Hints and solutions for problem sheet #07Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 26

- 1. Let $a \in \mathbb{Z}$ be non-zero. A non-stabilising descending chain of submodules is $M_m := a^m \mathbb{Z} \subset \mathbb{Q}$ for $m \in \mathbb{N}$. A non-stabilising ascending chain of submodules is $N_m := a^{-m} \mathbb{Z} \subset \mathbb{Q}$ for $m \in \mathbb{N}$.
- 2. Claim: Every proper submodule $M \subsetneq Q_p$ is of the form $p^{-n}\mathbb{Z}$ for some n.

Proof: Suppose $m/p^k \in M$, where we assume that $m \neq 0$ and m and p^k have no common divisors (that is, p does not divide m). Then there are $a, b \in \mathbb{Z}$ such that $am + bp^k = 1$, i.e. $a\frac{m}{p^k} + b = \frac{1}{p^k}$. Thus also $p^{-k} \in M$, and hence $p^{-k}\mathbb{Z} \subset M$. But if M contains all p^{-k} , then $M = Q_p$, and otherwise there is a maximal such k and $M = p^{-k}\mathbb{Z}$.

Suppose there is a descending chain $M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots$ in Q_p . We may suppose that all M_i are different from Q_p . Then there are integers $n_i \ge 0$ with $M_i = p^{-n_i}\mathbb{Z}$ and $n_0 > n_1 > n_2 \ldots$. Clearly, there cannot be an infinite such chain, contradiction.

The \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is not artinian (and anyway not noetherian): Note that $Q_p \subset \mathbb{Q}/\mathbb{Z}$ is a \mathbb{Z} -submodule. Let $p_1 < p_2 < p_3 < p_4 < \ldots$ be a sequence of increasing prime numbers. Set

$$X_n = \operatorname{span}\{Q_{p_k} | k \ge n\}$$

Then clearly $X_1 \supset X_2 \supset X_3 \supset \cdots$. In fact, each of these inclusions is proper: Let $x \in X_n$. Then

$$x = \sum_{k=n}^{N} \frac{a_k}{p_k^{b_k}} \; ,$$

for some large enough N, $a_k \in \mathbb{Z}$, $b_k \ge 0$. In particular, the denominator of x can at most contain the prime factors p_n, \dots, p_N , but it does not contain any of the prime factors p_1, \dots, p_{n-1} .

Problem 27

1. $\mathbb{Q} \subset \mathbb{R}$ works for both: $\mathbb{R}_{\mathbb{Q}}$ is an infinite-dimensional \mathbb{Q} -vector space and hence is neither noetherian or artinian. On the other hand $\mathbb{Q}\mathbb{Q}$ and $\mathbb{R}\mathbb{R}$ are both one-dimensional vector spaces (over \mathbb{Q} and \mathbb{R} , respectively).

2. *R* contains the two-sided ideal $I = \{\begin{pmatrix} 0 & s \\ 0 & 0 \end{pmatrix} | s \in S\}$. Consider the short exact sequence of (left or right) *R*-modules $I \to R \to R/I$. One checks that $R/I \cong S \oplus T$ with left or right action of $r = \begin{pmatrix} s & s' \\ 0 & t \end{pmatrix}$ on $(a, b) \in S \oplus T$ given by r.(a, b) = (sa, tb) = (a, b).r (Details?).

Below [prop] stands for "noetherian", or for "artinian".

R is left [prop]: By Proposition 4.1.1, if *I* and $S \oplus T$ are [prop], so is *R*.

By assumption, ${}_{S}S$ and ${}_{T}T$ are [prop]. Therefore, also the left *R*-module $S \oplus T$ is [prop] (why?).

The left *R*-action on *I* is, for $r = \begin{pmatrix} s & s' \\ 0 & t \end{pmatrix}$ and $a \in S$,

$$r.\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & sa \\ 0 & 0 \end{pmatrix} \ .$$

Since ${}_{S}S$ is [prop], so is ${}_{R}S$, and hence I.

