Problem sheet # 03 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

Problem 8 (Misc)

- 1. Show that $\operatorname{End}_R(RR) \cong R^{\operatorname{op}}$ and $\operatorname{End}_{R-R}(RRR) \cong Z(R)$ as rings. Here $\operatorname{End}_{R-R}(RRR)$ are bimodule endomorphisms and Z(R) is the centre of R.
- 2. Let R be a ring, I an ideal in R and M an R-module. Show that $IM = \{\sum_a i_a m_a | i_a \in I, m_a \in M\}$ is a submodule. Show that I is in the kernel of the representation homomorphism $\rho : R \to \operatorname{End}(M/IM)$.
- 3. Let R be a ring, I an ideal in R, M a free R-module with basis U. Show that $\sum_{u \in U} r_u u$ is in IM if and only if all r_u are in I.

Problem 9 (Free modules)

- 1. Consider the three \mathbb{Z} -modules a) \mathbb{Q} , b) $(\mathbb{Z} \oplus \mathbb{Z})/\langle (1,2) \rangle$, c) $(\mathbb{Z} \oplus \mathbb{Z})/\langle (2,2) \rangle$. Show in each case whether the module is free or not.
- 2. Show that every module is the quotient of a free module.
- 3. Show Cor. 2.4.2, that is, show that $\operatorname{Map}(S, M) \to \operatorname{Hom}_R(R^{(S)}, M), f \mapsto f_*$, is an isomorphism of abelian groups. Can you think of a useful compatibility with *R*-module homomorphisms $h: M \to N$?

Problem 10 (Bases with different cardinality)

Let M be the \mathbb{Z} -module $\mathbb{Z} \times \mathbb{Z} \times \cdots = \prod_{i \in \mathbb{Z}_{>0}} \mathbb{Z}$ (the direct product of \mathbb{Z} over $i \in \mathbb{Z}_{>0}$). Let $R = \operatorname{End}_{\mathbb{Z}}(M)$. Define $\varphi_1, \varphi_2 \in R$ by

$$\varphi_1(a_1, a_2, a_3, \ldots) = (a_1, a_3, a_5, \ldots)$$
, $\varphi_2(a_1, a_2, a_3, \ldots) = (a_2, a_4, a_6, \ldots)$.

1. Prove that $\{\varphi_1, \varphi_2\}$ is a free basis of the left *R*-module *R*. *Hint:* Define maps ψ_1 and ψ_2 by

$$\psi_1(a_1, a_2, a_3, \ldots) = (a_1, 0, a_2, 0 \ldots) , \ \psi_2(a_1, a_2, a_3, \ldots) = (0, a_1, 0, a_2 \ldots)$$

Verify that $\varphi_i \psi_i = 1$, $\varphi_1 \psi_2 = 0 = \varphi_2 \psi_1$ and $\psi_1 \varphi_1 + \psi_2 \varphi_2 = id$.

2. Show that $R \cong R^2$ as *R*-modules and deduce that $R \cong R^n$ for all $n \in \mathbb{Z}_{>0}$.

Problem 11 (Opposite category)

Given a category \mathcal{C} , try to define a new category, the *opposite category* \mathcal{C}^{op} as follows: the objects of \mathcal{C}^{op} are those of \mathcal{C} . Given two objects $A, B \in \mathcal{C}^{\text{op}}$, define $\mathcal{C}^{\text{op}}(A, B) := \mathcal{C}(B, A)$. Can you define units 1_A^{op} and a composition \circ^{op} to turn \mathcal{C}^{op} into a category?