Hints and solutions for problem sheet #09 Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 35

1 implies 2 is clear.

2 implies 1: need to show: the intersection of M_i with sum of M_j over all $j \neq i$ is 0. Suppose not. Then $m_i = \sum_j m_j$ for some m_i in M_i and m_j in M_j . But the sum has to be finite. Hence there is already a finite subset for which the sum is not direct.

Problem 36

Submodule L: This follows from 3 of Theorem 4.4.1. Think of L as a submodule of M. Then $M = L \oplus X$ for X also a submodule of M. All submodules of L are also submodules of M. Take a submodule $S \subset L$. This gives rise to a decomposition of $M, M = S \oplus Y$. The induced decomposition of L then follows by intersection: $L = L \cap M = L \cap (S \oplus Y) = S \oplus (L \cap Y)$. Then S satisfies 3 and is thus semisimple.

Quotient module N: We may take N = M/L. L a submodule, by 4.4.1 (3), can write $M = L \oplus X$ for some X also a submodule. That means that $N = M/L \cong (L \oplus X)/L \cong X$, so is a submodule of M and therefore semisimple by the first part.

Converse statement: This is false in general.

Example 1: Take $\mathbb{C}[X]$. In Problem 34 we saw that $\mathbb{C}[X]$ possesses indecomposable modules M of length 2. Such a module has a simple submodule \mathbb{C}_{λ} and a simple quotient, which is again \mathbb{C}_{λ} , for some $\lambda \in \mathbb{C}$, i.e. it sits in a short exact sequence $\mathbb{C}_{\lambda} \to M \to \mathbb{C}_{\lambda}$.

Example 2: Consider the short exact sequence $\mathbb{Z}/2\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z}$ of \mathbb{Z} -modules. Here, $\mathbb{Z}/2\mathbb{Z}$ is simple as a \mathbb{Z} -module, but $\mathbb{Z}/4\mathbb{Z}$ is not.

Problem 37

Note that $P|_U = \text{Id}$ and P(V) = U.

Claim 1: Let $x \in G$. We need to show that $\overline{P}(xv) = x\overline{P}(v)$. Let, for $g \in G h := x^{-1}g$. Then

$$\bar{P}(xv) = \frac{1}{|G|} \sum_{g \in G} (gPg^{-1})(xv) = \frac{1}{|G|} \sum_{h \in G} x(hPh^{-1})(v) = x\bar{P}(v).$$

Claim 2: For $u \in U$ and $g \in G$, we have $gu \in U$, therefore P(gu) = gu. Now

$$\bar{P}(u) = \frac{1}{|G|} \sum (gPg^{-1})u = \frac{1}{|G|} (gP(g^{-1}u)) = \frac{1}{|G|} \sum gg^{-1}u = \frac{1}{|G|} \sum u = u$$

Let $u \in V$. Then $\bar{P}(u) \in U$ and it follows that $\bar{P}^2(v) = \bar{P}(v)$.

Now let $W' := \ker(\bar{P})$. Then, as \bar{P} is a K[G]-hom. W' is a K[G]-module. By idempotence of \bar{P} , V decomposes as

$$V = \ker(\bar{P}) \oplus \ker(\bar{P} - 1) = W' \oplus U.$$

Problem 38

- 1. The centre of $R \times S$ is $Z(R) \times Z(S)$. Composing the embedding $\iota : K \to Z(R) \times Z(S)$ with the projections $R \times S \to R$ and $R \times S \to S$ (which are ring-homomorphisms) gives the K-algebra structures on R and S.
- 2. Suppose $M \in Z(\operatorname{Mat}_n(R))$. Then $E_{ij}ME_{kl} = ME_{ij}E_{kl} = \delta_{j,k}ME_{il}$. But also $E_{ij}ME_{kl} = M_{jk}E_{il}$. Taking i = l and summing over i gives $\delta_{j,k}M = M_{jk}I_{n\times n}$. Thus M is a multiple of the identity matrix. A matrix of the form $rI_{n\times n}$ commutes with all matrices of the form $sI_{n\times n}$ $(r, s \in R)$ iff $r \in Z(R)$.

Let $\iota : K \to Z(\operatorname{Mat}_n(R))$ give the algebra structure on matrices. Then $\iota(k) = \varphi(k)I_{n \times n}$ for a unique $\varphi(k) \in Z(R)$. One checks that $\varphi : K \to Z(R)$ is a ring homomorphism. This gives the algebra structure on R.

