Hints and solutions for problem sheet #02Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 4

- 1. Take the indexing set $I = \mathbb{N}$, take $R = \mathbb{Z}$, $N = \mathbb{Z}$ and all $M_i = \mathbb{Z}$. Choose all $f_i : N \to M_i$ to be the identity. The element $f(1) \in \bigoplus_i M_i$ would need to satisfy $p_i(f(1)) = 1$, i.e. f(1) must be the tuple (1, 1, 1, ...). But this has infinitely many entries which are non-zero and is hence not in the direct sum.
- 2. With the same choices for R and M_i as above, write $P = \prod_i M_i$ and $S = \bigoplus_i M_i$. Then $S \subset P$ is a submodule (why?) and we can consider the R-module map given by the canonical projection $\pi : P \to P/S$. Note that P/S is not zero, as e.g. (1, 1, 1, ...) is in P but not in S. Hence the map π is not zero (as it is surjective).

Take N = P/S and take all maps $g_i : N \to M_i$ to be zero. Then the two diagrams

commute for all i. (Why does the right diagram commute?) Thus there is not a unique map making the diagrams commute.

Problem 5

- 1. Clear.
- 2. The bimodule structure is as follows. Let $f \in \text{Hom}_R(M, N)$. Then, for $s \in S$, $t \in T$, (s.f)(m) := f(m.s) and (f.t)(m) := f(m).t. Note that $m \in {}_RM_S$ and $f(m) \in {}_RN_T$, so the two right-actions in the defining equations do indeed make sense. Bilinearity is clear, as is that the two actions commute. For associativity, e.g.

$$(ss'.f)(m) = f(m.(ss')) = f((m.s).s') = (s'.f)(m.s) = (s.(s'.f))(m)$$

Problem 6

- 1. We treat u as an example. Consider the map $f : \mathbb{C}[X] \to M_b$, $f(X^n) = X^{n+b-a} + \langle X^b \rangle$. This is an R-module homomorphism (why?). Then $f(X^a) = X^{a+b-a} + \langle X^b \rangle = 0$, and so f maps the submodule $\langle X^a \rangle$ to zero. By Proposition 2.1.2 we obtain an R-module map $f_* : M_a \to M_b$ which satisfies $f_*(X^n + \langle X^a \rangle) = X^{n+b-a} + \langle X^b \rangle$.
- 2. The kernel of the *R*-module homomorphism $\mathbb{C}[X] \to M_b$, $p \mapsto pX^{b-a}$ is $\langle X^a \rangle$ (why?). Hence the map $u: M_a \to M_b$ is injective.

The map v is clearly surjective.

The kernel of v is $\langle X^{b-a} \rangle$, which is precisely the image of u.

If a = 0 or a = b, one of the modules is 0 and the sequences splits (via the zero map).

For 0 < a < b, the sequence does not split. Note that $u(1) = X^{b-a} + \langle X^b \rangle$. By Proposition 2.3.1, it is enough to show that there is no *R*-module homomorphism $\varphi : M_b \to M_a$ such that $\varphi(X^{b-a} + \langle X^b \rangle) = 1 + \langle X^a \rangle$. Consider $\varphi(1 + \langle X^b \rangle)$ and write $\varphi(1 + \langle X^b \rangle) = p + \langle X^a \rangle$ for some $p \in \mathbb{C}[X]$. Let *d* be the degree of the smallest non-zero monomial in *p*. Then $\varphi(X^{b-a} + \langle X^b \rangle) = X^{b-a}p + \langle X^a \rangle$ (why?), and the degree of the smallest non-zero monomial in $X^{b-a}p$ is d+b-a > 0. Hence $\varphi(X^{b-a} + \langle X^b \rangle) \neq 1 + \langle X^a \rangle$.

Problem 7

1. Apply Cor. 2.1.3 to to $g : M \to N$ to get that $\operatorname{im}(g) \cong M/\ker(g)$. By exactness, we know that g is surjective, so $\operatorname{im}(g) \cong N$ and $\ker(g) \cong \operatorname{im}(f)$, i.e.

$$N \cong \operatorname{im}(g) \cong M/\ker(g) \cong M/\operatorname{im}(f).$$

Similarly, $L \cong \operatorname{im}(f) = \operatorname{ker}(g)$.

2. a) \Rightarrow b). First we show that ker $(f^*) \subset \operatorname{im}(g^*)$. Consider $k \in \operatorname{ker}(f^*)$. Then $0 = f^*(k) = kf$, and hence $0 = k(\operatorname{im} f) = k(\operatorname{ker} g)$. By (5 ii)), k induces a homomorphism $\overline{k} : B/\operatorname{ker}(g) \to M$ such that $\overline{k}(b + \operatorname{ker}(g)) = k(b)$. By (5 ii)) again, there's an isomorphism $\phi : B/\operatorname{ker}(g) \cong C$ such that $\phi(b + \operatorname{ker}(g)) =$ g(b). Then the map $\overline{k}\phi^{-1} : C \to M$ is an R-mod hom such that $g^*(\overline{k}\phi^{-1}) = k$. This shows that $\operatorname{ker}(f^*) \subset \operatorname{im}(g^*)$. The rest of this half of the proof is analogous to the one for 1) \Rightarrow 2).

b) \Rightarrow a). Choose $M = C/\operatorname{im}(g)$ and let $\pi : C \to M$ be the canonical projection. Then $g^*(\pi) = \pi g = 0$ and ker $g^* = 0$ implies $\pi = 0$ and hence $C = \operatorname{im}(g)$ and $B \xrightarrow{g} C \to 0$ is exact. Similarly, we show that ker $(g) \subset \operatorname{im}(f)$ by letting $M = B/\operatorname{im}(f)$ and considering the canonical projection $B \to M$. Finally, let M = C, then $0 = f^*g^* = gf$, so $\operatorname{imim} f \subset \operatorname{ker}(g)$. Thus, $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact.