
Hints and solutions for problem sheet #09
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 35

1 implies 2 is clear.
2 implies 1: need to show: the intersection of Mi with sum of Mj over all j 6= i
is 0. Suppose not. Then mi =

∑
jmj for some mi in Mi and mj in Mj . But the

sum has to be finite. Hence there is already a finite subset for which the sum is
not direct.

Problem 36

Submodule L: This follows from 3 of Theorem 4.4.1. Think of L as a submodule
of M . Then M = L ⊕ X for X also a submodule of M . All submodules of
L are also submodules of M . Take a submodule S ⊂ L. This gives rise to a
decomposition of M , M = S⊕Y . The induced decomposition of L then follows
by intersection: L = L ∩M = L ∩ (S ⊕ Y ) = S ⊕ (L ∩ Y ). Then S satisfies 3
and is thus semisimple.
Quotient module N : We may take N = M/L. L a submodule, by 4.4.1 (3), can
write M = L⊕X for some X also a submodule. That means that N = M/L ∼=
(L⊕X)/L ∼= X, so is a submodule of M and therefore semisimple by the first
part.
Converse statement: This is false in general.
Example 1: Take C[X]. In Problem 34 we saw that C[X] possesses indecompo-
sable modules M of length 2. Such a module has a simple submodule Cλ and a
simple quotient, which is again Cλ, for some λ ∈ C, i.e. it sits in a short exact
sequence Cλ →M → Cλ.

Example 2: Consider the short exact sequence Z/2Z ·2−→ Z/4Z π−→ Z/2Z of Z-
modules. Here, Z/2Z is simple as a Z-module, but Z/4Z is not.

Problem 37

Note that P |U =Id and P (V ) = U .
Claim 1: Let x ∈ G. We need to show that P̄ (xv) = xP̄ (v). Let, for g ∈ G h :=
x−1g. Then

P̄ (xv) =
1

|G|
∑
g∈G

(gPg−1)(xv) =
1

|G|
∑
h∈G

x(hPh−1)(v) = xP̄ (v).

Claim 2: For u ∈ U and g ∈ G, we have gu ∈ U , therefore P (gu) = gu. Now

P̄ (u) =
1

|G|
∑

(gPg−1)u =
1

|G|
(gP (g−1u)) =

1

|G|
∑

gg−1u =
1

|G|
∑

u = u

Let u ∈ V . Then P̄ (u) ∈ U and it follows that P̄ 2(v) = P̄ (v).
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Now let W ′ := ker(P̄ ). Then, as P̄ is a K[G]-hom. W ′ is a K[G]-module. By
idempotence of P̄ , V decomposes as

V = ker(P̄ )⊕ ker(P̄ − 1) = W ′ ⊕ U.

Problem 38

1. The centre of R × S is Z(R) × Z(S). Composing the embedding ι : K →
Z(R) × Z(S) with the projections R × S → R and R × S → S (which are
ring-homomorphisms) gives the K-algebra structures on R and S.

2. Suppose M ∈ Z(Matn(R)). Then EijMEkl = MEijEkl = δj,kMEil. But
also EijMEkl = MjkEil. Taking i = l and summing over i gives δj,kM =
MjkIn×n. Thus M is a multiple of the identity matrix. A matrix of the form
rIn×n commutes with all matrices of the form sIn×n (r, s ∈ R) iff r ∈ Z(R).

Let ι : K → Z(Matn(R)) give the algebra structure on matrices. Then
ι(k) = ϕ(k)In×n for a unique ϕ(k) ∈ Z(R). One checks that ϕ : K → Z(R)
is a ring homomorphism. This gives the algebra structure on R.

3. Claim: Let A be a semisimple K-algebra. Then there are division algebras
D1, . . . , Dn over K and m1, . . . ,mn > 0 such that

A ∼= Matm1(D1)× · · · ×Matmn(Dn)

as K-algebras. The pairs (Di,mi) are unique up to ordering.

Proof: The statement is true for the underlying rings. Since the lhs is a K-
algebra, the ring-isomorphism induces a K-algebra structure on the rhs. By
parts 1 and 2, the D1, . . . , Dn are also K-algebras, hence division algebras
over K. By construction, the ring isomorphism we started from is now an
isomorphism of K-algebras.

Uniqueness works in the same way as for rings in Proposition 4.4.13.

4. We know from Section 1.2 that all finite-dimensional division algebras over
R are R, C and H. There are of dimension 1,2,4, respectively, over R. The
corresponding matrix altebras have dimension n2, 2n2, 4n2 over R. Hence we
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must find all ways to write 9 as a sum of the numbers 1, 2, 4, 8, 9. We have

9 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2

= 1 + 1 + 1 + 1 + 1 + 2 + 2

= 1 + 1 + 1 + 2 + 2 + 2

= 1 + 2 + 2 + 2 + 2

= 1 + 1 + 1 + 1 + 1 + 4

= 1 + 1 + 1 + 2 + 4

= 1 + 2 + 2 + 4

= 1 + 4 + 4

= 1 + 8

= 9

To each number except 4 there is a unique choice of matrix algebra in the
corresponding direct sum decomposition. For 4 one has the choice between
Mat2(R) and H. There are 7 sums without 4s, 3 sums with one 4 and 1
sum with two 4s. Thus there are 7 + 6 + 3 = 16 isomorphism classes of
9-dimensional semisimple R-algebras.

Problem 39

The infinite product S is never semisimple.

Solution 1: Since all Ri are non-zero, by Prop. 4.2.2 it has a simple module Mi.
Then Mi is also an S-module: for s := (rj)j∈I and m ∈Mi define s.m := ri.m.
Clearly, 1) Mi is simple also as an S-module, and 2) for i 6= j we have Mi �Mj

as S-modules (since Ri acts non-zero on Mi but zero on Mj).
Thus there is an infinite number of mutually non-isomorphic simple modules for
S. By Prop. 4.4.8, S cannot be semisimple.

Solution 2: Consider I =
⊕

i∈I Ri ⊂ S. This is an S-submodule of SS (why?).
Suppose there is a submodule J such that I ⊕ J = S. Then J 6= {0} and we
can take a non-zero element x ∈ J . Since J is a submodule (i.e. a left ideal) of
S, also rx ∈ J for any choice of r. Let xj be a non-zero entry of x. Take r to
be the family which is 1 in entry j and zero else. Then rx is the family which is
xj in entry j and zero else. In particular, rx 6= 0 and rx ∈ I. Contradiction (to
I ∩ J = {0}).

Problem without points

1. For each integer m ∈ Z define ρm : C[G] → C, ρm([x]) = e2πimx. Note that
that does not depend on the representative x ∈ R of [x] ∈ R/Z.
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2. Take I = ker(ρ0). Explicitly, I consists of all elements of the form
∑n
i=1 λi[xi]

such that
∑n
i=1 λi = 0. Suppose there is a complement J . Then J must be

non-zero. Let y ∈ J , y 6= 0. We can write y =
∑n
i=1 µi[xi] for some n, µi, xi.

Pick a real number r such that [xi + r] 6= [xj ] for all i, j. Since J is a
submodule, also z =

∑n
i=1 µi[xi + r] lies in J . But then also y − z ∈ J , and

y − z 6= 0. But the sum of coefficients is 0, hence y − z ∈ I. Contradiction
(to I ∩ J = {0}).

3. No, because in this statement what one means by a representation is a conti-
nuous group homomorphism G→ GL(V ) for some complex (or real) vector
space V , and not about all representations.
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