn = 0 . (7.27)

The TCSA program is now complete. All that remains to be done is to add the trun-

cated matrices (7.18), (7.20) and (7.21) for different values of R, λ, µ as in eqn. (7.8),

diagonalise Hpert
xy and plot the spectra.

7.3 Conformal perturbation theory

In this approach we expand the perturbed action as a power series in the coupling

constants. The object we are interested in is the G–function of the perturbed theory,

defined as

Gα =
〈α|Ω〉
〈Ω|Ω〉1/2

, (7.28)

where |α〉 is the (possibly perturbed) boundary state and |Ω〉 is the ground state of

the perturbed theory. Typically these functions will not be equal to the g-functions

gα but will differ by the extensive free–energy terms as in eqn. (7.4):

log Gα = log gα − Lfpcft
α . (7.29)



112 Away from the Critical Point

G-functions on the cylinder

Consider a boundary CFT on a cylinder of length R and circumference L. Now take

the pure CFT action ACFT to be perturbed by a bulk field φ and the conformal

boundary conditions on the left and right end of the cylinder by boundary fields

ψ`/r, resulting in an action of the form

Apert = ACFT + µ`

∫
ψ` + λ

∫∫
φ+ µr

∫
ψr . (7.30)

If we take Euclidean time to flow along the cylinder then the Hamiltonian in the

perturbed theory is given by an integral around the cylinder

H =
1

2π

∫ L

0

ds Tyy(s) + λ

∫ L

0

ds φ(s) (7.31)

and the boundary conditions are described by a state in the Hilbert space:

〈B| = 〈α(µ)| := 〈α| exp
{
− µ

∫
ψ
}

(7.32)

The partition function of the perturbed CFT can now be expressed as:

Zcyl(R,L) = 〈B`|e−RH |Br〉 =
∞∑
n=0

〈B`|En(λ)〉e−REn(λ)〈En(λ)|Br〉
〈En(λ)|En(λ)〉

(7.33)

where En(λ) denotes the n’th eigenvalue/vector of the (perturbed) Hamiltonian and

we take E0(λ) to be the ground state.

We extend the definition (7.28) of G–functions to excited states as follows:

G(n)
α (µ, λ) =

〈α(µ)|En(λ)〉
|〈En(λ)|En(λ)〉|1/2

(7.34)

If we introduce the dimensionless variables

x = λ
(
L
2π

)2−xφ , y = µ
(
L
2π

)1−hψ , (7.35)

we can write the power series expansion of (7.34) as

G(n)
α (µ, λ) = G(n)

α (0, 0) ·
(
1 + a10 · y + a20 · y2 + a01 · x+ a11 · xy + . . .

)
, (7.36)

where the coefficients amn are constants. The aim of the remainder of this section is

to compute some of these coefficients using CPT. For quick reference, the resulting

formulas in the various cases we are going to consider are (7.52), (7.54), (7.61),
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(7.66).

Transformation to the unit disc

To make use of the Hilbert space description of CFT in the complex plane we apply

the conformal map z → w = exp(2πiz/L). This takes the cylinder to an annulus.

The corresponding Hamiltonian and boundary states defined in the Hilbert space of

the complex plane are:

H = H0 + λHp =
2π

L

{
L0 + L̄0 −

c

12
+ x ·

∫ 2π

0

dθ φ(eiθ)

}
〈α(µ)| = 〈α| exp

{
−
(
L
2π

)1−hψ µ∫ 2π

0

dθ ψ(eiθ)
}

= 〈α|
(
1− y ·

∫ 2π

0

dθ ψ(eiθ) + 1
2
y2 ·

∫ 2π

0

dθ

∫ 2π

0

dθ′ ψ(eiθ)ψ(eiθ
′
) + . . .

)
. (7.37)

To obtain the first order approximation to the perturbed eigenstates we have to

solve the equation

(H0 + λHp)
(
|En〉+ λ|en〉

)
= (En + λen)

(
|En〉+ λ|en〉

)
+O(λ2) (7.38)

together with the constraint that the perturbation should not change the norm of

the eigenvector 〈En(λ)|En(λ)〉 = 〈En|En〉. The result is:

En(λ) = En + λ
〈En|Hp|En〉
〈En|En〉

+O(λ2)

|En(λ)〉 = |En〉+ λQnHp|En〉+O(λ2) (7.39)

where Qn is given by:

Qn = −(1− Pn)
1

H0 − En
(1− Pn) (7.40)

and Pn is the projector on |En〉.
To handle the inverse operator we use a relation of the type x−1=

∫ 1

0
qx−1dq which

holds for x > 0. Consequently we need to treat positive and negative eigenvalues

of H0−En differently. Define projectors P<n and P≤n to project on the sum of the

H0-eigenspaces with eigenvalues E<En, resp. E≤En. Then

Qn = −
∫ 1

0

dq

q
(1− P≤n)q

H0−En(1− P≤n) + P<n
1

En −H0

P<n (7.41)
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Using that and the fact that L0 generates dilations we get:

λQnHp|En〉 = x
{∫ 1

0

dq

q

[
−qxφ

∫ 2π

0

dθ φ(qeiθ)|En〉+
∑

Ek≤En

|Ek〉q
L
2π

(Ek−En)Ak

]

+
∑

Ek<En

|Ek〉(En − Ek)
−1 2π

L
Ak

}
(7.42)

where

Ak = 2π
〈Ek|φ(1)|En〉
〈Ek|Ek〉

(7.43)

Evaluating inner products using disc-amplitudes

To evaluate an inner product of the form 〈α(µ)|En〉 we interpret it as a unit-disc

diagram in boundary CFT with conformal boundary condition α perturbed by the

boundary field ψ(eiθ) and with a field Φn inserted at the origin. Our notation for

this identification will be, e.g.

〈α|
∫ 2π

0

dθ ψ(eiθ)|En〉 = 〈
∫ 2π

0

dθ ψ(eiθ)Φn(0)〉αdisc . (7.44)

Möbius invariance then fixes the form of the simplest unit disc amplitudes to be,

for a primary boundary field ψ and a primary bulk field φ:

〈φ(r)〉αdisc = 〈1〉αdisc

αBφ
1 · (1− r2)−xφ

〈ψ(eiθ1)ψ(eiθ2)〉αdisc = 〈1〉αdiscC
(ααα)1
ψψ

∣∣∣2 sin
θ12

2

∣∣∣−2hψ

〈ψ(eiθ)φ(r)〉αdisc = 〈1〉αdisc

αBφ
ψ C

(ααα)1
ψψ ·

∣∣1−2r cos θ+r2
∣∣−hψ ∣∣1−r2|hψ−xφ

〈ψ(eiθ1)ψ(eiθ2)ψ(eiθ3)〉αdisc = 〈1〉αdiscC
(ααα)ψ
ψψ C

(ααα)1
ψψ

∣∣∣8 sin
θ12

2
sin

θ13

2
sin

θ23

2

∣∣∣−3hψ

(7.45)

In general the energy eigenstate |En〉 will not be given by a primary field but by

a descendent thereof. Typically we will want to evaluate a unit disc amplitude of

the form

〈α|
∫
ψ

∫
ψ · · ·φ · · ·L−nL−m · · · (L̄’s)|γ〉 . (7.46)

where α denotes a conformal boundary state, ψ is the perturbing boundary field, φ

the perturbing bulk field and |γ〉 a bulk highest weight state.

Before we turn to analysing (7.46) it is helpful to introduce some notation. As a
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first step we define the operators

Fn := Ln − L̄−n (7.47)

Their commutator is [Fn, Fm] = (n−m)Fn+m. The Fn have the property that they

annihilate the conformal boundary state of the unit disc ∀n : 〈α|Fn = 0. Their

commutators with a boundary field ψ(eiθ) and a bulk field φ(z, z̄) are given by

[Fn, ψ(eiθ)] = einθ
(
hn− i ∂

∂θ

)
ψ(eiθ)

[Fn, φ(z, z̄)] =
{
h(n+1)zn + h(n−1)z̄−n + 1

2
(zn − z̄−n)r∂r

}
φ(z, z̄)

+ 1
2
(zn + z̄−n)[F0, φ(z, z̄)] . (7.48)

Next we define an operator denoting a boundary field with a phase factor inte-

grated around the boundary:

Dn =

∫ 2π

0

dθ einθψ(eiθ) (7.49)

Note that the D’s all commute since e.g. DnDm and DmDn both stand for the same

boundary integral
∫∫

exp(i(nθ+mθ′))ψ(eiθ)ψ(eiθ
′
)dθdθ′. Applying (7.48) we obtain

the commutation relation

[Fm, Dn] = ((hψ−1)m− n)Dn+m . (7.50)

We can now check that [Fm, e
−yD0 ]=(1−hψ)mDmye

−yD0 or, expressed using the per-

turbed boundary state 〈α(y)|=〈α| exp(−yD0),

〈α(y)|Fn = −n y (1−hψ) · 〈α(y)|Dn . (7.51)

We can now replace the leftmost L−n in (7.46) with F−n + L̄n and use (7.50)

to commute F−n to the left till it annihilates on the boundary. The L̄n can be

commuted to the right. Repeating that process often enough gets rid of all L’s and

for the L̄’s one can apply the same procedure with L̄−n=−Fn+Ln. In the end we

are left with an amplitude involving only primary fields as desired.

Note that when expanding 〈α(µ)|En(λ)〉 for most energy eigenstates |En〉 we

can only go to first order in µ if we do not want to use anything more complicated

than the disc amplitudes given in (7.45). The only exceptions are energy eigenstates

based on the vacuum |0〉, for which we can go to order µ3 and λµ respectively.

In the first case, when |En〉 is given by a primary field |γ〉 we get, using the



116 Away from the Critical Point

dimensionless quantities (7.35):

G(γ)
α (µ, λ) =

〈α(µ)|γ(λ)〉
|〈γ|γ〉|1/2

= G(γ)
α (0, 0)(1− y ·

αBγ
ψ

αBγ
1 C

(ααα)1
ψψ 2π + · · · ) (7.52)

For descendent fields we use (7.50) to reduce the amplitude to the above situation.

E.g. for the states |γ′〉:=L−1L̄−1|γ〉 and |γ′′〉:=L−1
2L̄2

−1|γ〉 we get the relations (recall

(7.35))

G(γ′)
α (µ, λ) = G(γ)

α (0, 0)
(
1− y ·

αBγ
ψ

αBγ
1 C

(ααα)1
ψψ 2π

{
1 +

hψ(1−hψ)

2hγ

}
+ . . .

)
G(γ′′)
α (µ, λ) = G(γ)

α (0, 0)
(
1− y ·

αBγ
ψ

αBγ
1 C

(ααα)1
ψψ 2π

{
1 +

hψ(1−hψ)

2hγ

(
1+

hψ(1−hψ)

2(1+2hγ)

)}
+ . . .

)
(7.53)

If |En〉 is a descendent of the vacuum vector |0〉 we can go slightly further. For |0〉
itself we get:

G(n)
α (µ, λ) = G(n)

α (0, 0) ·
{

1 + y2 ·
(
π2hψ−

1
2 C

(ααα)1
ψψ

Γ(1
2
− hψ)

Γ(1− hψ)

)
+ x ·

(
− 1

4
πxφ−

3
2 αBφ

1 Γ(1
2
− xφ

2
)Γ(

xφ
2

)
)

+ y3 ·
(
− 1

6
(2π)3hψ−2C

(ααα)ψ
ψψ C

(ααα)1
ψψ · I1

)
+ xy ·

(
− (2π)hψ+xφ−1 αBφ

ψ C
(ααα)1
ψψ · I2

)
+ · · ·

}
(7.54)

where

I1 =

∫ 2π

0

dθ

∫ 2π

0

dθ′
∣∣∣8 sin

θ

2
sin

θ′

2
sin

θ − θ′

2

∣∣∣−3hψ

I2 =

∫ 1

0

dq

q

[
qxφ + q−xφ − qxφ(1−q)hψ−xφ(1+q)−hψ−xφF

(
1
2
, hψ; 1; 4 q

(1+q)2

)]
(7.55)

The (1,2)-conformal block

In the case where |En〉 is given by a primary field with Kac-labels (1, 2) we can make

use of the fact that the chiral 4-point functions involving Φn(z, z̄) can be expressed

through hypergeometric functions. This enables us to compute the terms linear in

λ and quadratic in µ in the G-function expansion.

To fix notation, in the minimal model M(p, q) we take the Kac-labels (r, s) to

have ranges r = 1 . . . p−1 and s = 1 . . . q−1. Define t = p/q and drs = r−st. Then
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the highest weight of the representation (r, s) is given by hrs = 1
4t

(drs
2 − d11

2). Let

φ1,2(z, z̄) be a primary bulk field with conformal weights (h1,2, h1,2) and ψr,s(x) be a

boundary field with weight hr,s.