3. Claim: Let A be a semisimple K-algebra. Then there are division algebras D_1, \ldots, D_n over K and $m_1, \ldots, m_n > 0$ such that

$$A \cong \operatorname{Mat}_{m_1}(D_1) \times \cdots \times \operatorname{Mat}_{m_n}(D_n)$$

as K-algebras. The pairs (D_i, m_i) are unique up to ordering.

Proof: The statement is true for the underlying rings. Since the lhs is a K-algebra, the ring-isomorphism induces a K-algebra structure on the rhs. By parts 1 and 2, the D_1, \ldots, D_n are also K-algebras, hence division algebras over K. By construction, the ring isomorphism we started from is now an isomorphism of K-algebras.

Uniqueness works in the same way as for rings in Proposition 4.4.13.

4. We know from Section 1.2 that all finite-dimensional division algebras over \mathbb{R} are \mathbb{R} , \mathbb{C} and \mathbb{H} . There are of dimension 1,2,4, respectively, over \mathbb{R} . The corresponding matrix altebras have dimension n^2 , $2n^2$, $4n^2$ over \mathbb{R} . Hence we

must find all ways to write 9 as a sum of the numbers 1, 2, 4, 8, 9. We have

To each number except 4 there is a unique choice of matrix algebra in the corresponding direct sum decomposition. For 4 one has the choice between $Mat_2(\mathbb{R})$ and \mathbb{H} . There are 7 sums without 4s, 3 sums with one 4 and 1 sum with two 4s. Thus there are 7 + 6 + 3 = 16 isomorphism classes of 9-dimensional semisimple \mathbb{R} -algebras.

Problem 39

The infinite product S is never semisimple.

Solution 1: Since all R_i are non-zero, by Prop. 4.2.2 it has a simple module M_i . Then M_i is also an S-module: for $s := (r_j)_{j \in I}$ and $m \in M_i$ define $s.m := r_i.m$. Clearly, 1) M_i is simple also as an S-module, and 2) for $i \neq j$ we have $M_i \ncong M_j$ as S-modules (since R_i acts non-zero on M_i but zero on M_j).

Thus there is an infinite number of mutually non-isomorphic simple modules for S. By Prop. 4.4.8, S cannot be semisimple.

Solution 2: Consider $I = \bigoplus_{i \in I} R_i \subset S$. This is an S-submodule of ${}_SS$ (why?). Suppose there is a submodule J such that $I \oplus J = S$. Then $J \neq \{0\}$ and we can take a non-zero element $x \in J$. Since J is a submodule (i.e. a left ideal) of S, also $rx \in J$ for any choice of r. Let x_j be a non-zero entry of x. Take r to be the family which is 1 in entry j and zero else. Then rx is the family which is x_j in entry j and zero else. In particular, $rx \neq 0$ and $rx \in I$. Contradiction (to $I \cap J = \{0\}$).

Problem without points

1. For each integer $m \in \mathbb{Z}$ define $\rho_m : \mathbb{C}[G] \to \mathbb{C}, \rho_m([x]) = e^{2\pi i m x}$. Note that that does not depend on the representative $x \in \mathbb{R}$ of $[x] \in \mathbb{R}/\mathbb{Z}$.

- 2. Take $I = \ker(\rho_0)$. Explicitly, I consists of all elements of the form $\sum_{i=1}^n \lambda_i[x_i]$ such that $\sum_{i=1}^n \lambda_i = 0$. Suppose there is a complement J. Then J must be non-zero. Let $y \in J$, $y \neq 0$. We can write $y = \sum_{i=1}^n \mu_i[x_i]$ for some n, μ_i, x_i . Pick a real number r such that $[x_i + r] \neq [x_j]$ for all i, j. Since J is a submodule, also $z = \sum_{i=1}^n \mu_i[x_i + r]$ lies in J. But then also $y z \in J$, and $y z \neq 0$. But the sum of coefficients is 0, hence $y z \in I$. Contradiction (to $I \cap J = \{0\}$).
- 3. No, because in this statement what one means by a representation is a *continuous* group homomorphism $G \to \operatorname{GL}(V)$ for some complex (or real) vector space V, and not about all representations.