R is not right [prop]: By Proposition 4.1.1, if *I* is not right [prop], neither is *R*. The right *R*-action on *I* is, for $r = \begin{pmatrix} s & s' \\ 0 & t \end{pmatrix}$ and $a \in S$,

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} . r = \begin{pmatrix} 0 & at \\ 0 & 0 \end{pmatrix} \ .$$

Since S_T is not [prop], neither is I (why?).

Problem 28

- 1. Clearly $X_1 \subset X_2 \subset X_3 \subset \ldots$. Let $y \in \ker(f)$ be given. We will show y = 0. Set $z_1 = y$. Since $y \in N$ and f(y) = 0, $z_1 \in X_1$. Since f is surjective, there is $z_2 \in N$ such that $z_1 = f(z_2)$. But then $f(f(z_2)) = f(z_1) = 0$, and so $z_2 \in X_2$. In this way one constructs $z_n \in X_n$ with $f^{n-1}(z_n) = y$ and $f^n(z_n) = 0$. Since N is noetherian, there is K such that $X_k = X_K$ for all $k \geq K$. In particular $z_{K+1} \in X_{K+1}$ is also an element of X_K . From $z_{K+1} \in X_{K+1}$ we get $f^K(z_{K+1}) = y$. From $z_{K+1} \in X_K$ we get $f^K(z_{K+1}) = 0$. Thus y = 0.
- 2. No. For example, take the Z-module Q_p from Problem 26. Set $R = \mathbb{Z}$, $N = M = Q_p$. The identity map $N \to M$ serves as the injection. Multiplication by p is a surjection $Q_p \to Q_p$. But it is not injective, as e.g. $\frac{1}{p}$ gets mapped to zero.

Problem 29

1. Clearly, $\dim_K K_{\lambda} \leq 1$. On the other hand, the map $K_{\lambda} \to K, X \mapsto \lambda$ is well-defined and surjective. So $\dim_K K_{\lambda} \geq 1$.

The K[X]-module structure on K_{λ} is as follows: K acts via scalar multiplication on the underlying K-vector space K, and X acts by multiplication by λ .

Let $f: K_{\lambda} \to K_{\mu}$ be a K[X]-module map. Let v a nonzero element of K_{λ} . Then f must commute with the multiplication by X.

$$f(X \cdot v) = X \cdot f(v)$$

But in K_{λ} , we have $X \cdot v = \lambda v$. Whereas in K_{μ} , $X \cdot f(v) = \mu f(v)$. Since $\lambda, \mu \in K$ and K[X]-mod hom is still a K-mod hom, we see that we'd need $f(X \cdot v) = f(\lambda v) = \lambda f(v)$ to be equal to $X \cdot f(v) = \mu f(v)$. As K_{λ}, K_{μ} are 1-dimensional, f = 0 unless $\lambda = \mu$.

2. Let $\varphi : K[X_1, \ldots, X_n] \to K$ be the evaluation homomorphism sending X_i to λ_i . Its kernel is an ideal. Since φ is surjective and K is a field, this ideal is maximal. It remains to show that

(*)
$$\ker \varphi = \langle X_1 - \lambda_1, \dots, X_n - \lambda_n \rangle .$$

Since $\varphi(X_i - \lambda_i) = 0$, it is clear that ker $\varphi \supset \langle X_1 - \lambda_1, \dots, X_n - \lambda_n \rangle$. Equality is less obvious, and we use the following argument:

Consider the ring homomorphism $\psi : K[X_1, \ldots, X_n] \to K[Y_1, \ldots, Y_n]$, which is the identity on K and sends X_i to $Y_i + \lambda_i$. Note that ψ is actually an isomorphism (why?). Then (*) is equivalent to $\psi(\ker \varphi) = \psi(\langle X_1 - \lambda_1, \ldots, X_n - \lambda_n \rangle)$. We have $\psi(\ker \varphi) = \ker(\varphi \circ \psi^{-1})$ (why?) and $\varphi' := \varphi \circ \psi^{-1}$ is the ring homomorphism $\varphi' : K[Y_1, \ldots, Y_n] \to K$ which is the identity on K and sends all Y_i to 0. Thus (*) is equivalent to

$$\ker \varphi' = \langle Y_1, \ldots, Y_n \rangle ,$$

which is obvious.