The coefficient of the y2-term in the expansion of the G-function (7.36) is

a20 =
π

〈α|φ1,2〉

∫ 2π

0

〈ψr,s(eiθ)ψr,s(1)φ1,2(0)〉αdisc dθ . (7.56)

The correlator can be obtained from the two chiral 4-point blocks, transformed to

unit disc geometry:

〈ψr,s(eiθ)ψr,s(1)φ1,2(0)〉αdisc = 〈1〉αdisc

αBφ1,2

1 (cos θ
2
)2h1,2−2hr,s+1(

C
(ααα)1
ψr,sψr,s

f 1,1(tan θ
2
) +

αBφ1,2

ψ1,3

αBφ1,2

1 C
(ααα)ψ1,3

ψr,sψr,s
C

(ααα)1
ψ1,3ψ1,3

f 1,3(tan θ
2
)

)
(7.57)

where (see also (4.54))

f 1,1(x) = |2x|−2hr,sF (1
2
− t

2
− dr,s

2
, 1− t

2
− dr,s

2
; 3

2
− t;−x2)

f 1,3(x) = |2x|h1,3−2hr,sF ( t
2
− dr,s

2
, 1

2
+ t

2
− dr,s

2
; 1

2
+ t;−x2) (7.58)

Using transformations on the hypergeometric functions as well as the fact that the

expression (7.57) is symmetric under the reflection θ → −θ we can reformulate the

amplitude as:

〈ψr,s(eiθ)ψr,s(1)φ1,2(0)〉αdisc = 〈1〉αdisc

αBφ1,2

1 C
(ααα)1
ψr,sψr,s

· A

· (2 sin θ
2
)−2hr,sF (1

2
− t

2
−dr,s

2
, 1

2
− t

2
+dr,s

2
; 1

2
; (cos θ

2
)2) (7.59)

with

A =
Γ(3

2
−t)Γ(1

2
)

Γ(1− t
2
+dr,s

2
)Γ(1− t

2
−dr,s

2
)
·

(
1−

sin π(1
2
+ t

2
+dr,s

2
) · sin π(1

2
+ t

2
−dr,s

2
)

sin π( t
2
+dr,s

2
) · sin π( t

2
−dr,s

2
)

)
(7.60)

Remarkably in this form only one hypergeometric function appears and all structure

constants describe the coupling to the identity and thus have a relatively easy form

while still leaving (7.59) independent of the normalisation of the fields.

We can now perform the integral in (7.56) and obtain

a20 = π C
(ααα)1
ψr,sψr,s

· A · Iθ (7.61)
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where the integral Iθ converges for hr,s <
1
2

and Mathematica gives the answer as:

Iθ = 2

∫ π

0

dθ
(
2 sin θ

2

)−2hr,s
F
(
hr,s+1−hr,s−h1,2, hr,s−1−hr,s−h1,2;

1
2
; (cos θ

2
)2
)

=
√
π 21−2hr,s ·

Γ(1
2
−hr,s)Γ(1+hr,s−hr,s+1−hr,s−1+2h1,2)

Γ(1−hr,s−1+h1,2)Γ(1−hr,s+1+h1,2)
. (7.62)

The coefficient of the x-term in the G-function expansion follows from (7.42). For

simplicity we restrict ourselves to a perturbation by the bulk field φ1,3. The ex-

pression given below is valid for t < 1
3
, this condition insures that h1,4 < h1,2 (i.e.

E1,4 < E1,2 for the sum in (7.42)). We get

a01 = 2π
{∫ 1

0

dq

q

[
− q2h1,3

〈φ1,2(0)φ1,3(q)〉αdisc

〈α|φ1,2〉
+
〈α|φ1,4〉
〈α|φ1,2〉

q2h1,4−2h1,2 Cφ1,2φ1,3

φ1,4

+ Cφ1,2φ1,3

φ1,2

]
+
〈α|φ1,4〉
〈α|φ1,2〉

1

2(h1,2−h1,4)
Cφ1,2φ1,3

φ1,4

}
(7.63)

where φ1,2 is the primary bulk field representing the unperturbed energy eigenstate

and φ1,3 is the perturbing bulk field. The correlator involving two bulk fields is given

by

〈φ1,2(0)φr,s(r)〉αdisc = 〈1〉αdisc

αBφ1,2

1 (1− r2)−2hr,s+2h1,2( αBφr,s+1

1

αBφ1,2

1 Cφr,sφ1,2

φr,s+1 f+(r2) +
αBφr,s−1

1

αBφ1,2

1 Cφr,sφ1,2

φr,s−1 f−(r2)

)
(7.64)

where

f+(x) = xhr,s+1−hr,s−h1,2 (1− x)t/2F (t, t− dr,s; 1− dr,s;x)

f−(x) = xhr,s−1−hr,s−h1,2 (1− x)t/2F (t, t+ dr,s; 1 + dr,s;x) . (7.65)

We get:

a01 = 2π
{
Cφ1,2φ1,3

φ1,2 · I− +
αBφ1,4

1

αBφ1,2

1 Cφ1,2φ1,3

φ1,4 · I+
}

(7.66)
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where the integrals I− and I+ are given by Mathematica as

I− = 1
2

∫ 1

0

x−1
(
1− (1− x)1−2tF (t, 1−2t; 2−3t;x)

)
dx

=
t

4(t−1)(3t−2)
· 3F2(1, 2−2t, 1+t; 3−3t, 3−2t; 1)

+
2− 5t+ 3t2

2(t−1)(3t−2)

(
ψ(2−4t)− ψ(2−3t) + ψ(2−2t)− ψ(1)

)
I+ = 1

2

∫ 1

0

x3t−2
(
1− (1− x)1−2tF (t, 4t−1; 3t;x)

)
dx+

1

2(h1,2−h1,4)

= −π−1 cos(πt) sin(2πt)Γ(2−4t)Γ(1−2t)Γ(3t)Γ(3t−1) (7.67)

Here ψ(z) = ∂/∂z ln Γ(z) denotes the digamma function.

7.4 Thermodynamic Bethe ansatz

We will describe the thermodynamic Bethe ansatz (TBA) only very briefly, as it

is outside of the main line of argument in this thesis. The TBA equations for the

g–functions were proposed in [LMSS95] and are put to test in the next section by

comparing them to TCSA data for the Lee-Yang model. In essence, the finding is

that the proposed TBA method fails to extract the correct g–function in the case

of massive perturbations. In this section we want to recall some of the assumptions

that enter the construction to see where the reasons for this problem may lie.

The starting point in deriving the TBA method is the partition function of a

collection of particles moving on a line segment of length R at temperature 1/L.

We restrict ourselves to the case with only a single kind of particle of mass m.

Their energy and momentum are parametrised by the rapidity θ: E=m cosh θ and

p=m sinh θ.

The crucial ingredient into TBA is the assumption that there are enough con-

served charges to make the scattering integrable, that is all processes can be decom-

posed into two particle processes (see e.g. [Dor98] for an introduction to integrable

scattering). In particular this means that while all perturbations of CFT are acces-

sible via TCSA, only some of them have enough conserved charges for TBA to be

applicable, typically those by a primary field in the list {φ1,2, φ1,3, φ1,5, φ2,1, φ3,1, φ5,1}
which is relevant in a given minimal model [FFr93].

The partition function is computed as the sum over all allowed particle con-

figurations, weighted by e−LE. The condition whether a configuration is allowed

is that the wave function for each particle closes up to a multiple of 2π when the

particle returns to its original position. On its way the i’th particle will pick up
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phases S(θi−θj) from scattering with other particles and Rα(θi) when bouncing off

the boundary.

For a finite segment of length R, the energy spectrum of allowed configurations is

discrete. As we increase R, the spectrum condenses into a continuum of states and

it is a good approximation to replace a configuration by its particle density ρr(θ).

We can also define the density of possible particles states ρ(θ). More precisely, for a

given particle configuration with density ρr(θ), there are Rρ(θ0) ∆θ rapidities in the

interval [θ0, θ0 + ∆θ] at which a new particle could be added to the system without

violating the self-consistency condition. In terms of these densities, the requirement

that the wave functions of all particles close translates into the condition1

2πρ(θ) = −2πδ(θ) + 2MR cosh θ + φα(θ) + φβ(θ)− 2φ(2θ) +

∫ ∞

−∞
ρr(θ′)φ(θ − θ′)dθ′ ,

φ(θ) = −i d
dθ

logS(θ) , φα(θ) = −i d
dθ

logRα(θ) . (7.68)

Assuming that the number of allowed states with effective particle density ρr(θ) is

N [ρr(θ)], one can write the partition function as an integral

Z =
∑
states

e−LE =

∫
D[ρr(θ)] N [ρr(θ)] e−LE[ρr(θ)] , (7.69)

where the energy of the configuration is E =
∫∞

0
(M cosh θ) ρr(θ) dθ . In the case

of the Lee-Yang model (and in fact almost all known cases), to calculate N [ρr(θ)]

we can think of the particles as fermions in the sense that each allowed state can

be occupied only by one particle. Consequently we take the number of allowed

configurations in the interval ∆θ with a fixed number of occupied states Rρr(θ) ∆θ

to be

(Rρ(θ)∆θ)!

(Rρr(θ)∆θ)! (Rρ(θ)∆θ −Rρr(θ)∆θ)!
, (7.70)

and replace the factorials by the two leading terms log Γ(z) ∼ z log z − z + . . . of

Stirling’s formula, so that the total number of configurations with a given effective

1 The term −2πδ(θ) was introduced in [LMSS95] to exclude the state with rapidity zero.
Nepomechie observed [prN] that when keeping the subleading term in approximating sums by in-
tegrals (Euler-Maclaurin formula), the δ-term should be replaced by −φ(θ). Correspondingly in
(7.75) he obtains −φ(θ)/2 instead of −πδ(θ). But initial checks indicate that even with this modi-
fication the problem with the TBA g-functions for massive flows remains. The precise implications
of the new term have to be investigated in future work.
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density ρr(θ) is

N [ρr(θ)] ∼ exp
[ ∫ ∞

0

(
ρ log ρ− ρr log ρr − (ρ− ρr) log(ρ− ρr)

)
dθ
]
. (7.71)

The next step, the thermodynamic limit R→∞, is the main approximation in the

TBA method. This consists of replacing the infinite sum over all configurations

in (7.69) by just one term, i.e. the configuration with the largest contribution

N [ρr(θ)] e−LE[ρr(θ)]. Physically this is justified since in the thermodynamic limit

all configurations but the one with the minimal free energy have probability zero.

Mathematically we are approximating Z in the limit R→∞ by the saddle point

method, giving the leading behaviour

logZ ∼ −REcirc
0 (L) + log(gα(L) gβ(L)) , (7.72)

where (extending the range of θ by symmetry where necessary and setting ε =

log(ρ/ρr − 1) )

Ecirc
0 (L) =

∫ ∞

−∞
m cosh θ L(θ) dθ

2π

log(gα(L) gβ(L)) =

∫ ∞

−∞

(
φα(θ) + φβ(θ)− 2φ(2θ)− 2πδ(θ)

)
L(θ) dθ

4π
(7.73)

The quantities L(θ) = log(1 + e−ε(θ)) and ε(θ) solve the equation

ε(θ) = mL cosh θ −
∫ ∞

−∞
φ(θ − θ′)L(θ′) dθ

′

2π
. (7.74)

The g–functions are then identified as

log(gα(L)) =

∫ ∞

−∞

(
φα(θ) − φ(2θ) − πδ(θ)

)
L(θ) dθ

4π
. (7.75)

Notice that the g–functions are given by the first subleading term in (7.72). In the

thermodynamic limit the approximations made become exact and hence the leading

term in (7.72) is exact as well. With this approach it is however not clear why

the subleading terms should contain any information about the original system at

all, especially in the light of the saddle point approximation, where an infinity of

terms has been neglected against the leading one. From this point of view it is more

surprising that the g–functions found by the TBA-method agree, in a way made

precise in the next section, very well with the TCSA data.
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7.5 The Lee-Yang model

As a concrete example we will consider the Lee-Yang model. This sections lists some

of the findings in [DRTW99]. The technical details in obtaining the TCSA data have

been left out, along with all the subtleties involved in making the TBA approach

work. We will concentrate on CPT and TCSA and merely state the findings of the

TBA–investigations.

The Lee-Yang model is the simplest non-unitary conformal field theory, M2,5,

and has central charge −22/5. There are only two representations of the Virasoro

algebra of interest, of weight 0 and −1/5, which we will denote 11 and φ, respectively.

The fusion rules are

11× 11 = 11 , 11× φ = φ , φ× φ = 11 + φ . (7.76)

The modular S-matrix is given by

S =

(
S11 S1φ

Sφ1 Sφφ

)
= 2√

5

(
− sin 2π

5
sin π

5

sin π
5

sin 2π
5

)
=

(
−0.8506.. 0.5257..

0.5257.. 0.8506..

)
. (7.77)

The Lee-Yang model is an A–series theory and so the boundary field content is given

by the fusion rules. There are two pure conformal boundary conditions, which we

label 11 and Φ, and three primary boundary fields other than the identity, and all

have weight h=1/5. Two of these interpolate the two different conformal boundary

conditions and one lives on the Φ boundary

ψ ≡ ψ
(Φ11)
−1/5 , ψ† ≡ ψ

(11Φ)
−1/5 , φ ≡ ψ

(ΦΦ)
−1/5 . (7.78)

The bulk theory contains two primary fields, the identity 11 of weight 0, and ϕ of

weight xϕ=− 2/5.

Structure constants

We give here the structure constants appearing in all the operator products of in-

terest, that is the bulk OPE

ϕ(z, z̄) ϕ(w, w̄) = Cϕϕ
11 |z − w|4/5 + Cϕϕ

ϕ |z − w|2/5 ϕ(w, w̄) + . . . ,

the boundary OPEs,
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φ(z) φ(w) = Cφφ
11 |z − w|2/5 + Cφφ

φ |z − w|1/5 φ(w) + . . . ,

φ(z) ψ(w) = Cφψ
ψ |z − w|1/5 ψ(w) + . . . ,

and the two bulk–boundary OPEs

ϕ(z)
∣∣
11

= 11Bϕ
11 |2(z − w)|2/5 + . . . ,

ϕ(z)
∣∣
Φ

= ΦBϕ
11 |2(z − w)|2/5 + ΦBϕ

φ |2(z − w)|1/5 φ(w) + . . . .

