Hints and solutions for problem sheet # 03Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 8 (Misc)

- 1. End_R(_RR) \cong R^{op}: The two ring homomorphisms are, for $f \in$ End_R(_RR), $r \in R, f \mapsto f(1)$ and $r \mapsto (-) \cdot r$ (details?). End_{R-R}(_RR_R) $\cong Z(R)$: The maps are the same as above. To see that $f(1) \in Z(R)$ note that rf(1) = f(r1) = f(r) = f(1r) = f(1)r, using that f is a module homomorphism for the left and right action.
- 2. That IM is a submodule is clear: with $im \in IM$ also $rim \in IM$, as $ri \in I$ for all $r \in R$.

Let now $i \in I$ and $m + IM \in M/IM$. Then, by definition of the action on M/IM, $\rho(i)(m + IM) = i.m + IM$, which is 0 in M/IM.

3. (\Leftarrow) Immediate from definitions of I, M as an R-module and IM. (\Rightarrow) From the lecture, IM is defined as finite linear combinations

$$\{\sum_{a\in A} i_a m_a | i_a \in I, m_a \in M\}.$$

Consider $x = \sum_{u \in U} r_u u \in IM$. Then there exists i_a, m_a and an indexing set A such that $x = \sum_{a \in A} i_a m_a$ with $i_a \in I, m_a \in M$.

Each term expands to the form

$$i_a m_a = i_a \cdot \sum_{u \in U} (m_a)_u u = \sum_{u \in U} i_a (m_a)_u u$$

where $(m_a)_u$ is in R (since it's the coefficient of u in the expansion over the basis U).

That is, we can rewrite as

$$\sum_{u \in U} r_u u = \sum_{u \in U} \sum_{a \in A} i_a(m_a)_u u.$$

I is an ideal, so $i_a(m_a)_u \in I$ for all $a \in I$ and subsequently, for fixed *u*, we see that the finite sum $\sum_{a \in A} i_a(m_b)_u$ is also in *I*. We conclude (why can we conclude this?) that $\sum_{a \in A} i_a(m_b)_u = r_u$ and have that each r_u is in *I*.

Problem 9 (Free modules)

 a) not free: one element cannot be a Z-basis of Q (why?) and if the basis has at least two elements a/b and p/q there is a Z-linear dependency pb ⋅ a/b + (-aq) ⋅ p/q = 0

- b) free: the map $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(m, n) \mapsto 2m n$ is surjective and has kernel $(m, 2m), m \in \mathbb{Z}$. By the isomorphism theorem, $(\mathbb{Z} \oplus \mathbb{Z})/\langle (1, 2) \rangle \cong \mathbb{Z}$.
- c) not free: $2 \cdot (1, 1) = 0$, but a free Z-module has no elements of finite order (why?).
- 2. Let M be an R-module. By the universal property of free modules, the identity map $M \to M$ induces the R-module homomorphism $f : R^{(M)} \to M$, $(r_m)_{m \in M} \mapsto \sum_{m \in M} r_m . m$, which is surjective. By the isomorphism theorem, $R^{(M)} / \ker(f) \cong M$.
- 3. By the universal property of free modules, we know for all $f \in \operatorname{Map}(S, M)$, there is a unique $f_* \in \operatorname{Hom}_R(R^{(S)}, M)$ extending the diagram, i.e. with $f = f_* \circ \iota$. That makes the natural candidate for an inverse map $f_* \mapsto f_* \circ \iota$. Composition both directions is clearly identity. We need to show we have that $f \mapsto f_*$ is an abelian group homomorphism. For $f, g \in \operatorname{Map}(S, M)$, (f + g)(s) := f(s) + g(s). Then

$$(f+g)_*(\sum_{s\in S} r_s s) := \sum_{s\in S} r_s(f+g)(s) = \sum_{s\in S} r_s(f(s) + g(s))$$

and since this is a finite sum, this is equal to $\sum_{s \in S} r_s f(s) + \sum_{s \in S} r_s g(s)$ and so $(f + g)_* = f_* + g_*$.

Write $\phi_M : \operatorname{Map}(S, M) \to \operatorname{Hom}_R(R^{(S)}, M)$ for the isomorphism. Given $h : M \to N$ let $h' : \operatorname{Map}(S, M) \to \operatorname{Map}(S, N)$ be given by $h'(f) = h \circ f$ and similarly $h'' : \operatorname{Hom}_R(R^{(S)}, M) \to \operatorname{Hom}_R(R^{(S)}, N)$ by $h''(g) = h \circ g$. The following diagram commutes:

$$\begin{split} \operatorname{Map}(S,M) & \stackrel{\phi_M}{\longrightarrow} \operatorname{Hom}_R(R^{(S)},M) \\ & \downarrow^{h'} & \downarrow^{h''} \\ \operatorname{Map}(S,M) & \stackrel{\phi_N}{\longrightarrow} \operatorname{Hom}_R(R^{(S)},N) \end{split}$$

Indeed, let $f \in \text{Map}(S, M)$. Then commutativity of the diagram amounts to $(h \circ f)_* = h \circ f_*$. To verify the latter identity, it is enough to check it on the basis $S: (h \circ f)_*(s) = h(f(s))$ and $(h \circ f_*)(s) = h(f(s))$.

Problem 19 (Bases with different cardinality)

1. Define maps ψ_1, ψ_2 as in the hint. Then

 $\psi_1\varphi_1 + \psi_2\varphi_2 = (a_1, 0, a_3, 0...) + (0, a_2, 0, a_4...) = (a_1, a_2, a_3, a_4, ...) = \mathrm{id}_M$

i.e. is the identity map on M and, so, for any $r \in R$, we have that $r = r\psi_1\varphi_1 + r\psi_2\varphi_2$. That is, $R = R\varphi_1 + R\varphi_2$ and so $\{\varphi_1, \varphi_2\}$ is a generating set.

To show linear independence, we use the identities as suggested in the hint (why do they hold?). Let $r_1\varphi_1 + r_2\varphi_2 = 0$. Then also $r_1\varphi_1\psi_1 + r_2\varphi_2\psi_1 = 0$, and by the identities, $r_1 = 0$. That $r_2 = 0$ follows analogously.

2. By part (a), the map $A : \mathbb{R}^2 \to \mathbb{R}$ given by $(r_1, r_2) \to r_1\varphi_1 + r_2\varphi_2$ is an isomorphism of \mathbb{R} -modules. This yields $\mathbb{R} \cong \mathbb{R}^n$ by induction. (What is the induction step?)

Problem 11 (Opposite category)

We need a map $\circ^{\mathrm{op}} : \mathcal{C}^{\mathrm{op}}(B, C) \times \mathcal{C}^{\mathrm{op}}(A, B) \to \mathcal{C}^{\mathrm{op}}(A, C)$, i.e. a map $\mathcal{C}(C, B) \times \mathcal{C}(B, A) \to \mathcal{C}(C, A)$. We take $f \circ^{\mathrm{op}} g := g \circ f$. The units are then simply $1_A^{\mathrm{op}} = 1_A$. Associativity and the unit property are immediate (details?).