
Hints and solutions for problem sheet #07
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 26

1. Let a ∈ Z be non-zero. A non-stabilising descending chain of submodules is
Mm := amZ ⊂ Q for m ∈ N. A non-stabilising ascending chain of submodu-
les is Nm := a−mZ ⊂ Q for m ∈ N.

2. Claim: Every proper submodule M ( Qp is of the form p−nZ for some n.

Proof: Suppose m/pk ∈M , where we assume that m 6= 0 and m and pk have
no common divisors (that is, p does not divide m). Then there are a, b ∈ Z
such that am + bpk = 1, i.e. am

pk
+ b = 1

pk
. Thus also p−k ∈ M , and hence

p−kZ ⊂ M . But if M contains all p−k, then M = Qp, and otherwise there
is a maximal such k and M = p−kZ.

Suppose there is a descending chain M0 ) M1 ) M2 ) · · · in Qp. We may
suppose that all Mi are different from Qp. Then there are integers ni ≥ 0
with Mi = p−niZ and n0 > n1 > n2 . . . . Clearly, there cannot be an infinite
such chain, contradiction.

The Z-module Q/Z is not artinian (and anyway not noetherian): Note that
Qp ⊂ Q/Z is a Z-submodule. Let p1 < p2 < p3 < p4 < . . . be a sequence of
increasing prime numbers. Set

Xn = span{Qpk |k ≥ n} .

Then clearly X1 ⊃ X2 ⊃ X3 ⊃ · · · . In fact, each of these inclusions is proper:
Let x ∈ Xn. Then

x =

N∑
k=n

ak

pbkk
,

for some large enough N , ak ∈ Z, bk ≥ 0. In particular, the denominator of
x can at most contain the prime factors pn, · · · , pN , but it does not contain
any of the prime factors p1, . . . , pn−1.

Problem 27

1. Q ⊂ R works for both: RQ is an infinite-dimensional Q-vector space and
hence is neither noetherian or artinian. On the other hand QQ and RR are
both one-dimensional vector spaces (over Q and R, respectively).
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2. R contains the two-sided ideal I = {
(
0 s
0 0

)
|s ∈ S}. Consider the short exact

sequence of (left or right) R-modules I → R→ R/I. One checks that R/I ∼=
S ⊕ T with left or right action of r =

(
s s′

0 t

)
on (a, b) ∈ S ⊕ T given by

r.(a, b) = (sa, tb) = (a, b).r (Details?).

Below [prop] stands for “noetherian”, or for “artinian”.

R is left [prop]: By Proposition 4.1.1, if I and S ⊕ T are [prop], so is R.

By assumption, SS and TT are [prop]. Therefore, also the left R-module
S ⊕ T is [prop] (why?).

The left R-action on I is, for r =
(
s s′

0 t

)
and a ∈ S,

r.

(
0 a
0 0

)
=

(
0 sa
0 0

)
.

Since SS is [prop], so is RS, and hence I.

R is not right [prop]: By Proposition 4.1.1, if I is not right [prop], neither is
R. The right R-action on I is, for r =

(
s s′

0 t

)
and a ∈ S,(

0 a
0 0

)
.r =

(
0 at
0 0

)
.

Since ST is not [prop], neither is I (why?).

Problem 28

1. Clearly X1 ⊂ X2 ⊂ X3 ⊂ . . . . Let y ∈ ker(f) be given. We will show y = 0.

Set z1 = y. Since y ∈ N and f(y) = 0, z1 ∈ X1. Since f is surjective, there is
z2 ∈ N such that z1 = f(z2). But then f(f(z2)) = f(z1) = 0, and so z2 ∈ X2.
In this way one constructs zn ∈ Xn with fn−1(zn) = y and fn(zn) = 0.
Since N is noetherian, there is K such that Xk = XK for all k ≥ K. In
particular zK+1 ∈ XK+1 is also an element of XK . From zK+1 ∈ XK+1 we
get fK(zK+1) = y. From zK+1 ∈ XK we get fK(zK+1) = 0. Thus y = 0.

2. No. For example, take the Z-module Qp from Problem 26. Set R = Z, N =
M = Qp. The identity map N → M serves as the injection. Multiplication
by p is a surjection Qp → Qp. But it is not injective, as e.g. 1

p gets mapped
to zero.

Problem 29

1. Clearly, dimKKλ ≤ 1. On the other hand, the map Kλ → K, X 7→ λ is
well-defined and surjective. So dimKKλ ≥ 1.

The K[X]-module structure on Kλ is as follows: K acts via scalar multipli-
cation on the underlying K-vector space K, and X acts by multiplication
by λ.
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Let f : Kλ → Kµ be a K[X]-module map. Let v a nonzero element of Kλ.
Then f must commute with the multiplication by X.

f(X · v) = X · f(v)

But in Kλ, we have X · v = λv. Whereas in Kµ, X · f(v) = µf(v). Since
λ, µ ∈ K and K[X]-mod hom is still a K-mod hom, we see that we’d need
f(X · v) = f(λv) = λf(v) to be equal to X · f(v) = µf(v). As Kλ,Kµ are
1-dimensional, f = 0 unless λ = µ.

2. Let ϕ : K[X1, . . . , Xn] → K be the evaluation homomorphism sending Xi

to λi. Its kernel is an ideal. Since ϕ is surjective and K is a field, this ideal
is maximal. It remains to show that

(∗) kerϕ = 〈X1 − λ1, . . . , Xn − λn〉 .

Since ϕ(Xi−λi) = 0, it is clear that kerϕ ⊃ 〈X1−λ1, . . . , Xn−λn〉. Equality
is less obvious, and we use the following argument:

Consider the ring homomorphism ψ : K[X1, . . . , Xn]→ K[Y1, . . . , Yn], which
is the identity on K and sends Xi to Yi + λi. Note that ψ is actually an iso-
morphism (why?). Then (*) is equivalent to ψ(kerϕ) = ψ(〈X1−λ1, . . . , Xn−
λn〉). We have ψ(kerϕ) = ker(ϕ ◦ψ−1) (why?) and ϕ′ := ϕ ◦ψ−1 is the ring
homomorhism ϕ′ : K[Y1, . . . , Yn]→ K which is the identity on K and sends
all Yi to 0. Thus (*) is equivalent to

kerϕ′ = 〈Y1, . . . , Yn〉 ,

which is obvious.
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