Problem sheet #11 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

Problem 45 (Missing steps in proof of Theorem 5.2.1) Show the implications $1 \Rightarrow 3$ and $3 \Rightarrow 2$ in Theorem 5.2.1.

Problem 46 (Examples and counter examples)

1. Give an example showing that submodules of projective modules need not be projective.

Hint: Try to split $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ (*p* prime), all considered as modules over $\mathbb{Z}/p^2\mathbb{Z}$.

- 2. Show that \mathbb{Q} is not a projective \mathbb{Z} -module.
- 3. Let $M \neq 0$ be a finitely generated module over some ring. Is there always / sometimes / never a finitely generated injective module J with $M \subset J$?

Problem 47 (Projective, injective, semisimple)

Let ${\cal R}$ be a ring. Show that the following are equivalent:

- 1. Every *R*-module is projective.
- 2. Every R-module is injective.
- 3. Every *R*-module is semisimple.
- 4. Every simple *R*-module is projective.

Extra (and not so easy) problem without points: The statement "Every simple *R*-module is injective." is missing from the above list. Can you say why?

Please turn over.

Problem 48 (Universal property of pullbacks)

For an arbitrary category C and morphisms $f : A \to X$, $g : B \to X$ in C, a *pullback* of (f, g) is a pair of morphisms $\alpha : Y \to A$, $\beta : Y \to B$ such that $f \circ \alpha = g \circ \beta$ satisfying the following universal property: given $\gamma : Z \to A, \delta : Z \to B$ with $f \circ \gamma = g \circ \delta$ there exists a unique $\xi : Z \to Y$ with $\gamma = \alpha \circ \xi$, $\delta = \beta \circ \xi$:

Given *R*-module homomorphisms $B \xrightarrow{g} M \xleftarrow{f} A$, in the lecture we defined an *R*-module M' which we called the pullback:

$$M' := \{(a, b) \in A \oplus B \mid f(a) = g(b)\}$$

Show that M' satisfies the universal property of pullbacks.

Problem 49 (A diagram chase)

Let R be a commutative ring and consider the following a commutative diagram of R-modules and homomorphisms with exact rows:

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow t_{1} \qquad \downarrow t_{2} \qquad \downarrow t_{3} \qquad \downarrow t_{4} \qquad \downarrow t_{5}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} B_{3} \xrightarrow{g_{3}} B_{4} \xrightarrow{g_{4}} B_{5}$$

Prove one of the two following claims (or both, if you like):

1. If t_2 and t_4 are surjective and t_5 is injective, then t_3 is surjective.

2. If t_2 and t_4 are injective and t_1 is surjective, then t_3 is injective.

Remark: It follows from parts 1 and 2 that if t_1 is surjective, t_2 and t_4 are isomorphisms and t_5 is injective, then t_3 is an isomorphism.