Hints and solutions for problem sheet # 09
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 35

1 implies 2 is clear.

2 implies 1: need to show: the intersection of M; with sum of M; over all j # i
is 0. Suppose not. Then m; = Ej m; for some m; in M; and m; in M;. But the
sum has to be finite. Hence there is already a finite subset for which the sum is
not direct.

Problem 36

Submodule L: This follows from 3 of Theorem 4.4.1. Think of L as a submodule
of M. Then M = L & X for X also a submodule of M. All submodules of
L are also submodules of M. Take a submodule S C L. This gives rise to a
decomposition of M, M = S @Y. The induced decomposition of L then follows
by intersection: L =LNM =LN(S®Y)=5@®(LNY). Then S satisfies 3
and is thus semisimple.

Quotient module N: We may take N = M/L. L a submodule, by 4.4.1 (3), can
write M = L & X for some X also a submodule. That means that N = M/L =
(L® X)/L = X, so is a submodule of M and therefore semisimple by the first
part.

Converse statement: This is false in general.

Ezample 1: Take C[X]. In Problem 34 we saw that C[X] possesses indecompo-
sable modules M of length 2. Such a module has a simple submodule Cy and a
simple quotient, which is again Cj, for some A € C, i.e. it sits in a short exact
sequence Cy — M — C,.

Ezample 2: Consider the short exact sequence Z/27Z 2, 7.JA7 s 7.)27 of Z-
modules. Here, Z/27Z is simple as a Z-module, but Z/4Z is not.

Problem 37

Note that P|y =Id and P(V) =U. B B

Claim 1: Let € G. We need to show that P(xv) = xP(v). Let, for g € G h :=
2~ 1g. Then

S (gPg ) (av) = ﬁ S a(hPh Y () = 2P(v).

geG heG

P(xv) = ﬁ

Claim 2: For u € U and g € G, we have gu € U, therefore P(gu) = gu. Now

Pu) = g7 S (P = gaPla™ ) = g S u = g Y=

Let u € V. Then P(u) € U and it follows that P?(v) = P(v).



Now let W’ := ker(P). Then, as P is a K[G]-hom. W’ is a K[G]-module. By
idempotence of P, V decomposes as

V =ker(P) @ker(P—1) =W @ U.

Problem 38

1. The centre of R x S is Z(R) x Z(S). Composing the embedding ¢ : K —
Z(R) x Z(S) with the projections R x S — R and R x S — S (which are
ring-homomorphisms) gives the K-algebra structures on R and S.

2. Suppose M € Z(Matn(R)) Then EiiMEy = MEj;Ey = 0;,ME;. But
also Ej; M Ey = M;,E;. Taking ¢ = [ and summing over ¢ gives §;,M =
MLy xrn. Thus M is a multiple of the identity matrix. A matrix of the form
71, %, commutes with all matrices of the form sl «, (r,s € R) iff r € Z(R).

Let ¢+ : K — Z(Mat,(R)) give the algebra structure on matrices. Then
t(k) = p(k)I,xn for a unique ¢(k) € Z(R). One checks that ¢ : K — Z(R)
is a ring homomorphism. This gives the algebra structure on R.

3. Claim: Let A be a semisimple K-algebra. Then there are division algebras
Dy,...,D, over K and m,...,m, > 0 such that

A= Matml (Dl) X X Matmn (Dn)

as K-algebras. The pairs (D;,m;) are unique up to ordering.

Proof: The statement is true for the underlying rings. Since the lhs is a K-
algebra, the ring-isomorphism induces a K-algebra structure on the rhs. By
parts 1 and 2, the Dy,..., D, are also K-algebras, hence division algebras
over K. By construction, the ring isomorphism we started from is now an
isomorphism of K-algebras.

Uniqueness works in the same way as for rings in Proposition 4.4.13.
4. We know from Section 1.2 that all finite-dimensional division algebras over

R are R, C and H. There are of dimension 1,2,4, respectively, over R. The
corresponding matrix altebras have dimension n?, 2n2, 4n? over R. Hence we



must find all ways to write 9 as a sum of the numbers 1,2,4,8,9. We have

9=1+4+1+1+1+14+1+1+1+1
=14+1414+1+1+1+1+42
—14+1+14+1+14+2+2
—14+1+14+2+2+2
—14+242+2+2
=14+14+1+1+1+4
—14+1+14+2+4
—14+2+2+4
=1+4+44
=1+8
=9

To each number except 4 there is a unique choice of matrix algebra in the
corresponding direct sum decomposition. For 4 one has the choice between
Maty(R) and H. There are 7 sums without 4s, 3 sums with one 4 and 1
sum with two 4s. Thus there are 7 + 6 + 3 = 16 isomorphism classes of
9-dimensional semisimple R-algebras.

Problem 39

The infinite product .S is never semisimple.

Solution 1: Since all R; are non-zero, by Prop.4.2.2 it has a simple module M;.
Then M, is also an S-module: for s := (7;),er and m € M; define s.m := r;.m.
Clearly, 1) M; is simple also as an S-module, and 2) for i # j we have M; 2 M;
as S-modules (since R; acts non-zero on M; but zero on M;).

Thus there is an infinite number of mutually non-isomorphic simple modules for
S. By Prop.4.4.8, S cannot be semisimple.

Solution 2: Consider I = @,.; R; C S. This is an S-submodule of 55 (why?).
Suppose there is a submodule J such that I @ J = S. Then J # {0} and we
can take a non-zero element x € J. Since J is a submodule (i.e. a left ideal) of
S, also rx € J for any choice of r. Let x; be a non-zero entry of z. Take r to
be the family which is 1 in entry j and zero else. Then rz is the family which is
x; in entry j and zero else. In particular, rz # 0 and rz € I. Contradiction (to

InJ={0}).
Problem without points

1. For each integer m € Z define p,, : C[G] — C, p,([z]) = €2>™™=. Note that
that does not depend on the representative z € R of [z] € R/Z.



2. Take I = ker(pg). Explicitly, I consists of all elements of the form > | ;[x;]
such that Z?:l A; = 0. Suppose there is a complement J. Then J must be
non-zero. Let y € J, y # 0. We can write y = Y| w;[z;] for some n, p1;, ;.
Pick a real number r such that [z; + 7] # [z;] for all ¢,j. Since J is a
submodule, also z = "I | p;[x; + r] lies in J. But then also y — z € J, and
y — z # 0. But the sum of coefficients is 0, hence y — z € I. Contradiction
(to INJ ={0}).

3. No, because in this statement what one means by a representation is a conti-
nuous group homomorphism G — GL(V) for some complex (or real) vector
space V', and not about all representations.



