Problem sheet #12 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

Problem 50 (More properties of E)

- 1. Show the converse of Remark 5.3.2: If E(P, M) = 0 for all M then P is projective; if E(M, J) = 0 for all M then J is injective.
- 2. Let R be a principal ideal domain and let $a \in R$ be non-zero. Show that for every R-module M we have $E(R/Ra, M) \cong M/aM$. Give the isomorphism explicitly.

Problem 51 (Examples of extensions)

Let K be a field. Recall the notation $K_{\lambda} = K[X]/(X - \lambda), \lambda \in K$ for the simple K[X]-modules (Problem 29, Sheet 7).

- 1. Compute $E(K_{\lambda}, K_{\mu})$.
- 2. Compute $E(K[X], K_{\lambda})$.
- 3. Compute $E(K_{\lambda}, K[X])$.
- 4. Show that in any non-split short exact sequence $K[X] \to B \to K_{\lambda}$, B is isomorphic to K[X] as a K[X]-module.

Problem 52 (Exact functors)

You overheard someone say "To test a functor for left or right exactness, it is enough to test it on short exact sequences." Make that statement precise and prove it.

Problem 53 (Complexes and homologies)

Let \mathbf{C} be a chain complex of free abelian groups.

- 1. Which of the \mathbb{Z} -modules B_n , Z_n , H_n are always free? Show that Z_n is a direct summand of C_n .
- 2. Suppose $C_n = 0$ for n < 0 and for n > N, and that all C_n are finitely generated. Let $c_n \in \mathbb{Z}_{\geq 0}$ be the rank of C_n , and h_n the rank of $H_n(\mathbf{C})$. Show that

$$\sum_{n=0}^{N} (-1)^n c_n = \sum_{n=0}^{N} (-1)^n h_n .$$