Problem sheet #05 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

Problem 17 (Additive but not abelian)

Let k be a field. A \mathbb{Z} -filtered vector space is a k-vector space V together with subspaces $(V_i)_{i \in \mathbb{Z}}$, such that $V_i \subset V_{i+1}$ for all i. Let C be the category of \mathbb{Z} -filtered vector spaces. The objects of C are \mathbb{Z} -filtered vector space and the morphisms are linear maps $f : V \to W$ such that $f(V_i) \subset W_i$ for all i. You may assume (or prove, if you like) that C is additive.

Show that

- 1. C has kernels and cokernels.
- 2. C is not abelian.

Hint: Consider V = W = k with $V_i = W_i = 0$ for i < 0 and $V_i = W_i = k$ for i > 0. Choose $V_0 = 0$ and $W_0 = k$. Let $f : V \to W$ be the identity map on k as a map from V to W. Show that f is mono and epi but not an isomorphism.

Problem 18 (Rings and modules as categories and functors)

An *Ab-category* is a category whose morphism spaces are abelian groups and whose composition is bilinear. An *additive* functor between two Ab-categories is defined the same way as for additive categories: the maps between morphism spaces are group homomorphisms.

- 1. Let C be an Ab-category and $A \in C$. Show that C(A, A) is a ring. Make sense of: "An Ab-category with one object is the same as a ring". (Why does this not work for additive categories?)
- 2. Let now C be an Ab-category with one object, which we will call \bullet . Write $R = C(\bullet, \bullet)$ for the corresponding ring. Make sense of: "An additive functor $C \to \mathbf{Ab}$ is the same as an *R*-module."
- 3. Let \mathcal{C} be as in 2. Make sense of "An natural transformation between two additive functors $\mathcal{C} \to \mathbf{Ab}$ is the same as an *R*-module homomorphism."

Please turn over.

Problem 19 (Bifunctors)

- 1. Make precise the notion of the product category $C \times D$ of two categories C, D (objects are pairs explain morphisms and composition).
- 2. A functor from a product category $\mathcal{C} \times \mathcal{D}$ to another category \mathcal{E} is called a bifunctor from $(\mathcal{C}, \mathcal{D})$ to \mathcal{E} . Show that, for each $C \in \mathcal{C}$ and $D \in \mathcal{D}$, a bifunctor F determines functors $F_C : \mathcal{D} \to \mathcal{E}$ and $F_D : \mathcal{C} \to \mathcal{E}$ such that for any morphisms $f \in \mathcal{C}(C, C'), g \in \mathcal{D}(D, D')$ the following diagram commutes:

$$F(C,D) \xrightarrow{F_D(f)} F(C',D)$$

$$F_C(g) \downarrow \qquad \qquad \qquad \downarrow F_{C'}(g)$$

$$F(C,D') \xrightarrow{F_{D'}(f)} F(C',D')$$

3. Show that the converse of 2 is also true. That is, given a family of functors $F_C : \mathcal{D} \to \mathcal{E}$ and $F_D : \mathcal{C} \to \mathcal{E}$ (for all $C, D \in \mathcal{C}, \mathcal{D}$) that satisfy $F_C(D) = F_D(C)$ and a commuting square as above (what must F(C, D) be?), they determine a bifunctor F, i.e. a functor from the product category $\mathcal{C} \times \mathcal{D}$ to \mathcal{E} .

Problem 20 (Hom-functors are bifunctors) Let C be a category and let $A \in C$.

- 1. Show that $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$ is a functor.
- 2. Show that $\mathcal{C}(-, A) : \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ is a functor.
- 3. Show that $\mathcal{C}(-,-): \mathcal{C}^{op} \times \mathcal{C} \to \mathbf{Set}$ is a bifunctor.