We want all these structure constants to be real, and a suitable2 choice is

Cϕϕ
11 = Cφφ

11 = −1 ,

Cϕϕ
ϕ = −

∣∣∣ 2
1+
√

5

∣∣∣1/2 · α2 = −1.91131.. , 11Bϕ
11 = −

∣∣∣ 2
1+
√

5

∣∣∣1/2 = −0.78615.. ,

Cφφ
φ = −

∣∣∣1+
√

5
2

∣∣∣1/2 · α = −1.98338.. , ΦBϕ
11 =

∣∣∣1+√5
2

∣∣∣3/2 = 2.05817.. ,

Cφψ
ψ = −

∣∣∣ 2
1+
√

5

∣∣∣1/2 · α = −1.22579.. , ΦBϕ
φ =

∣∣∣5+√5
2

∣∣∣1/2 · α = 2.96585.. ,

α =
∣∣∣Γ(1/5) Γ(6/5)
Γ(3/5) Γ(4/5)

∣∣∣1/2 . (7.79)

The state of lowest conformal dimension in the bulk theory is

|Ω〉 = |ϕ〉 , (7.80)

and we choose to normalise the bulk highest-weight states as

〈0|0〉 = −1 ⇒ 〈ϕ|ϕ〉 = 1 . (7.81)

With this, and demanding gϕα > 0, the coefficients appearing in the boundary states

are

g0
11 =

∣∣∣√5+1
2
√

5

∣∣∣1/4 , gϕ11 =
∣∣∣√5−1

2
√

5

∣∣∣1/4
g0
Φ = −

∣∣∣√5−2√
5

∣∣∣1/4 , gϕΦ =
∣∣∣2+√5√

5

∣∣∣1/4 (7.82)

2 It is convenient for calculations to have the 2-point structure constants equal to ±1. This
normalisation is related to the one chosen in chapter 6 by a rescaling with a real factor. The choice
in chapter 6 has the benefit that the general formulas take an easier form and are free of square
roots.
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The zero-point functions are then given as

Z11 = 〈1〉11disc = 〈11|0〉 = −g0
11 , ZΦ = 〈1〉Φdisc = 〈Φ|0〉 = −g0

Φ . (7.83)

Finally, the g-functions are given by gα = gΦ
α

√
〈ϕ|ϕ〉 = gΦ

α , i.e.

log g11 = 1
4
log
∣∣∣√5−1

2
√

5

∣∣∣ = −1
4
log
∣∣∣1+√5

2

∣∣∣− 1
8
log 5 = −0.321482.. ,

log gΦ = 1
4
log
∣∣∣2+

√
5√

5

∣∣∣ = 3
4
log
∣∣∣1+√5

2

∣∣∣− 1
8
log 5 = 0.159729.. . (7.84)

Correlation functions

The unit disc correlation functions resulting from chiral three–point functions were

already listed in (7.45). We will also need correlators given in terms of chiral four

point functions. They are given in (7.59), (7.64) and specialised to the Lee-Yang

model they read:

〈φ(eiθ)φ(1)ϕ(0)〉Φdisc = 〈1〉Φdisc

ΦBϕ
1 Cφφ

1
√
π(1−

√
5)Γ(

11
10

)

Γ(
7
10

)Γ(
9
10

)
· (2 sin θ

2
)

2
5 · F

(
1
5
, 2

5
; 1

2
; (cos θ

2
)2
)

〈ϕ(0)ϕ(r)〉αdisc = 〈1〉αdisc · r
2
5 (1−r2)

1
5 ·
{
αBϕ

1 Cϕϕ
ϕ · F

(
1
5
, 2

5
; 4

5
; r2
)

+ Cϕϕ
1 · r

2
5 · F

(
2
5
, 3

5
; 6

5
; r2
)}

(7.85)

G–functions and conformal perturbation theory

We will consider the Lee-Yang model on a cylinder of length R and circumference

L. The perturbed action is given by

Apert = ACFT + λ ·
∫
ϕ(z, z̄)d2z + h ·

∫
φ(x)dx . (7.86)

We take the left boundary condition to be fixed to 11 and the right boundary to be

either 11, in which case there is no relevant boundary perturbation and (7.86) only

makes sense for h=0, or Φ(h), i.e. the conformal Φ–boundary perturbed by h ·
∫
φ.

With CPT we can calculate the perturbative expansion of log Gα, the ground–
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state G–function as defined in (7.28). Define the coefficients dn and cmn via

log G11(λ, L) =
∞∑
n=0

dn (λL12/5)n = log g11 + d1 (λL12/5) + . . . ,

log GΦ(h)(λ, L) =
∞∑

m,n=0

cmn (hL6/5)m(λL12/5)n

= log gΦ + c10 (hL6/5) + c20 (hL6/5)2 + c01 (λL12/5) + . . . (7.87)

The connection to the constants amn in the expansion (7.36) is

c01 = (2π)xφ−2 · a01 , c10 = (2π)hψ−1 · a10 ,

c20 = (2π)2hψ−2 ·
(
a20 − 1

2
(a10)

2
)
. (7.88)

With the expressions (7.52), (7.61) and (7.66) we find

d1 = (2π)−7/5
{
Cϕϕ

ϕ · I− − 51/4(
√

5−1)
8π

Γ(1
5
)2Γ(2

5
)Γ(6

5
)
}

= −0.253117.. ,

c01 = (2π)−7/5
{
Cϕϕ

ϕ · I− + 51/4

4π

(√
5−1√
5+1

)3/2
Γ(1

5
)2Γ(2

5
)Γ(6

5
)
}

= 0.0797648.. ,

c10 = (2π)−1/551/4 2
1+
√

5
· α = 0.99777.. ,

c20 =
(

1√
5
− 1

2

)
(c10)

2 = −0.0525515.. (7.89)

where

I− = 5
24
· 3F2

(
1, 6

5
, 7

5
; 9

5
, 11

5
; 1
)

+ 1
2

(
ψ(2

5
)−ψ(4

5
)+ψ(6

5
)−ψ(1)

)
= 0.0839379.. (7.90)

The coefficients c10 and c20 have also been calculated using the free-field construction

in [BLZ96], with the same results as given above.

G–functions in TCSA

The aim of this section is to provide numerical data to verify the coefficients obtained

above and data from the TBA method, to be discussed in the next section. Note that

the coefficients d1, c01, c10, c20 can be checked by perturbing only the bulk or only

the boundary. So we will restrict the TCSA investigation to these two cases, which

will simplify the treatment. The first coefficient that would require a simultaneous

perturbation of bulk and boundary is c11.

We can use the TCSA method to compute the partition function Z(R,L, λ, h)

of a cylinder of length R and circumference L. To do so take the (perturbed)

Hamiltonian H(R, λ, h) to run from side to side on the cylinder. The perturbed



126 Away from the Critical Point

2 4 6 8 10 12 14

-2

-1

1

2

3

4

-4 -2 2

-0.3

-0.25

-0.2

-0.15

-0.1

0

Fig. 7.3a: The first 15 eigenvalues of
H/M for the (11, 11) system plotted
against r from TCSA with 29 states.

Fig. 7.3b: log g11(`) vs. log ` from TCSA
with 19 (dashed line) and 106 (solid
line) states. Also shown are the exact
UV and IR values.

spectrum is computed as described in section 7.2 and the partition function can be

approximated by taking the sum over all TCSA energy levels ETCSA
i at the given

truncation level

Z(R,L, λ, h) =
∑
i

exp(−LETCSA
i ) . (7.91)

From (7.1) we expect the large R asymptotics to be of the form

Z(R,L, λ, h) ∼ −a(L, λ) ·R + b(L, λ, h) ,

a(L, λ) = Ecyl
0 , b(L, λ, h) = log G11(L, λ) + log GΦ(h)(L, λ) . (7.92)

So to obtain a and b from TCSA we compute the partition function, go to large

R and check if Z displays the behaviour (7.92). One has to be careful though not

to make R too large, otherwise the truncation effects from TCSA render the data

meaningless.

In a next step we have to separate the supposedly universal part of Gα from the

boundary free energy as in (7.4), that is we try to find a parameter region in which

the numerical estimate of log Gα(L, λ) behaves as

log Gα(L, λ) ∼ −Lfα(λ) + log gα(L, λ) . (7.93)

It is the quantity log gα(L, λ) which we later compare to the TBA results.

Bulk perturbation – massive case

Here we consider a pure bulk perturbation λ 6=0, h=0 in (7.86). The perturbed

spectrum of the Hamiltonian develops a mass gap. The mass scale is set by the mass
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Fig. 7.4a: The first 15 eigenvalues of
H/M for the (11,Φ(0)) system plotted
against r from TCSA with 81 states.

Fig. 7.4b: log(g11(`) gΦ(0)(`)) vs. log `
from the TCSA with 140 states using
two different extrapolation methods3

(dashed and solid line). Also shown are
the exact UV and IR values.

M of the single massive particle of the scaling Lee-Yang model, which is related to

λ by [Zam90, Zam95]

M = κλ5/12 , κ = 219/12
√
π

(
Γ(3

5
)Γ(4

5
)
)5/12

55/16Γ(2
3
)Γ(5

6
)

= 2.642944.. , (7.94)

It is convenient to reexpress (7.92) in terms of the dimensionless quantities

r = M R , ` = M L , (7.95)

and to normalise the energy s.t. the mass gap is one, i.e. to look at the ratio E/M .

In fig. 7.3 and fig. 7.4 the plots of the energy spectra and the resulting flow of

the g–function is shown for the strip with (11, 11) and (11,Φ(0)) boundary conditions.

Since the perturbed model is massive (and has a unique ground state) the infrared

value of the groundstate degeneracy has to be one: log g|IR=0. The starting point

of the flow, i.e. log g|UV, is the value computed within CFT, given in (7.84). This is

seen in fig. 7.3b and fig. 7.4b3.

One can make fits to the TCSA estimates of the G–functions to extract the

coefficients of the power series expansion, computed via CPT in (7.89). We see that

the numerics agrees very well with the theoretical predictions:

3 The two extrapolation methods refer to the extensive free energy term in (7.4). For the solid
line it has been estimated from the TCSA data and for the dashed line the exact value, which can
be obtained from TBA, has been substituted.
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Figure 7.5: Graphs of log(gΦ(h̃)) vs. log(h̃) from the TCSA with 140 states using
two different extrapolation methods3 (dashed and solid line) together with the TBA
results (points).

TCSA exact
(106 states)

d0 −0.3215.. −0.321482..

d1 −0.2526.. −0.253115..

d2 0.0775.. —

TCSA exact
(140 states)

d0 + c00 −0.1613.. −0.161753..

d1 + c01 −0.1746.. −0.173352..

d2 + c02 0.0667.. —

Boundary perturbation – massless case

In the massless case the bulk mass M cannot be used to form dimensionless quan-

tities. Instead we consider Z(R,L, 0, h) as a function of

r̃ = R/L , h̃ = hL6/5 . (7.96)

As described in detail in [DPTW97] the (11,Φ(h)) boundary condition flows from

(11,Φ(0)) in the UV to (11, 11) in the IR. This is what we expect intuitively since there

are fewer fields on the 11–boundary than on the Φ–boundary, so that the perturbation

effectively removes some degrees of freedom. Whereas for the bulk this line of

thought can be made rigorous for unitary models, in the form of Zamolodchikov’s

c–theorem [Zam86], in the present case it has to be treated with care. First of all

the Lee-Yang model is non–unitary and secondly no “g–theorem” exists for general

boundary flows. In fig. 7.5 we see how g(h̃) drops along the flow from it UV value

log g11+ log gΦ=− 0.1617.. to its IR value 2 log g11=− 0.6415...

Again we can compare the TCSA estimates for the quantities in (7.89). We see

that the quality of the fit drops off quickly as the order increases:
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TCSA exact
(140 states)

c00 −0.1617.. −0.161753..

c10 0.9977.. 0.997728..

c20 −0.0450.. −0.052551..

c30 0.0084.. —

Comparison to TBA

As already mentioned we will not enter into the details of the TBA computation.

The methods leading to the results are described in great detail in a series of papers

[DTa96, DTa97, DPTW97, DRTW99]. Complete agreement was found between TBA

and CFT results for quantities that can be extracted from the leading order of the

partition function in the thermodynamic limit. In particular the energy spectrum

along the flow agrees in both methods.

As outlined briefly in section 7.4, the g–functions are extraced from a subleading

contribution in the thermodynamic limit. TBA predicts, for massless and massive

flows in the LY-model alike:

log( gα )
∣∣∣
IR

= 0 , log( gα )
∣∣∣
UV

= n
4

log(1+
√

5
2

) , n ∈ Z . (7.97)

The parameter n refers to the choice of integration contour in the TBA method.

It was already suspected in (7.1) that the g–functions themselves are not univer-

sal, but only their differences. There are two distinct physical situations: massless

bulk and massive bulk.

1. Massless bulk: There is a single identifiable massless flow with h̃>0, from Φ

to 11, for which (7.84) gives

log(gΦ) − log(g11) = log(1+
√

5
2

) , (7.98)

and which is in agreement with (7.97) for n=4. In fact we can plot the suitably

shifted massless TBA flow over the corresponding TCSA data, as in fig. 7.5. We

see that in the massless case the TBA equations (7.75) describe the difference

of g–functions correctly.

2. Massive bulk: For the massive flows from 11 and from Φ(h), g|UV is given

by conformal field theory, and our expectation that for the massive theory
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Figure 7.6: The difference log(gΦ(h1))−log(gΦ(h2)) vs. log l for the massive LY model4.
The solid line is the TBA result and the points are from the TCSA to 117 states.

g|IR = 1 leads to the results

log(g11)
∣∣∣
UV

− log(g)
∣∣∣
IR

= −1
4
log
∣∣∣1+√5

2

∣∣∣− 1
8
log 5 ,

log(gΦ(h))
∣∣∣
UV

− log(g)
∣∣∣
IR

= 3
4
log
∣∣∣1+√5

2

∣∣∣− 1
8
log 5 . (7.99)

These cannot be reproduced by (7.97). Thus we see that the TBA equations

(7.75) do not agree with the TCSA even at the level of the overall change in the

g–functions without investigating finer detail. We note however that the ratio

log(gΦ(h)/g11) changes by log(1
2
(
√

5 + 1)) along a massive flow, in agreement

with (7.97). So the TBA equations do have the possibility to describe the ratio

correctly. The plot in fig. 7.64 confirms this by showing that the ratio of two

g–functions at different values of h along the massive flow agrees with TCSA.

