
Hints and solutions for problem sheet #08
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 30

1. Consider the following candidate for a composition series of M :

Mi :=

{
g−1(Ni) 0 ≤ i ≤ s
f(Li−s) s ≤ i ≤ (s+ r)

Since g is surjective, M0 = g−1(N0 = N) = M and since Lr = 0, Ms+r =
f(Lr) = 0. For i = s we have g−1(Ns) = kerg = imf = f(L0).

Simpleness of quotients for the half which is g−1(Ni): if Mi−1/Mi not simple

for some i, then there’s some M̃i with Mi−1 ) M̃i )Mi. Modding all out by

f(L) preserves the inclusion order, so that would mean that Ni−1 ) g(M̃i) )
Ni. But Ni−1/Ni is simple so this cannot happen.

Simpleness of quotients for the half which is f(Li): That f(Li−1)/f(Li) is
simple is clear as f is injective.

We have l(M) = l(L) + l(N) by uniqueness of composition series length and
the above construction of the composition series.

2. Start with 0→M0
f0−→M1

f1−→M2
f2−→M3 → 0. Then can break up with an

exact triangle

0 // M0
f0 // M1

%%

f1 // M2
f2 // M3

// 0

M1/im(f0)

%%

99

0

99

0

and using part 1 applied to the two SESes, have

l(M1) = l(M0) + l(M1/im(f0))
l(M2) = l(M1/im(f0)) + l(M3)

Thus l(M0)− l(M1) + l(M2)− l(M3) = 0.

Turning this into an induction on n gives
∑
i(−1)il(Mi) = 0 (Details?).
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Problem 31

1. Counter example 1: Let p be a prime number and take M = Z as a Z-
module. Set Mn = pnZ, n = 0, 1, 2, . . . . Then M0 = M , Mn ⊃ Mn+1 and⋂∞
n=0Mn = {0}. Furthermore, Mn/Mn+1

∼= Z/pZ, which is simple. Different
choices of p now give inequivalent “half-infinite composition series”.

Counter example 2: Consider M = C[X] as a C[X]-module and pick λ ∈ C.
Set Mn = 〈(X − λ)n〉, n = 0, 1, 2, . . . . Then M0 = M , Mn ⊃ Mn+1 and⋂∞
n=0Mn = {0}. Have Mn/Mn+1

∼= Cλ (notation as in Problem 7).

2. Actually, this generalisation is true. Here is a sketch of the proof.

Let {0} = M0 ⊂ M1 ⊂ M2 ⊂ . . . and {0} = N0 ⊂ N1 ⊂ N2 ⊂ . . . satisfy
the conditions in generalisation 2.

Claim: For each i = 0, 1, . . . there is a j(i) such that Mi ⊂ Nj(i).
Proof: By induction. Pick x ∈ M1, x 6= 0 (by assumption M1 is simple,
hence non-zero). There is j(1) such that x ∈ Nj(1). Then M1 ∩ Nj(1) is
a non-zero submodule of M1. But M1 is simple, hence M1 ∩ Nj(1) = M1.
For the induction step, repeat the above argument for the chains M1/M1 ⊂
M2/M1 ⊂ M3/M1 ⊂ . . . and Nj(1)/M1 ⊂ Nj(1)+1/M1 ⊂ Nj(1)+2/M1 ⊂ . . .
This gives j(2) > j(1) such that M2/M1 ⊂ Nj(2)/M1, i.e. M2 ⊂ Nj(2). Etc.

Fix some K > 0. By the common refinement lemma, each simple successive
quotient of the chain {0} = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ MK ⊂ Nj(K) (where
only the last quotient is potentially non-simple) has to occur – with the same
or greater multiplicity – in {0} = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nj(K) (where every
quotient is simple).

Fix a simple R-module S. From the above observation one concludes that
the number of quotients Mi+1/Mi that are isomorphic to S (which may be
finite or infinite) is smaller or equal to the number of quotients Ni+1/Ni
isomorphic to S. Exchanging the roles of M and N gives the equality.

Problem 32

1. Consider the sequence I ∩ J → I ⊕ J → R, where the first map sends x to
(x,−x) and the second sends (y, z) to y + z. This is a short exact sequence
(why?). It splits since R is a free R-Module (using Proposition 2.4.9). Hence
(I ∩ J)⊕R ∼= I ⊕ J .

2a. We will show that I is not principal, the argument for J is the same.