We learn that the subleading terms of the thermodynamic limit in the TBA ex-

pressions do still carry physical information. The evidence shown supports the idea

that the g–functions extracted from TBA do no longer carry all the universal infor-

mation present in the “original” g–functions. To accomodate massive and massless

flows alike we can only consider differences of ratios of g–functions, for example the

quantity

log
(gΦ(h)(λ)

g11(λ)

)
− log

(gΦ(0)(0)

g11(0)

)
(7.100)

These should then give the same answer, irrespective of whether they are computed

with TCSA or TBA.

4 In the TBA equations the boundary condition is described by a parameter b. It is related
to h via h = −|hc| sin

(
π(b + 1

2 )/5
)
M6/5 for some constant hc (see [DRTW99]). The plot is for

h1 = h(b=− 1.1), h2 = h(b=− 1.2).



Chapter 8.

Outlook

The research presented in this thesis can be the starting point for several directions

of future work. Some interesting continuations are presented in the following.

In chapter 6 we found the bulk and boundary structure constants. It became

apparent that once the boundary field content and structure constants were known,

all structure constants involving bulk fields could be read off directly from the sewing

constraints. If one had tried to go the opposite way, typically the sewing constraints

would relate squares of structure constants, e.g. (5.27) relates C2 to C2 and (5.25)

relates B2 to C, so that there are sign ambiguities at each step. It would be in-

teresting to apply the methods outlined in chapters 4, 5 together with the idea of

progressing from the boundary to the bulk to CFTs other than minimal models,

e.g. to SU(2) and SU(3) WZW models.

With the boundary TCSA program presented in chapter 7 it is possible to predict

the endpoints of all integrable and non-integrable boundary flows. By investigating

enough models, one could arrive at a conjecture for how the various boundary con-

ditions of minimal models are connected by the renormalisation group, i.e. a “phase

diagram” for boundary conditions. If one wants to investigate a physical system at

its critical point, this phase diagram will help to identify boundary conditions of the

system with their CFT analogue. The phase diagram can also guide the construction

of a proof of what the IR endpoints of perturbed boundary conditions are.

With the help of the minimal model structure constants one can investigate

boundary flows in models with central charge close to one. Some of these then

become perturbative, i.e. the endpoint moves arbitrarily close to the starting point

as c→1 [RRS00]. Alternatively one can try to define a c=1 theory as a limit of minimal

models for c→1. Whereas the bulk fields acquire infinite multiplicity in this limit,

the primary boundary field content remains finite. One can now investigate non-

perturbative flows at c=1 and conjecture that the corresponding flows for minimal

models with c close to one are just small “perturbations” of these flows [GRWip].

A class of 1+1 dimensional integrable quantum field theories are the affine Toda
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field theories. These are defined in terms of particles moving on a line and whose S-

matrix factorises into two-particle S-matrices. If one introduces a boundary, i.e. con-

fines the particles to the half line, the main problem consists in finding all integrable

boundary conditions and the associated reflection factors for the particles in the

theory (see e.g. [Cor96, DGa99]). It would be very useful to understand which con-

formal boundary condition corresponds to the UV-limit of a given ATFT boundary

condition. To investigate this, one could use methods similar to those described in

the case of the Lee-Yang model in section 7.5. As a result one will also gain some

information on whether the complete set of integrable boundary conditions for the

ATFT has been found.

Boundary CFT is also very useful in the investigation of D-branes in string

theory. D-branes are hypersurfaces in the target space of string theory on which

open strings are allowed to end. The CFT lives on the world sheet of the open

string and its boundary conditions describe the possible D-brane configurations (see

e.g. [RSc97, FSc97b]). The important point is that the CFT approach does not rely on

the notion of a classical target space. This is exploited in [ARS99] where boundary

CFT is used to investigate the non-commutativity of the brane world-volume in

the case of SU(2)-WZW models. It would be very interesting to follow this line

of thought in the case where the world sheet CFT is an N=2 superconformal field

theory and apply the results to D-branes in superstring theory.

The author hopes to have shown that boundary conformal field theory is an area

of research with very varied applications and that the results and methods presented

in this thesis are useful for many of them.



Chapter A.

Appendix



134 Appendix

A.1 OPEs to subleading order

Here we present a short calculational scheme to work out the bulk–bulk, bulk–

boundary and boundary–boundary OPE to subleading orders. The general formulae

become quickly too long, so that for higher orders one has to work with the explicit

values of c and h.

Quasi primary states

When expressing the OPE it is convenient to work with quasi primary states,

i.e. states |µ〉 which obey L1|µ〉=0.

The three sl(2,C) generators {L1, L0, L−1} form a subalgebra of Vir. Conse-

quently we can try to decompose a Vir–irrep into sl(2,C) representations. Quasi

primary states |µ〉 are by definition sl(2,C) highest weight states. The correspond-

ing sl(2,C)–module M(µ) is spanned by the states {(L−1)
n|µ〉|n∈Z+}.

Let Q(h, c) be an orthogonal basis of all quasi-primary states in the Vir–highest

weight irrep M(h, c). One can show that after discarding null vectors, the states

{
(L−1)

n|µ〉 | n ∈ Z+ , µ ∈ Q(h, c)
}
. (A.1)

form an orthogonal basis of M(h, c). In particular, as a vector space M(h, c) can be

written as the direct sum

M(h, c) =
⊕

µ∈Q(h,c)

M(µ) . (A.2)

For the case that M(h, c) does not contain null vectors, the first few quasi primary

states |µ〉 ∈M(h, c) are listed in table A.1.

The norm of elements of M(µ) is given by

〈µ|(L1)
n(L−1)

n|µ〉 = n!(2h)(n)〈µ|µ〉 , (A.3)

level q.p. state |µ〉 norm 〈µ|µ〉/〈h|h〉

0 |h〉 1

2 |α〉 =
(
L−2 − 3

2(2h+1)
L−1L−1

)
|h〉 c(2h+1)+2h(8h−5)

2(2h+1)

3 |β〉 =
(
L−3 − 2

h+2
L−1L−2 + 1

(h+1)(h+2)
(L−1)

3
)
|h〉 2h(c(h+1)+h(3h−7)+2)

(h+1)(h+2)

Table A.1: The first three quasi-primary states in a Vir–highest weight irrep M(h, c)
without null vectors.
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where (a)(n) is the Pochammer symbol (a)(n)=a(a+1) · · · (a+n−1) and (a)(0)=1. We

see that M(µ) is finite dimensional if hµ ∈ Z−
0 /2. An example is the vacuum

representation |0〉 for which we have L−1|0〉 = 0. The first few elements of Q(0, c)

are given in table A.2. A general method to construct all quasi-primary states in

M(h, c) has been described by Kausch and Watts in [KWa91].

The OPE of two chiral quasi-primary fields φi, φj can be written down explicitly.

The general expression is

φi(z)φj(0) =
∑
k q.p.

Aijk

∞∑
n=0

an · zhk−hi−hj+n · (L−1)
nφk(0) . (A.4)

The constants an are fixed by requiring that acting with 〈k|(L1)
n gives the same

answer on both sides. The resulting values can be found e.g. in [Bow91] to be

an =
(hi−hj+hk)(n)

(2hk)(n) · n!
. (A.5)

Using this we can write down the following formal shorthand for (A.4)

φi(z)φj(w) =
∑
k q.p.

Aijk · (z−w)hk−hi−hj · F k
ij(z−w)φk(w) , (A.6)

with

F k
ij(x) = 1F1

(
hi−hj+hk ; 2hk ; xL−1

)
= 1 +

hi−hj+hk
2hk

· xL−1 +
(hi−hj+hk)(hi−hj+hk+1)

4hk(2hk+1)
· x2L−1L−1 + . . . . (A.7)

An example calculation in the case of the bulk–boundary OPE below will show how

level q.p. state |µ〉 norm 〈µ|µ〉/〈0|0〉

0 |0〉 1

2 |α〉 = L−2|0〉 c
2

4 |γ〉 =
(
L−4 − 5

3
L−2L−2

)
|0〉 5c(5c+22)

18

6 |ε1〉 =
(
L−6 + 14

5
L−4L−2 − 7

4
L−3L−3

)
|0〉 63c(70c+29)

100

|ε2〉 =
(
6(10c+13)L−6 + 3(41c+67)L−4L−2

3c(2c−1)(5c+22)(7c+68)(70c+29)
4

−93L−3L−3 − (70c+29)(L−2)
3
)
|0〉

Table A.2: A choice for the first elements of Q(0, c). If the norm vanishes for certain
values of c the state is not part of Q(0, c).
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(A.5) and (A.6) can be obtained. But let us first look at the boundary–boundary

OPE.

Boundary–boundary OPE

Because the boundary fields only transform in one copy of Vir, their OPE is most

directly related to the above discussion. Let ψ
(ac)
µ (y) be the boundary field corre-

sponding to the quasi primary state µ∈Q(hk, c). Then the OPE can be written

as

ψ
(ab)
i (x)ψ

(bc)
j (y) =

∑
k

C
(abc)k
ij

∑
µ∈Q(hk,c)

(x−y)hµ−hi−hj · Aµij · F
µ
ij(x−y)ψ(ac)

µ (y) . (A.8)

Let |µ, ab〉=ψ
(ab)
µ (0), etc. To determine the factors Aµij we can set x=1, y=0 and take

the inner product with 〈µ, ca| on both sides. Since we have chosen all quasi primary

states in Q(hk, c) to be orthogonal, the resulting condition is

Aµij =
〈k|k〉
〈µ|µ〉

· 〈µ, ac| ψ
(ab)
i (1) |j, bc〉

〈k, ac| ψ(ab)
i (1) |j, bc〉

; where µ ∈ Q(hk, c) . (A.9)

The three point function involving the quasi primary state can be reduced to the

three point function of primary fields appearing in the denominator by using the

commutation relation

Lnψ(1) = ψ(1)Ln + L0ψ(1)− ψ(1)L0 + nhψψ(1) . (A.10)

E.g. for the quasi-primary states listed in table A.1 we obtain

Ahkij = 1

Aαij =
2(2hk+1)(hk+2hj−hi)− 3(hk+hj−hi)(hk+hj−hi+1)

c+ 2hk(8hk+c−5)

Aβij =
(hj−hi)

{
(hk+hj−hi)(hk+hi−hj) + (hi+hj−hk)(1+hk)

}
2hk
{
2 + c+ hk(3hk+c−7)

} (A.11)
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The first subleading terms of the boundary–boundary OPE are

ψ
(ab)
i (x)ψ

(bc)
j (y) =∑

k

C
(abc)k
ij (x−y)hk−hi−hj ·

{
ψ

(ac)
k (y) + (x−y) · hi−hj+hk

2hk
· (L−1 ψ

(ac)
k )(y)

+ (x−y)2 ·
( (hi−hj+hk)(hi−hj+hk+1)

4hk(2hk+1)
· (L−1L−1 ψ

(ac)
k )(y) + Aαij ψ

(ac)
α (y)

)
+ . . .

}
.

(A.12)

In the case of hk=0, i.e. the coupling to the identity, we necessarily have hi=hj=:h

and the formulas look somewhat simpler. For the states in table A.2 we find

A0
ii = 1 , Aαii =

2h

c
, Aγii = − 6h(5h+ 1)

5c(5c+ 22)
, (A.13)

and the OPE becomes

ψ
(aa)
i (x)ψ

(aa)
i (y) = C

(aaa)1
ii (x−y)−2h

·
{

11 + (x−y)2 · 2h
c
· α(y) + (x−y)3 · h

c
· (L−1α)(y)

+ (x−y)4 ·
(

3h
10c
· (L−1L−1α)(y)− 6h(5h+1)

5c(5c+22)
· γ(y)

)
+ . . .

}
+ . . . . (A.14)

In this formula the dots stand for higher terms and conformal families other than

the identity.

Bulk–boundary OPE

The bulk–boundary OPE is slightly different in structure to the other two, so cal-

culations are written out more explicitly. The general bulk–boundary OPE on the

UHP, in terms of quasi-primary states can again be written as

φ(x+iy) =
∑
k

aBφ
k (2y)hk−∆φ

∑
µ∈Q(hk,c)

∞∑
n=0

cµφ,k(n) · yhµ−hk+n(L−1)
n ψ(aa)

µ (x) .

(A.15)

In this expression we need to determine the coefficients cµφ,k(n). Set x=0. Since

again all states on the rhs are orthogonal, we need to evaluate the conditions

〈µ|(L1)
nφ(iy)|0〉

〈k|φ(iy)|0〉
= cµφ,k(n) · 〈µ|(L1)

n(L−1)
n|µ〉

〈µ|µ〉
. (A.16)



138 Appendix

The three-point function on the lhs can be simplified with the commutation relation

Lnφ(iy)|0〉 = (iy)n
{1+(−1)n

2

(
n∆φ + L0

)
+

1−(−1)n

2

(
(n+1)Jφ + iy · L−1

)}
φ(iy)|0〉 .

(A.17)

We can obtain a recursion relation for the coefficients cµφ,k(n) if we employ (A.3) and

use the commutator

[(L1)
n, L−1] = 2n

(
L0 + n−1

2

)
(L1)

n−1 . (A.18)

After a little algebra we obtain

cn+2 =
1

(n+2)(2hµ+n+1)

(
2iJφ · cn+1 − cn

)
. (A.19)

Consider the generating function G(t)=
∑∞

k=0 c(k)t
k. The recursion relation on the

coefficients translates into the differential equation

tG′′(t) + 2hµG
′(t) + (t− 2iJφ)G(t) = 0 ; G(0) = 1, G′(0) = iJφ/hµ . (A.20)

Given the initial conditions, the differential equation is solved by

Gµ
φ(t) = e−it · 1F1

(
hµ+Jφ ; 2hµ ; 2i t

)
= 1 +

iJφ
hµ
· t− hµ+2Jφ

2

2hµ(2hµ+1)
· t2 − iJφ(2Jφ

2+3hµ+1)

6hµ(hµ+1)(2hµ+1)
· t3 + . . . . (A.21)

We can thus write the OPE (A.15) in the form

φ(x+iy) =
∑
k

aBφ
k (2y)hk−∆φ

∑
µ∈Q(hk,c)

bµφ · y
hµ−hk ·Gµ

φ(yL−1)ψ
(aa)
µ (x) . (A.22)

The coefficients bµφ of the quasi primary fields are determined by (A.16).

If we compare the form of G in (A.21) to the earlier result for F in (A.7) we

see that they are consistent. The only difference is that the bulk–boundary OPE

corresponds to the OPE of the chiral half of the bulk field φ with its mirror image,

taken in the midpoint between the two fields. Hence the translation factor e−iyL−1

in (A.21).

For a generic representation with weight hk the coefficients bµφ for the quasi pri-
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mary states in table A.1 take the form

bhkφ = 1

bαφ =
4(3Jφ

2 −∆φ + hk − 2∆φhk − hk
2)

c− 10hk + 2c hk + 16hk
2

bβφ =
4iJφ(∆φ − hk + ∆φ hk − Jφ

2)

hk(2 + c− 7hk + c hk + 3hk
2)

(A.23)

For the identity hk=0 representation we obtain

b0φ = 1 , bαφ = −4∆φ

c
, bγφ = −24∆φ(5∆φ + 2)

5c(5c+ 22)
. (A.24)

This leads to the following bulk–boundary OPE, restricted to the coupling to the

identity representation on the boundary,

φ(x+ iy) = aBφ
11 · (2y)−∆φ

{
11− y2 · 4∆φ

c
· T (x) + y4 ·

(2∆φ

5c
· T ′′(x)

− 24∆φ(5∆φ+2)

5c(5c+22)
· γ(x)

)
+ . . .

}
+ . . . (A.25)

Here T (x) = (L−211)(x) is the stress tensor and T ′′(x) its second derivative. The

dots stand for higher terms and conformal families other than the identity.

Bulk–bulk OPE

The bulk-bulk OPE is now easy to calculate, since the chiral and anti-chiral part

produce the same formulas as in the boundary–boundary OPE. This leads to the

expression

φi(z, z̄)φj(w, w̄) =
∑
k

Cij
k

∑
µ∈Q(hk,c)

∑
µ̄∈Q(h̄k,c)

(z−w)hµ−hi−hj(z̄−w̄)h̄µ−h̄i−h̄j

· Aµij A
µ̄
ı̄̄ · F µ

ij(z−w) F µ̄
ı̄̄(z̄−w̄) φk(w, w̄) . (A.26)

The coefficients Aµij are those in (A.11).
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A.2 Contour integration on the cylinder

In this section of the appendix the calculation leading to (3.25) is presented.

As in the main text construct a cylinder of circumference L by identifying two

vertical lines on the UHP, one through the real point −L/2 and the other through

L/2. Consider the following analytic function f(w) from the cylinder to the UHP

z = f(w) = tan
(
π
L
w
)
, f ′(w) = π

L

(
cos πw

L

)−2
, c

12
{f ;w} = c

24

(
2π
L

)2
(A.27)

Let β(0) be the identity field or a descendent thereof. We have the UHP correlator

〈T (z)β(0)〉UHP = Cβz
−2−|β| . (A.28)

Here Cβ is some constant and |β| is the conformal weight of β(0). Next we want

to express the two-point function 〈T (w)β(0)〉cyl in terms of UHP-correlators. Let

N = |β|. The transformation of β(0) to the UHP will generate the 11–descendents

γ0, . . . , γN where |γk| = k and γ0 = (const) · 11. Thus

〈T (w)β(0)〉cyl = 〈
[
f ′(w)2T (f(w)) + c

24

(
2π
L

)2] · [ N∑
k=0

γk(0)
]
〉UHP . (A.29)

In the limit w → i∞ the lhs will tend towards the constant 〈0|T (w)|0〉〈0|β〉 =

〈T (w)〉cyl〈β(0)〉cyl. The rhs will approach the constant c
24

(
2π
L

)2 · 〈γ0(0)〉UHP. In par-

ticular we see that γ0=〈β(0)〉cyl · 11. Altogether we can rewrite (A.29) as

〈T (w)β(0)〉cyl = c
24

(
2π
L

)2〈β(0)〉cyl +
N−2∑
k=0

Ck
(
π
L

)2(
sin πw

L

)−4(
tan πw

L

)−k
(A.30)

for some constants Ck. Note that we shifted k → k−2 from (A.29) as γ1(0)=0.

The aim is to evaluate the contour integral

∫ ���6ζ
0 h(ζ)n+1〈T (ζ)β(0)〉cyl =

∫
-

�

ζ
0 h(ζ)n+1〈T (ζ)β(0)〉cyl (A.31)

where h(w) = L
2πi

(
e

2πi
L
w − 1

)
was defined in (3.23). We will treat the upper and the

lower contour separately and assume n≤1.

Upper contour: Let w = x+iy. In this case we have x ∈ [−L
2
, L

2
] and y>0. The
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integral is

−
∫ L

2

−L
2

dx

2πi
h(w)n+1〈T (w)β(0)〉cyl

∣∣
w=x+iy

= A · c
24

(
2π
L

)2〈β(0)〉cyl +
N−2∑
k=0

Bk · Ck
(
π
L

)2
(A.32)

with

A =−
∫ L

2

−L
2

dx

2πi
h(w)n+1 = −1

2πi

(
L

2πi

)n+1
∫ L

2

−L
2

(
e

2πi
L
w − 1

)n+1
dx = · · · =

(Li
2π

)n+2

Bk =−
∫ L

2

−L
2

h(w)n+1
(
sin πw

L

)−4(
tan πw

L

)−k
= · · · = 0 (A.33)

Lower contour: In this case we get the same expression as (A.32), up to an overall

minus sign from the direction of the integration and with y < 0. After a similar

calculation we obtain

A =Bk = 0 ; for n≤− 2. (A.34)

The only contribution for n≤− 2 thus comes from A in the upper contour, leading

to the first case in equation (3.25):∫ ���6ζ
0 h(ζ)n+1〈T (ζ)χ(0)〉cyl =− c

24

(
iL
2π

)n · 〈χ(0)〉cyl ; for n≤− 2. . (A.35)

The second case of (3.25) is for boundary fields χ(x) which are not descendents

of the identity. Specifically let χ(x) be in the conformal family of the primary

boundary field ψ(x). On the UHP any correlator 〈χ(0)〉UHP, 〈T (z)χ(0)〉UHP will just

vanish since it can be reduced to a differential operator acting on 〈ψ(0)〉UHP, which

is zero. When transforming 〈T (z)χ(0)〉cyl to the UHP, the descendent field χ(0)

only generates fields in its own family [ψ]. But correlators of the form 〈χ(0)〉UHP,

〈T (z)χ(0)〉UHP vanish, thus 〈T (z)χ(0)〉cyl = 0.
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a) b)

` i j

z R

k

ζ w

k j i`

` ik j

i ` k

z R

j

ζ w

k j i`

i `j k

Figure A.1: Two sequences of moves expressing two different F-matrix elements
in terms of the same known one. Both sequences are monodromy free ((b) might
require a bit of patience to see that).

A.3 Properties of the F-matrix

First of all it is useful to find how F-matrix elements obtained from each other by

swapping indices are related. Consider the analytic continuations in fig. A.1. We

will work through the first diagram and just state the result of the second.

Figure A.1a corresponds to the following series of basis transformations:

0
j∨

R

j
i, a

z
p

`, b

w
k

k

ζ
0

= Ωp
ij,a(+)Ωp

k`,b(−) 0
i

z
i∨

j∨, a

R

p
k, b

ζ
`

`

w
0

=
∑
q,c,d

Ωp
ij,a(+)Ωp

k`,b(−)Fpq

[
j∨ k

i∨ `

]cd
ab

0
i

z
i∨

ζ

q, c
j∨, d

R−ζ
k

`

`

w
0

=
∑
q,c,d

Ωp
ij,a(+)Ωp

k`,b(−)Fpq

[
j∨ k

i∨ `

]cd
ab

Ωi
q`,c(+) 0

i

z
i∨

l, c

w
q

ζ

q
j∨, d

R−ζ
k

0
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i `p

j k+∆

q
i `

i `p

j k+∆

q
i `

∆
k

Figure A.2: A sequence of moves on a 5-point conformal block that leads to a
recursion relation for the F-matrix

=
∑
q,c,d

Ωp
ij,a(+)Ωp

k`,b(−)Fpq

[
j∨ k

i∨ `

]cd
ab

Ωi
q`,c(+) 0

w

q∨
i, c

z−w
`

q
j∨, d

R
k

k

ζ
0

=
∑
q,c,d

Ωp
ij,a(+)Ωp

k`,b(−)Ωi
q`,c(+)Ωk

jq,d(−)Fpq

[
j∨ k

i∨ `

]cd
ab

0
j∨

R

j
w

q∨, d
i, c

z−w
`

k

k

ζ
0

(A.36)

The phase factors of the Ω-coefficients cancel up to the signs ξ; the final result is:

ξaijpξ
b
klpξ

c
ilqξ

d
jkqFpq∨

[
i `

j k

]dc
ab

= Fpq

[
j∨ k

i∨ `

]cd
ab

(A.37)

The analogous calculation for fig. A.1b gives:

Fp∨q∨

[
` i∨

k∨ j

]dc
ba

= Fpq

[
j k

i `

]cd
ab

(A.38)

Next we would like a recursion relation allowing us to work out a general F-matrix

element in terms of a few generating ones. The analytic continuation in fig. A.2 tells

us how to do this.

Let ∆ be a “simple” chiral field (i.e. representation) in the theory we are studying,

in the sense that we can by some means work out all F–matrices involving ∆. If there

are enough such fields that repeated fusion among them generates all representations

present in the theory we can set up a recursion procedure. Let k+∆ denote a
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representation occurring in the fusion k and ∆. The notation suggests that k+∆ is

in some sense “higher up” than k, as needed for the recursion, but it could be any

representation.

First of all, we have:

i

j, a

z
p

w

k+∆, b
k, x

ζ
∆

` =
∑
q,c,d

Fpq

[
j k+∆

i `

]cd
ab

i
w

q, c
j, d

z−w
k+∆

k, x

ζ
∆

` (A.39)

Now implementing the moves in figure A.2 we find

i

j, a

z
p

w

k+∆, b
k, x

ζ
∆

` =
∑
ref

(
F

[
k ∆

p `

]−1)ef
k+∆,r;bx

i

j, a

z
p

k, e

z+ζ
r

∆, f

w
`

=
∑
ref,sgh

F−1
k+∆,rFps

[
j k

i r

]gh
ae

i
w+ζ

s, g
j, h

z−w−ζ
k

r

∆, f

w
`

=
∑

ref,sgh,qcm

F−1
k+∆,rFpsFrq

[
s ∆

i `

]cm
gf

i
w

q, c

z−w−ζ

s,m
j, h

ζ
k

∆

`

=
∑

ref,sgh,qcm,tdy

F−1
k+∆,rFpsFrq

(
F

[
j k

q ∆

]−1)dy
st;mh

i
w

q, c
j, d

z−w
t

k, y

ζ
∆

` (A.40)

In the last line we can pick the coefficient in front of the block with t = k+∆ and

y=x. This must be the same number as the F-matrix entry in (A.39). In fact for

(A.40) to be equal to (A.39), for all other choices for t, y the F-matrices have to sum

to zero. We get, together with the relation for the inverse of the fusion matrix (4.51):

Fpq
"
j k+∆

i `

#cd
ab

=
X

r,s;efghm

F(k+∆)∨, r

"
∆ `

k∨ p∨

#ef
xb

Fps
"
j k

i r

#gh
ae

Frq
"
s ∆

i `

#cm
gf

Fs∨, k+∆

"
k ∆

j∨ q∨

#dx
hm
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A.4 Explicit F-matrix

Consider the minimal model M(p, q). Let t=p/q and drs=r−st. We want to find the

matrix connecting the conformal blocks occurring in the x→0 and x→1 expansion

of the chiral correlator 〈φI |φJ(1)φK(x)|φL〉. The indices are given by Kac-labels

I=(rI , sI), J=(rJ , sJ), etc. Let correspondingly dI=rI−sIt, dJ=rJ−sJt, etc.

From [DFa85](A.35) we find:

bxy(α, β; ρ) =

y∏
g=1

Γ(gρ)Γ(α+gρ)Γ(β+gρ)

Γ(ρ)Γ(α+β−2x+(y+g)ρ)

mxy(α, β) = t2xy
x∏
g=1

y∏
h=1

{
(ht−g)(α+ht−g)(β+ht−g)(α+β+(y+h)t−(x+g))

}−1

j(x, y;α, β) = mxy(α, β) · byx(−1
t
α,−1

t
β; 1

t
) · bxy(α, β; t) (A.41)

From [FGP90](3.5) we find:

a(s;x, y;α, β, γ, δ; ρ) =

min(s,x+y−1)∑
h=max(x,y)

s−h∏
g=1

sin π(δ+(x−1+g)ρ)

h−y∏
g=1

sin π(−α+(s−x+g)ρ)

s−y∏
g=1

sin π(−α+δ+(s−y+g)ρ)

×

y−1−(h−x)∏
g=1

sin π(β+(s−x+g)ρ)
h−x∏
g=1

sin π(γ+(x−1+g)ρ)

y−1∏
g=1

sin π(β+γ+(y−1+g)ρ)

×
h−x∏
g=1

sin π((x+y−h−1+g)ρ)

sin π(gρ)

s−h∏
g=1

sin π((h−y+g)ρ)
sin π(gρ)

(A.42)

Putting together [DFa85](4.1) and [FGP90](3.1) we find:

FPQ

[
J K

I L

]
=

j
(

1
2(rL−rI−1+rQ), 1

2(sL−sI−1+sQ);−dI , dL
)
· j
(

1
2(rJ+rK−1−rQ), 1

2(sJ+sK−1−sQ); dJ , dK
)

j
(

1
2(rJ−rI−1+rP ), 1

2(sJ−sI−1+sP );−dI , dJ
)
· j
(

1
2(rK+rL−1−rP ), 1

2(sK+sL−1−sP ); dK , dL
)

· a
(

1
2(−rI+rJ+rK+rL); 1

2(rK+rL+1−rP ), 1
2(rJ+rK+1−rQ);−1

t dI ,−
1
t dJ ,−

1
t dK ,−

1
t dL; 1

t )

· a
(

1
2(−sI+sJ+sK+sL); 1

2(sK+sL+1−sP ), 1
2(sJ+sK+1−sQ); dI , dJ , dK , dL; t) (A.43)
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A.5 Some F-matrix identites

The following constitutes a collection of F-matrix identies for Virasoro minimal

models used in this thesis. They are either directly taken from [MSb89a] or special

cases thereof. Note that for the S–matrix we have S1
i=S1

i∗ where the ∗-operation

was defined as i∗ = (r, q − s) if i has Kac-labels (r, s) and we are in the minimal

model M(p, q) with p odd.