Note that |r|2 = a2 + 5b2 for r = a+ b
√
−5. This is a non-negative integer.

The two generators of I have norm-squared |3|2 = 9, |2 +
√
−5|2 = 9.

Let x := r·3+s·(2+
√
−5) be an arbitrary element of I (where r, s ∈ R). Then

|x| = |3r+(2+
√
−5)s| ≥

∣∣|3r|−|(2+
√
−5)s|

∣∣ = 3
∣∣|r|−|s|∣∣. But r, s ∈ R and
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the points in R form a regular lattice where the smallest distance between
any two distinct lattice points is 1. Thus |x|2 is either zero or ≥ 9.

Suppose there is a t such that 〈t〉 = I. Then there are r, s with rt = 3 and
st = 2 +

√
−5. Since t ∈ I, it must have |t|2 = 9 for this to be possible. But

then |r| = 1 = |s|, and so r, s = ±1, which cannot be.

2b. I + J = R: I + J contains 3 and 4, and therefore also 1. Non-isomorphic: R
is principal, I, J are not.

Problem 33

1. Assume f(x) 6= 0. Recall the definition of a function f : A → R being
continuous at a point x: ∀ε > 0,∃δ > 0 such that |x − c| < δ implies
|f(x)− f(c)| < ε. Let ε < 1

2 |f(x)|. Suppose that for all other c ∈ Q, we had
f(c) = 0. Since for each δ > 0 there is a c 6= x with |x−c| < δ we would then
find |f(x)−f(c)| = |f(x)| > ε. This is a contradiction to f being continuous.

2. Q is considered here with the subspace topology; we know what open sets
in R look like ((x, y) and unions and finite intersections), then O is open in
Q iff ∃U open in R such that O = U ∩Q.

Given a ∈ R − Q, (−∞, a) is an open subset of R and thus (−∞, a) ∩ Q is
open in Q.

Now, to show its complement is also open in Q (i.e. that it’s closed in Q):
The complement in R is [a,+∞), and, being a subspace, the complement in
Q will be its complement in R then intersect with Q. Since a, /∈ Q, we have
that [a,+∞) ∩ Q = (a,+∞) ∩ Q, which is clearly of the form (open set in
R) ∩Q.

3. Consider a nonzero ideal M of RR. Let f ∈ R be nonzero. By (a), it has
at least two points (say x, y) at which it is nonzero. Let a be an irrational
number between these two (x < a < y).

Using χU<a
and χU>a

, we will construct two submodules of M such that
M is their direct sum. (Since this can be done for any M , there are no
irreducibles).

Let M1 := {χU<a
· m|m ∈ M} and M2 := {χU>a

· m|m ∈ M}. These are
non-zero submodules of M (why?).

Since χU<a +χU>a = 1 we have M1 +M2 = M . To show this is a direct sum,
need to show that M1 ∩M2 = 0

Consider m ∈ M1 ∩M2. There are then elements mi ∈ Mi such that m =
χU<a

·m1 = χU>a
·m2. Thus m = χU<a

·m1 = χU<a
χU<a

·m1 = χU<a
χU>a

·
m2 = 0.
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Problem 34

1. In a composition series, the dimension (over C) of successive quotients is 1,
hence the length of the composition series of M coincides with the dimension
over C of M .

A C[X]-module is the same thing as a C-vector space V together with a
choice of endomorphism f ∈ End(V ). Two C[X]-modules (V, f) and (W, g)
are isomorphic if and only if there is a linear isomorphism φ : V → W such
that f = φ−1 ◦ g ◦ φ.

Thus we need to classify pairs (Cn, f) up to conjugacy and find a condition
such that the corresponding module is indecomposable. The classification up
to conjugacy is achieved by the Jordan normal form. If there is more than
one Jordan cell, there is a non-trivial direct sum decomposition. Since the
Jordan normal form is unique up to permutation of cells, if there is only one
cell, there cannot be a non-trivial direct sum decomposition.

We conclude that finite length indecomposable C[X]-modules are classified
up to isomorphism by pairs (n, λ), where n > 0 gives the dimension over C
and λ ∈ C gives the generalised eigenvalue of the Jordan cell.

2. The indecomposable module (Cn, J(λ)), with J(λ) a rank-n Jordan cell for
generalised eigenvalue λ has an obvious filtration Cn ⊃ Cn−1 ⊃ Cn−2 ⊃
. . . by invariant subspaces. The successive quotients are isomorphic to Cλ
(Problem 29).
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