B(ε)

pq

[
j k

i `

]
= eiπε(hi+h`−hp−hq)Fpq

[
j l

i k

]
(A.44)

Fpq

[
j k

i `

]
= Fpq

[
i `

j k

]
= Fpq

[
` i

k j

]
(A.45)

∑
r

Fpr

[
b c

a d

]
Frq

[
d c

a b

]
= δp,q Fb∗xi∗

[
xi ωo

a b

]
Fxi∗b∗

[
b ωo

a xi

]
= 1 (A.46)

F1k

[
i j

i j

]
Fk1

[
i i

j j

]
=
S1

1 · S1
k

S1
i · S1

j F1xo

[
xe ωo

xe ωo

]
· Fxo1

[
ωo ωo

xe xe

]
= 1 (A.47)

Fk1

[
i i

j j

]
=
S1

k

S1
j · Fj1

[
k k

i i

]
Fxo1

[
ωo ωo

xe xe

]
= Fxe1

[
ωo ωo

xo xo

]
(A.48)

F11

[
i i

i i

]
=
S1

1

S1
i F11

[
ωo ωo

ωo ωo

]
= 1 (A.49)

Fpi

[
j k

n `

]
Fn1

[
i i

` `

]
= Fnk

[
i j

` p

]
Fp1

[
k k

` `

]
(A.50)

∑
s

Fqs

[
j k

p b

]
Fp`

[
i s

a b

]
Fsr

[
i j

` k

]
= Fpr

[
i j

a q

]
Fq`

[
r k

a b

]
(A.51)

∑
s

eiπ(hp+hq+2hi−2hs− 1
2
(hk+h`))Fks

[
ī p

i q

]
Fs`

[
q p

i ī

]

=
∑
m

eiπ(−hp−hq−2h̄i+2hm+ 1
2
(hk+h`))Fkm

[
p i

q ī

]
Fm`

[
p q

i ī

]
(A.52)

Si
j(p) = S1

1e−iπhp

Fi1

[
i i

p p

]

F11

[
p p

p p

]
Fp1

[
j j

j j

]
Fp1

[
i i

i i

]∑
r

B(−)

pr

[
i j

i j

]
B(−)

r1

[
j i

i j

]

(A.53)
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A.6 Derivation of the five-point constraint

This appendix is included to illustrate how the notation and techniques for calcu-

lating with conformal blocks described in [MSb89a] were used to rederive the sewing

constraints in [Lew92] presented in section 5.2.

The example we consider is the derivation of the constraint resulting from taking

different limits in the correlator involving two bulk fields φiα , φjβ and one boundary

field ψ
(aa)
kγ

on the upper half plane with the boundary condition labelled a.

In the first limit we take the two bulk fields to the boundary and are left with

a three-point function on the boundary. In the second limit we start by taking the

OPE of the two bulk fields and then take the remaining bulk field to the boundary.

Let z=xz+iyz and w=xw+iyw. The asymptotic behaviour in the two limiting cases

is then given by:

〈φiα(z, z̄)φjβ(w, w̄)ψ
(aa)
kγ

(x)〉

∼
yz→0
yw→0

∑
p,q

(∑
ν,ε

aBiα
pν aBjβ

qε C(aaa)kγ
pνqε C

(aaa)1
kγkγ

〈1〉aUHP

)

· (2yz)hp−hi−h̄i(2yw)hq−hj−h̄j(xz − xw)hk−hp−hq

· (xz − x)hq−hp−hk(xw − x)hp−hk−hq

∼
z→w
z̄→w̄

∑
m,m̄

(∑
ρ

Ciαjβ
mρ aBmρ

kγ C
(aaa)1
kγkγ

〈1〉aUHP

)
· (z − w)hm−hi−hj(z̄ − w̄)h̄m−h̄i−h̄j(2yw)hk−hm−h̄m(xw − x)−2hk (A.54)

On the other hand the correlator can be expressed as a linear combination of con-

formal blocks. We use two sets of conformal blocks to express the correlator in two

different ways, one associated to each asymptotic behaviour in (A.54). We obtain

the following two linear combinations:

〈φiα(z, z̄)φjβ(w, w̄)ψ
(aa)
kγ

(x)〉

=
∑
p,q

cp,q · 0
z̄

p
i

z − z̄
ı̄

p

w̄

q
j

w − w̄

̄

k

x
0
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=
∑
m,m̄

dm,m̄ · 0
w

k
w − w̄

m

i

z − w

j

m̄

ı̄

z̄ − w̄

̄

k

k

x
0 (A.55)

Taking the limits calculated in (A.54) for the exact expressions in terms of confor-

mal blocks (A.55) relates the coefficients cp,q and dm,m̄ to the products of structure

constants obtained by applying the OPE. The precise relation is:

cp,q · ei
π
2
(hp+hq−hi−h̄i−hj−h̄j) =

∑
ν,ε

aBiα
pν aBjβ

qε C(aaa)kγ
pνqε C

(aaa)1
kγkγ

〈1〉aUHP

dm,m̄ · ei
π
2
(hk−hm−h̄m) =

∑
ρ

Ciαjβ
mρ aBmρ

kγ C
(aaa)1
kγkγ

〈1〉aUHP (A.56)

The phase factors originate from relating z− z̄ = 2iyz to 2yz etc. The sums over ν, ε

and ρ in (A.56) take care of fields with multiplicities. Fields that transform in the

same representation of the Virasoro algebra show the same asymptotic behaviour

and cannot be discriminated by conformal blocks. Hence their structure constants

occur as a sum in front of the corresponding conformal block.

The two sets of conformal blocks in (A.55) are related by a basis transformation.

This transformation can be carried out in several steps making use of two basic

moves of braiding and fusion implemented by the B– and F–matrix (see section 4.3

for details). One possible way to perform the basis transformation is as follows:

0
z̄

p
i

z − z̄
ı̄

p

w̄

q
j

w − w̄

̄

k

k

x
0

=
∑
r

(
F

[
j ̄

p k

])−1

qr

· 0
i

z
i

ı̄

z̄

p
j

w
r

̄

w̄
k

k

x
0

=
∑
r,m

Fqr

[
k ̄

p j

]
B(−)

pm

[
ı̄ j

i r

]
· 0

i

z
i

j

w
m

ı̄

z̄
r

̄

w̄
k

k

x
0
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=
∑
r,m,m̄

Fqr

[
k ̄

p j

]
B(−)

pm

[
ı̄ j

i r

]
Frm̄

[
ı̄ ̄

m k

]
· 0

w

m

i

z − w

j

m
w̄

m̄

ı̄

z̄ − w̄

̄

k

k

x
0

=
∑
r,m,m̄

e−iπ(hi+hr−hp−hm)Fqr

[
k ̄

p j

]
Fpm

[
ı̄ r

i j

]
Frm̄

[
ı̄ ̄

m k

]

· 0
w̄

k
w − w̄

m

i

z − w

j

m̄

ı̄

z̄ − w̄

̄

k

k

x
0 (A.57)

Putting (A.55), (A.56) and (A.57) together we recover the sewing constraint (5.26):∑
ρ

Ciαjβ
mρ aBmρ

kγ C
(aaa)1
kγkγ

〈1〉aUHP

=
∑
p,q

(∑
ν,ε

aBiα
pν aBjβ

qε C(aaa)kγ
pνqε C

(aaa)1
kγkγ

〈1〉aUHP

)
·
∑
r

ei
π
2
(hk+hp−hq−2hr+hm−h̄m−hi+h̄i+hj+h̄j)

· Fqr

[
k ̄

p j

]
Fpm

[
ı̄ r

i j

]
Frm̄

[
ı̄ ̄

m k

]
(A.58)

The summation range for r is principally over all entries in the Kac-table (quotiened

by Z2) but the F–matrix entries will only be nonzero if the following three fusions

are allowed:

r

j
p r

̄

k r

ı̄

m (A.59)
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A.7 Uniqueness of the boundary structure constants

A-series

To give necessary expressions for the boundary structure constants it is enough only

to consider equation (5.20). The following table summarises the line of argument

in this section by describing the boundary situations considered, which constant it

fixes, and what the remaining freedom to rescale the boundary fields is:

boundary situation s.c. fixed eqn. remaining freedom

1 b c b 1b j j b C
(bcb)1
jj (A.65) b 6=c, j 6=1 : {ψ(bc)

j , ψ
(cb)
j } →

{λ · ψ(bc)
j , λ−1 · ψ(cb)

j }
b = c, j 6=1 : {ψ(bb)

j } → {±ψ(bb)
j }

1 b 1 d 1b b d d C
(b1d)q
bd (A.67) none

a b 1 d ai b d ` C
(dab)q
`i (A.69) none

In order to simplify the notation when rescaling subsets of boundary operators it is

helpful to introduce an ordering on the boundary conditions (1) < (a1) < (a2) < . . . .

The particular order one chooses is not important.

As a first step consider the relation coming from taking the two different OPE’s

in the 3-point function:

C
(abc)k
ij C

(aca)1
kk = C

(bca)i
jk C

(aba)1
ii (A.60)

Setting i=1, k=j, b=a in (A.60) leads to C
(aac)j
1j =C

(aaa)1
11 . Similarly, setting j=1

resp. k=1 leads to C
(abb)i
i1 =C

(bba)i
1i resp. C

(aaa)1
11 =C

(baa)i
11 . It follows that consistent

behaviour of the identity field on the 1-boundary C
(111)1
11 =1 already implies consistent

behaviour of the identity on all other boundaries:

C
(aab)i
1i = 1 C

(abb)i
i1 = 1 ∀a, b, i (A.61)

Any given solution of the sewing constraints (5.20)–(5.23) must already fulfil (A.61).

To see how boundary operators couple to the identity, first consider (5.20) with

a=1, d=b, i=`=b, j=k, q=1: The sum reduces to p=c and with (A.60) in the form

C
(cb1)c
jb C

(1c1)1
cc =C

(1cb)b
cj C

(1b1)1
bb one obtains:

C
(bcb)1
jj

(
Fc1

[
j j

b b

])−1

= C
(1bc)c
bj C

(1cb)b
cj (A.62)
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Exchanging b ↔ c leaves the RHS invariant. Transforming the F-matrix element

using (A.48) we finally get:

S1
cC

(cbc)1
jj = S1

bC
(bcb)1
jj (A.63)

Any solution has to fulfil this identity. In particular this implies that independent

of the expectation values of the identity 〈1〉a we cannot set both C
(cbc)1
jj and C

(bcb)1
jj

to one.

We shall now make use of the freedom to rescale the fields. Note that the identity

field 1 is fixed by the property 1 · 1=1. For b < c and j 6=1 we rescale ψ
(bc)
j → λ · ψ(bc)

j ,

resulting in:

C
(cbc)1
jj → λC

(cbc)1
jj C

(bcb)1
jj → λC

(bcb)1
jj (A.64)

For an appropriate λ we get, for all b < c, j 6=1:

C
(cbc)1
jj =

(
F1j

[
c b

c b

])−1
S1

1

S1
c (A.65)

In particular (A.64) implies that once the C
(cbc)1
jj are adjusted for b < c one is no

longer free to rescale C
(cbc)1
jj for b > c. However (A.63) implies that (A.65) holds

also for b > c, j 6=1. For b=c, j 6=1 rescaling ψ
(bb)
j → λ · ψ(bb)

j gives C
(bbb)1
jj → λ2C

(bbb)1
jj ,

so that bringing C
(bbb)1
jj to the form (A.65) only fixes ψ

(bb)
j up to a sign. Setting j=1,

together with (A.49) shows consistency with C
(bbb)1
11 =1. Thus (A.65) is valid for all

values of b, c, j. The scaling of the operators {ψ(bc)
j , ψ

(cb)
j } for b 6=c, j 6=1 is now fixed

up to {ψ(bc)
j , ψ

(cb)
j } → {λ · ψ(bc)

j , λ−1 · ψ(cb)
j }, which leaves (A.65) invariant. ψ

(bb)
j , j 6=1

is fixed up to sign.

Taking (5.20) with a=c=1, i=j=b, k=`=d, p=1 and using (A.60) and (A.65) re-

sults in:

C
(b1d)q
bd C

(d1b)q
db =

(
F1q

[
d b

d b

])2

(A.66)

For b > d, q 6=1 we rescale {ψ(db)
q , ψ

(bd)
q } → {λ · ψ(db)

q , λ−1 · ψ(bd)
q } such that:

C
(b1d)q
bd = F1q

[
d b

d b

]
(A.67)

(A.66) now implies that (A.67) also holds for b < d. For b=d, q 6=1 we are still free to
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choose the sign of ψ
(bb)
q → ±ψ(bb)

q . This allows us to alter the sign of C
(b1b)q
bb to match

(A.67). The case q=1 can occur only for b=d and we get C
(b1b)1
bb =S1

1/S1
b, consistent

with the normalisation (A.65). Thus (A.67) holds for all b, d, q. The scaling of all

boundary operators is now fixed.

Taking (5.20) with c=1, j=b, k=d the sum reduces to p=a. Using (A.60) and

rearranging terms one obtains:

C
(dab)q
`i = Faq

[
b d

i `

]
C

(aba)1
ii C

(dad)1
``

C
(dbd)1
qq C

(a1a)1
aa

C
(b1a)i
ba C

(a1d)`
ad

C
(b1d)q
bd

(A.68)

All the C-terms cancel and after renaming indices one is left with:

C
(abc)k
ij = Fbk

[
a c

i j

]
∀a, b, c, i, j, k (A.69)

D-series

In this section we will construct a set of boundary structure constants that solve the

sewing constraint (5.24) under the condition that there exists a solution at all (for

the given field content). The results have already been summarised in section 6.2

Recall the assumptions we made in section 6.2 as starting point for the calculation

(a) the D-series field content obtained in section 6.1

(b) the assumption that all two-point functions 〈ψ(ab)
iα

(x)ψ
(ba)
iα

(y)〉 are nonzero, i.e.

C
(aba)1
iαiα

6=0 for all a, b, iα that are allowed by (a).

Nonzero boundary structure constants

First we investigate the consequence of (b), i.e. that all two-point functions are

nonzero. Eqn. (5.24) can be rewritten so that the two-point structure constants

cancel. To do so we set `=1 and obtain the three-point identity:

a b c aiα jβ kγ ⇒ C
(bca)iα
jβkγ

C
(aba)1
iαiα

= C
(abc)kγ
iαjβ

C
(aca)1
kγkγ

(A.70)

Applying this to the r.h.s. of (5.24) we get:

a b c d aiα jβ kγ `δ

⇒
∑
ε

C
(bcd)qε
jβkγ

C
(abd)`δ
iαqε

=
∑
p,ν

C
(abc)pν
iαjβ

C
(acd)`δ
pνkγ

Fpq

[
j k

i `

]
(A.71)
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Note that there is no freedom the rescale the identity field 1 on any boundary.

Its normalisation is already fixed by the condition that 1 · ψ(xy)
iα

=ψ
(xy)
iα

, i.e. that

C
(xxy)jβ
1iα

=δi,jδα,β and similar for C
(xyy)jβ
iα1 .

Define an operation ‘∗’ on the labels e, o, u as follows: xe
∗=xo, xo

∗=xe

and xu
∗=xu, i.e. in terms of Kac-labels: (r, s)∗ = (r, q − s). Take

ω ω x ω ωωo xi xi ωo with q=1 and x any boundary condition. The sum on

the r.h.s. of (A.71) reduces to pν=xi
∗ because the representations xi and ωo can fuse

only to xi
∗. We get:

C(ωxω)1
xixi

= C(ωωx)xi
∗

ωoxi
C

(ωxω)ωo
xi∗xi Fxi∗1

[
ωo ωo

xi xi

]
6= 0 (A.72)

The l.h.s. is nonzero due to assumption (b) and hence all terms on the r.h.s. have

to be nonzero for a solution with properties (a) and (b).

In the same way, for an n-type boundary a and an arbitrary boundary x we can

consider ω x a x ωxi ku ku xi , again with q=1. The sum reduces to pν=au and

we are left with:

C
(xax)1
kuku

= C
(ωxa)au
xiku

C
(ωax)xi
auku

Fau1

[
xi xi

k k

]
6= 0 (A.73)

Again all terms on the r.h.s. have to be nonzero.

Mixed boundaries

Define the boundary condition label µ as µ=(1, q
2
), i.e. the first node of the A-

diagram and the upper end node of the D-diagram in (6.6). Consider (A.71) with

µ ω ω ω µµu ωo ωo µu and qε=1. The sum on the r.h.s. reduces to pν=µu and we

are left with:

C(ωωω)1
ωoωo =

(
C(µωω)µu
µuωo

)2
Fµu1

[
ωo ωo

µu µu

]
(A.74)

Using (A.70) in the form µ ω ω µµu ωo µu implies C
(µωω)µu
µuωo =C

(ωωµ)µu
ωoµu . We start

by rescaling ψ
(ωω)
ωo such that:

C(ωωµ)µu
ωoµu = 1 (A.75)
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From (A.74) it now follows that

C(ωωω)1
ωoωo = A where A = Fµu1

[
µu µu

ωo ωo

]
(A.76)

defining the constant A. We use the freedom to rescale ψ
(ωx)
xo to fix C

(ωωx)xe
ωoxo =A for

any i-type boundary x.

Let a be an n-type boundary. Taking ω ω µ a ωωo µu `u au and qε=au the

sum reduces to pν=µu and we see, using (A.75):

C
(ωµa)au
µu`u

C(ωωa)au
ωoau = C

(ωµa)au
µu`u

Fµuau

[
ωo au

µu `

]
(A.77)

The representation `u lives on µ a and the fusion µu, au → `u exists by

construction of the field content. C
(ωµa)au
µu`u

is nonzero (see (A.73)) and the F-matrix

element has to be independent of the specific choice of `u we make. We denote this

F-matrix element with Ba:

Ba = Fµuau

[
ωo au

µu `

]
where µ a`u (A.78)

Comparing to (A.77) we see C
(ωωa)au
ωoau =Ba. It is also useful to define a constant Cx

for any boundary x as follows:

x of i-type: Cx = Fxe1

[
ωo ωo

xo xo

]
x of n-type: Cx = Fxu1

[
ωo ωo

xu xu

]
(A.79)

From (A.71) with ω ω ω a ωωo ωo au au , qε=au and pν=1 we get the following

identity for any n-type boundary a:

Ca ·Ba =
A

Ba

(A.80)

Let x and y be two boundaries s.t. one is of n-type. Then by rescaling ψ
(xy)
`u

for

x 6=ω and 6̀=1 we fix C
(ωxy)yβ
xα`u

=1 where α, β stand for the labels e or u, as applicable

for the present boundary conditions. Let x be an i-type boundary. We can use

(A.71) to calculate the structure constants involving xo instead of xe:

C
(ωxa)au
xo`u

=
A

Ba

Fxeau

[
ωo au

xo `

]
C

(ωax)xo
au`u

=
Ba

A
Fauxo

[
ωo xe

au `

]
(A.81)
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Using (A.71) and the identities in appendix A.5 one can verify that the definitions

above give rise to symmetrical structure constants, i.e. C
(ωxy)yγ
xα`u

=C
(yxω)yγ
`uxα

where at

least one of x, y is of n-type.

i-type boundaries

Let x, y be i-type boundaries. Consider the structure constant C
(ωxy)yγ
xα`β

where the

labels α, β, γ are either e or o (as u cannot occur in this situation). We will now try

to regauge the boundary fields such that the following rule holds:

The structure constant C
(ωxy)yγ
xα`β

can be nonzero only if {α, β, γ} is one of the

(unordered) sets {e, e, e} or {e, o, o}.

Suppose that the representation ` on x y occurs with multiplicity one.

Recall from the analysis of the D-series boundary field content in section 6.1 that

then the above rule is automatically true, since e.g. if ` gets label e then it occurs

in the fusion of xe, ye or xo, yo but not in the fusion of xe, yo and xo, ye.

If the representation ` occurs with multiplicity two, we can use the freedom to

form linear combinations of the two fields to make the above rule true. This is

explained in more detail below.

Let ` be a representation that occurs with multiplicity two. Let ψ
(xy)
`e

and ψ
(xy)
`o

be the two fields. Recall that we normalised the two-point functions in such a way

that only 〈ψ(xy)
`e
ψ

(yx)
`e
〉 and 〈ψ(xy)

`o
ψ

(yx)
`o
〉 are nonzero. When taking linear combinations

of the primary fields one has to preserve this condition, or the form of the sewing

constraints would change. One gets the following constraints:

〈ψ(xy)
`e
ψ

(yx)
`o
〉 = 0 , 〈ψ(xy)

`o
ψ

(yx)
`e
〉 = 0 (A.82)

Now consider the following change of basis:(
ψ

(xy)
`e

ψ
(xy)
`o

)
new

=

(
a b

c d

)(
ψ

(xy)
`e

ψ
(xy)
`o

)
old

,

(
ψ

(yx)
`e

ψ
(yx)
`o

)
new

=

(
ã b̃

c̃ d̃

)(
ψ

(yx)
`e

ψ
(yx)
`o

)
old

(A.83)

where the two matrices are invertible. The constraints (A.82) amount to:

ac̃ · C(xyx)1
`e`e,old + bd̃ · C(xyx)1

`o`o,old
= 0 cã · C(xyx)1

`e`e,old
+ db̃ · C(xyx)1

`o`o,old
= 0 (A.84)

We see that we can choose the new basis of ψ(xy) arbitrarily and the above condition

fixes the direction, but not the length of the new basis vectors for ψ(yx).
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This change of basis can be used to bring the following 2×2–matrix composed

of structure constants to diagonal form:(
C

(ωxy)ye
xe`e

C
(ωxy)yo
xe`e

C
(ωxy)ye
xe`o

C
(ωxy)yo
xe`o

)
−→

(
∗ 0

0 ∗

)
(A.85)

We now redefined the structure constants C
(ωxy)yγ
xα`β

in such a way that they obey our

desired coupling relations {e, e, e} or {e, o, o}.
The change of basis fixes the new ψ

(yx)
`e

and ψ
(yx)
`o

up to rescaling. However they

do already obey the odd/even-coupling relation. To see this consider (A.71) in the

form:

ω x y x ωxe `e `o xe , qε=1

⇒ C
(xyx)1
`e`o

= C
(ωxy)ye
xe`e

C
(ωyx)xe
ye`o

Fye1

[
` `

xe xe

]
(A.86)

The l.h.s. of this equation is zero and on the r.h.s. both C
(ωxy)ye
xe`e

and the F-matrix

entry are nonzero (this can be seen from evaluating C
(xyx)1
`e`e

6=0 instead of C
(xyx)1
`e`o

=0

in (A.86)). Hence C
(ωyx)xe
yeko

=0 as we said.

From C
(ωωx)xe
ωoxo =A in the previous section we can determine C

(ωωx)xo
ωoxe by using

(A.71) and (A.47):

ω ω ω x ωωo ωo xe xe , qε=xo

⇒ C(ωωx)xo
ωoxe =

C
(ωωω)1
ωoωo

C
(ωωx)xe
ωoxo

· F1xo

[
ωo xe

ωo xe

]
=

1

Cx
(A.87)

Next we fix the form of C
(ωxy)yγ
xα`β

. For 6̀=1, x 6=ω we rescale ψ
(xy)
`e

and ψ
(xy)
`o

s.t.:

C
(ωxy)yo
xo`e

= Fxeyo

[
ωo ye

xo `

]
C

(ωxy)yo
xe`o

=


1 if x ≤ y

Fxoyo

 ωo ye

xe `

 if x > y
(A.88)

One can verify that for `=1 indeed C
(ωxx)xo
xo1 =1 and that for x=ω the above reduces

to the expressions for C(ωωx) given before.

As in the case of mixed boundaries one can now check that the definitions in

(A.88) give rise to reflection symmetric structure constants, but this time there is

an exception for x=y: In this case some of the structure constants are antisymmet-

ric under reflection. As opposed to the A-series, for the D-series it is in general

impossible to find a gauge in which all boundary structure constants have reflection
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symmetry. To see this consider (A.71) in the form:

ω x x ω ωxe `o xe ωo

⇒ C
(xxω)xo
`oxe

C(ωxω)ωo
xexo = C

(ωxx)xo
xe`o

C(ωxω)ωo
xoxe Fxoxo

[
xe ωo

` xe

]
(A.89)

Eqn. (A.46) forces the F-matrix entry in (A.89) to square to one. But in general it

does take the values ±1, depending on `o. So no matter how we choose C
(ωxω)ωo
xexo and

C
(ωxω)ωo
xoxe , in general we cannot avoid that if C

(ωxx)xo
xe`o

is symmetric for some values of

`o, it will be antisymmetric for others.

One can verify that (A.88) implies that for even fields alone we get a solution

that resembles the A-series, i.e. C
(ωxy)ye
xe`e

=1, whereas the various structure constants

involving odd fields are:

For x ≤ y: C
(ωxy)yo
xe`o

= 1 ; C
(ωxy)yo
xo`e

= Fxeyo

[
ωo ye

xo `

]
;

C
(ωxy)ye
xo`o

= A · Fxeye

[
ωo yo

xo `

]
· Cy

For x > y: C
(ωxy)yo
xe`o

= Fxoyo

[
ωo ye

xe `

]
; C

(ωxy)yo
xo`e

= Fxeyo

[
ωo ye

xo `

]
;

C
(ωxy)ye
xo`o

= A · Cx (A.90)

General boundary structure constants

Consider (A.71) in the form

ω x y z ωxα ir js zγ , qε=kt

⇒ C
(xyz)kt
irjs

=
∑
β

C
(ωxy)yβ
xαir

C
(ωyz)zγ
yβjs

C
(ωxz)zγ
xαkt

Fyβk

[
xα zγ

i j

]
(A.91)

where the set {α, t, γ} has to be one of {e, e, e}, {e, o, o} or {u, ∗, ∗}. Since all

constants that can occur on the rhs have been computed in the previous two sections,

the general boundary structure constants can be obtained from (A.91).

Suppose all boundaries are of i-type. Then choosing α=e and γ=t reduces the

sum in (A.91) to β=r. In the numerator on the rhs we now see the boundary

structure constant C
(ωyz)zt
yrjs

, which obeys the even/odd coupling rule as seen in the

section dealing with i-type-boundaries. This implies that the even/odd coupling

rule extends to all boundary structure constants, i.e. C
(xyz)kt
irjs

can be nonzero only if
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{r, s, t} is one of the sets {e, e, e}, {e, o, o} or {u, ∗, ∗}.
In (A.91) we can distinguish two cases. First, for x, z of n-type and y of i-type

the sum over β has to be carried out and we get:

C
(xyz)ku
iuju

= Fyek

[
xu zu

i j

]
+
Bx

Bz

· Fxuyo

[
ye ωo

i xu

]
Fyezu

[
zu ωo

j yo

]
Fyok

[
xu zu

i j

]
(A.92)

In all other cases the sum reduces to one term with the result:

C
(xyz)kt
irjs

=
C

(ωxy)yβ
xαir

C
(ωyz)zγ
yβjs

C
(ωxz)zγ
xαkt

Fyβk

[
xα zγ

i j

]
(A.93)

The r.h.s. does not depend on the specific choice of α, β, γ as long as the combinations

{α, r, β}, {β, s, γ} and {α, t, γ} are allowed by the even/odd coupling rule. The

structure constant in the denominator is then automatically nonzero.

We can also investigate the behaviour of the boundary structure constants under

reflection, i.e. given C
(xyz)kt
irjs

, what is C
(zyx)kt
jsir

? Using (A.70) we check that for C
(ωxy)yγ
xα`β

reflection symmetry is equivalent to ε=1 in the following equation:

C
(ωxy)yγ
xα`β

= ε · C
(ωxω)1
xαxα

C
(ωyω)1
yγyγ

C
(ωyx)xα
yγ`β

(A.94)

As remarked in the previous two sections, using the explicit form of the structure

constants derived there, we see that ε=1 in all cases except for one, and that is β=o

and x=y, where we can have ε=± 1. This can be made more precise in the light of

(A.89), if we define:

ε(x, x, `o) = Fxoxo

[
xe ωo

` xe

]
and ε(x, y, `β) = 1 in all other cases (A.95)

Then (A.94) holds with ε = ε(x, y, `i) for all x, y, `i and we can use this relation to

evaluate the reflection property of the general boundary structure constants obtained

in (A.91). We get:

C
(xyz)kt
irjs

=
ε(x, y, ir)ε(y, z, js)

ε(x, z, kt)
· C(zyx)kt

jsir
(A.96)

Note that the fact that some boundary structure constants are anti–symmetric under

reflection is not a particularity of the gauge we chose. For x=y in (A.94), one checks

that rescaling, say, ψ
(ωx)
xα by a factor λ leads to ε→ λ2 · ε. Altogether one cannot get

rid of the sign and keep the structure constants real at the same time.
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A.8 Calculations for the TCSA algorithm

Replacement rules for the bulk perturbation in TCSA

This section gives the calculation leading to the rules (7.22) and (7.23) to calculate

matrix elements of the perturbing bulk fields.

It will be useful to work in polar coordinates z = reiθ:

r ∂
∂r

= z∂ + z∗∂̄ z∂ = 1
2

(
r ∂
∂r
− i ∂

∂θ

)
∂
∂θ

= i
(
z∂ − z∗∂̄

)
z∗∂̄ = 1

2

(
r ∂
∂r

+ i ∂
∂θ

)
(A.97)

When working out the commutator [Ln, φ(z, z∗)] one has to remember that on the

UHP one gets a contribution from both, z and z∗:

[Ln, φ(z, z∗)] =
(
h(n+ 1)(zn + (z∗)n) + zn+1∂ + (z∗)n+1∂̄

)
φ(z, z∗) . (A.98)

Recall that we have assumed that hφ = h̄φ. In polar coordinates the commutator

reads

[Ln, φ(r, θ)] = rn
(
2(n+1)hφ cosnθ + cosnθ · r ∂

∂r
+ sinnθ · ∂

∂θ

)
φ(r, θ) . (A.99)

In particular, for r= 1 we have

[Ln − cos(nθ)L0, φ(1, θ)] =
(
2nhφ cos(nθ) + sin(nθ) ∂

∂θ

)
φ(1, θ) . (A.100)

Consider two arbitrary states |α〉, |β〉 ∈ Hab. Define the numbers |α| and |β| via

L0|α〉 = |α| · |α〉 and L0|β〉 = |β| · |β〉. Then partial integration1 yields the formula∫ π

0

dθ〈α|[Ln, φ(1, θ)]|β〉 =
(
n(2hφ−1) + |α| − |β|

) ∫ π

0

dθ cos(nθ)〈α|φ(1, θ)|β〉 .

(A.101)

Note that the integral involving the cos(nθ) term is the same for n and −n. Elimi-

1 No boundary terms can appear in the partial integration if the integral is finite to start with.
To illustrate the reason consider the right boundary. For θ → 0, the correlator 〈i|φ(1, θ)|j〉 will
have leading behaviour const · θν . If the integral is finite, then ν > −1. The boundary term would
have the form sin(nθ)〈i|φ(1, θ)|j〉, with asymptotics const · θν+1. Thus the boundary terms vanish.
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nating the integral leads to our first replacement rule∫ π

0

dθ〈α|Lnφ(eiθ, e−iθ)|β〉

=
n(2hφ−1)+|α|−|β|
n(1−2hφ)+|α|−|β|

(∫ π

0

〈α|L−nφ|β〉 −
∫ π

0

〈α|φL−n|β〉
)

+

∫ π

0

〈α|φLn|β〉 . (A.102)

Note that the denominator in (A.102) can become singular for certain combinations

of n, hφ, |α|, |β|. From (A.101) we see that this occurs if
∫
〈α|[L−n, φ]|β〉 = 0. As men-

tioned in the main text, in this case, if n 6=2 we can replace Ln=
1

n−2
(Ln−1L1−L1Ln−1)

and if n=2 (which can only happen if 4hφ is an integer), one can resort to (A.101).

Eqn. (A.102) reduces the general element (7.21) to a sum of terms of the form∫ π
0
〈i|φ(eiθ, e−iθ)L−n1 . . . L−nm|j〉. To annihilate the L−n’s on the left we use the

commutator (A.100) to obtain the rule∫ π

0

f(θ)〈i|φ(eiθ, e−iθ)L−n|α〉

=
(
n(2hφ−1) + |α| − hi

) ∫ π

0

cos(nθ)f(θ)〈i|φ|α〉 −
∫ π

0

sin(nθ)f ′(θ)〈i|φ|α〉 .

(A.103)

where |i〉 is a highest weight state and f(θ) is some function of θ.

By now we have brought (7.21) to the form
∫
f(θ)〈i|φ|j〉. We still have to do one

integration per matrix element of Hbulk. As it turns out the differential equations

〈i|φ|j〉 fulfil allow us to set up a recursion for these integrals.

Recursion relation for bulk integrals

We will derive the differential equation associated to the null state of the per-

turbing field φ(z, z∗). For example, if φ has Kac-labels (1, 2), then ((L−2 −
3

2(2h+1)
L−1L−1).φ)(z, z∗)=0. As before, the notation (L−n.χ)(z, z∗) stands for

[L−n(z), χ(z, z∗)], i.e. (ζ − z)n+1T (ζ) is integrated around a small circle containing

z, but no other fields (in particular not z∗).

Suppose the field χ(z, z∗) is of the form (L−n1 . . . L−nm .φ)(z, z∗). Then by contour

deformation one can demonstrate the replacement rule

〈i|(Ln.χ)(z, z∗)|j〉 =(−1)n+1
(
(n+1)

(
hjz

n + hφ(z − z∗)n
)

+ zn+1(∂ + ∂̄)− (z − z∗)n+1∂̄
)
〈i|χ(z, z∗)|j〉 . (A.104)

Applying this several times allows us to turn a null-state condition into a differential
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equation. With (A.97) the complex derivatives can be turned into ∂θ and ∂r. To get

rid of the radial derivatives one can evaluate 〈i|(L0−hi)χ(z, z∗)|j〉=0 with the result

r ∂
∂r
〈i|χ(r, θ)|j〉 =

(
hi − hj − h(χ)− h̄(χ)

)
〈i|χ(r, θ)|j〉 , (A.105)

where h(χ) and h̄(χ) are the left/right conformal weights of the field χ(z, z∗). With

this rule and z = eiθ we can rewrite (A.104) as

〈i|(Ln.χ)(z, z∗)|j〉 = (−1)n+1
(
(n+1)

(
hje

inθ + hφ(2i sin θ)
n
)

+ 1
2

(
hi−hj−h(χ)−h̄(χ)

)(
einθ + ei(n+2)θ − eiθ(2i sin θ)n+1

)
+ i

2

(
ei(n+2)θ − einθ − eiθ(2i sin θ)n+1

)
∂
∂θ

)
〈i|χ(z, z∗)|j〉 . (A.106)

We end up with a linear differential equation in θ:

Dθ〈i|φ(1, θ)|j〉 = 0 (A.107)

Since the correlator is a real function, this equation actually corresponds to two

differential equations, resulting from taking only the real or imaginary part of Dθ.

This is not too surprising, since alternatively we could have considered the additional

null-state on the anti-holomorphic part of φ(z, z∗).

Inserting (A.107) into the integral
∫ π

0
f(θ)〈i|φ(1, θ)|j〉dθ and shifting the deriva-

tives to f(θ) using partial integration gives a relation of the form∫ π

0

(
D̃θf(θ)

)
〈i|φ(1, θ)|j〉dθ = 0 . (A.108)

The rule (A.103) only generates sin(nθ) and cos(nθ) terms. It is thus possible to

express the function f(θ) as a finite linear combination of (sin θ)n and cos θ(sin θ)n.

Let Sn and Cn be defined as

Sn :=

∫ π

0

(sin θ)n〈i|φ(1, θ)|j〉dθ , Cn :=

∫ π

0

cos θ (sin θ)n〈i|φ(1, θ)|j〉dθ (A.109)

Evaluating condition (A.108) for these expressions gives the desired recursion for

matrix elements. In the following we list the resulting relation for the level two null

state.

If the perturbing bulk field φ(z, z∗) has Kac-labels (1, 2) or (2, 1) then it has a



162 Appendix

level two null state of the form(
L−2 −

3

2(2hφ + 1)

)
|φ〉 = 0 . (A.110)

The real and imaginary part of the second order differential equation are a bit

cumbersome, at least when worked out with Mathematica. It turns out, though,

that they are equivalent if hi=hj and can be combined to a first order equation if

hi 6=hj:

hi=hj=h :
{

3
4(1+2hφ)

sin θ · ∂θ∂θ − 1
2
cos θ · ∂θ +

hφ
2

(sin θ)−1 (A.111)

−
( h2

φ

1+2hφ
− 2h

)
sin θ

}
〈h|φ(1, θ)|h〉 = 0

hi 6= hj :
{
3 sin θ · ∂θ − (1−2hφ) cos θ

}
〈i|φ(1, θ)|j〉 = 0 (A.112)

Equation (A.112) can of course easily be integrated, with the result, for some con-

stant C,

hi 6= hj : 〈i|φ(1, θ)|j〉 = C · (2 sin θ)
1+2hφ

3 . (A.113)

Note that if hφ=h12 we have (1 + 2hφ)/3 = h13 − 2h12 and similarly for hφ=h21.

Using that for a > −1 we have
∫ π

0
(sin θ)a=

√
πΓ(1

2
+ a

2
)/Γ(1 + a

2
) the expressions Sn

and Cn can be given explicitly as

Sn = C · 2
1+2hφ

3
√
π

Γ(
2hφ+3n+4

6
)

Γ(
2hφ+3n+7

6
)
, Cn = 0 . (A.114)

For (A.111), after some algebra (done with Mathematica), we find the recursion

relations

Sn =
(2hφ−n+1)(2hφ+3n−2)

4hφ(hφ+4h+n−1) + 8h− n(3n−2)
· Sn−2 ,

Cn =
(2hφ−n+1)(2hφ+3n−2)

4hφ(hφ+4h+n) + 8h− 1− n(3n+4)
· Cn−2 . (A.115)

Since (A.111) originates from a level 2 null state it can also be integrated. With

h= 1
4t

(
d2−(1−t)2

)
and t=p/q in M(p, q) (recall that h12=

3
4
t− 1

2
and h13=2t−1) we

find the two solutions to be

f 11(θ) = (2 sin θ)1−3
2
t(cos θ)t−d−1 · 2F1

(
1+d−t

2
, 2+d−t

2
; 3−2t

2
; −(tan θ)2

)
f 13(θ) = (2 sin θ)

1
2
t(cos θ)−t−d · 2F1

(
d+t
2
, d+t+1

2
; 2t+1

2
; −(tan θ)2

)
. (A.116)
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These solutions are only valid for θ∈]0, π/2[, i.e. as yet they give only half of the

block. Quite often one has the situation where the left boundary is fixed to be 11.

In this case the field φ can only couple to the identity on the left boundary. Hence

for θ∈]π/2, π[ we have f 11(π−θ). From there we can use analytic continuation of

blocks to get

f(θ) =

f 11(π−θ) ;π/2 ≤ θ < π

A11 f
11(θ) + A13 f

13(θ) ; 0 < θ < π/2

Aq =
∑
p

F1p

[
h φ

h φ

]
e2πi(h+hφ−

1
4
hq−hp)Fpq

[
φ φ

h h

]
(A.117)

Since this is the unique block with asymptotics (2ε)−2hφ for θ=π−ε, it is proportional

to the correlator

〈ψ(1a)
h |φ12(1, θ)|ψ(a1)

h 〉 = C̃ · f(θ) . (A.118)

The real gain of the recursive method comes from the cases where the exact function

for the correlator is not available for numerical integration. In this case one has to

resort to more complicated (and slower) methods to finding the conformal blocks,

like numerically solving the differential equations. Using the recursion it is enough

to compute the first few Sn and Cn to high accuracy by integrating a sufficiently

good numerical solution.
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