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Let k be a field and let H be a Hopf algebra over k.
In this talk we consider, instead of the Hopf algebra H itself, the category of all its representations, and

examine what structure exists on this category and how it reflects the structure of the Hopf algebra.

1 Categories, functors and natural transformations

Definition 1.1. A category C consists of

• a collection Ob(C) of so-called objects,

• for each pair of objects X and Y : a set HomC(X,Y ) of morphisms from X to Y , and

• for each triple of objects X, Y and Z: a map, called composition,

◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z),

(f, g) 7→ f ◦ g,

satisfying the following properties:

• (Associativity): (f ◦ g)◦h = f ◦ (g ◦h) for all h ∈ HomC(X,Y ), g ∈ HomC(Y,Z) and f ∈ HomC(Z,W ).

• (Existence of unit): For each object X ∈ Ob(C) there exists a morphism idX such that idX ◦g = g
and f ◦ idX = f for all f ∈ HomC(X,Y ) and g ∈ HomC(Y,X).

A morphism f ∈ HomC(X,Y ) is called an isomorphism, if there exists a morphism g ∈ HomC(Y,X), such
that g ◦ f = idX and f ◦ g = idY .

Observation 1.2. For any object X ∈ Ob(C) of a category C, consider the set of endomorphisms of X:

EndC(X) := HomC(X,X)

The axioms of a category say that this is a monoid, with multiplication given by composition.

Examples 1.3.

1. The category Vect(k) of k-vector spaces:

• Its objects Ob(Vect(k)) are all vector spaces over k.

• Given vector spaces V and W , the set of morphisms HomVect(k)(V,W ) is defined to be the set of
k-linear maps from V to W .

• Composition of two composable morphisms is defined to be the obvious composition of maps.

We abbreviate Homk(·, ·) := HomVect(k)(·, ·).

2. Let A be an algebra over k. The category Mod(A) has as objects all (left) A-modules and as morphisms
A-linear maps. Composition is again naturally given. For the morphism sets we use the abbreviation
HomA(·, ·) := HomMod(A)(·, ·).

3. Given any category C, there is a category C × C, whose objects and morphisms are pairs of objects of
C and pairs of morphisms of C, respectively. Composition is then defined component-wise.
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Remark 1.4. In fact, the category Vect(k) of vector spaces (as well as the category of A-modules) has the
special feature that its sets of morphisms naturally carry additional structure. They are themselves vector
spaces over k. Furthermore, this extra structure on the category is compatible with the basic structure on
the category: The composition of linear maps is a bilinear map. One says that the categories Vect(k) and
Mod(A) are k-linear (or enriched over the category Vect(k)).

Together with Observation 1.2 this leads to the following fact: For any vector space V , the set of endo-
morphisms Endk(V ) is a monoid and also a vector space, such that the multiplication is bilinear. That is
to say, Endk(V ) is a k-algebra.

Definition 1.5. A functor F : C → D from a category C to another category D consists of

• a map F : Ob(C)→ Ob(D), and

• for each X and Y ∈ Ob(C), a map F : HomC(X,Y )→ HomD(F (X), F (Y )),

together satisfying:

• F (f ◦ g) = F (f) ◦ F (g) for all g ∈ HomC(X,Y ) and f ∈ HomC(Y,Z),

• F (idX) = idF (X) for all X ∈ Ob(C).

Examples 1.6.

1. For any category C the identity on the class of objects and the identity on the morphisms combine to
the identity functor idC : C → C.

2. Given two composable functors F : C → D and G : D → E , their composition is a functor G◦F : C → E .

3. The forgetful functor FA : Mod(A) → Vect(k), which assigns to an A-module its underlying vector
space and to an A-module morphism the same map as a k-linear map. This functor is k-linear, i.e.
the maps FA : HomA(M,N)→ Homk(M,N) are k-linear.

Definition 1.7. Let C and D be categories and F : C → D and G : C → D functors between them. A
natural transformation η : F ⇒ G from F to G is a family of maps

(
ηX : F (X) → G(X)

)
X∈Ob(C) indexed

by Ob(C), such that for any morphism f ∈ HomC(X,Y ) in the category C the following square commutes:

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) G(f)

ηY

η is called a natural isomorphism if ηX is an isomorphism for all X ∈ Ob(C).

Remarks 1.8.

1. Let H : C → D be a third functor. Two natural transformations η : F ⇒ G and θ : G ⇒ H can be
composed by composing their components:

(θ ◦ η)X := θX ◦ ηX : F (X)→ H(X) for all X ∈ Ob(C).

The natural endomorphisms F ⇒ F of a functor thus form a monoid.

2. Now let D = Vect(k). Then the natural transformations F ⇒ G form a k-vector space, since their
components are morphisms of k-vector spaces, who themselves form a vector space by Remark 1.4.

3. Combining 1. and 2.: The natural endomorphisms of a functor going into Vect(k) form a k-algebra.

Example 1.9. Recall the forgetful functor FA : Mod(A)→ Vect(k) for an algebra A, from Example 1.6.3.
Let a ∈ A. We will give a natural endomorphism of the functor FA. For every A-module M , acting with
the element a defines a linear map

ρM (a) : M →M,

x 7→ a.x .
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For any A-module morphism f : M → N , the following holds by A-linearity:

f ◦ ρM (a) = ρN (a) ◦ f.

Thus, we obtain a natural endomorphism

ρ(a) := (ρM (a))M∈Ob(Mod(A)) : FA ⇒ FA

of the forgetful functor FA : Mod(A)→ Vect(k).
Note that, in general, ρM (a) is not A-linear, that is, it is not a morphism in the category Mod(A), unless

A is commutative. Hence, ρ(a) is not a natural endomorphism of the identity functor on Mod(A).

2 Reconstruction of an algebra

Let A be an algebra. We have just seen that, using the forgetful functor FA : Mod(A) → Vect(k), we can
consider another algebra: the algebra End(FA) of natural endomorphisms of FA.

The question is how the algebras A and End(FA) are related. We already have a map

ρ : A→ End(FA),

which maps a ∈ A to the natural endomorphism ρ(a) from Example 1.9. In fact, this is a homomorphism
of algebras. Moreover, we have:

Proposition 2.1. The map

ρ : A→ End(FA),

a 7→ (M →M,x 7→ a.x)M∈Ob(Mod(A))

is an isomorphism between the algebra A and the endomorphism algebra End(FA) of the forgetful functor
FA : Mod(A)→ Vect(k).

To summarize, we have thus fully reconstructed an algebra A from its category of representations and the
forgetful functor to Vect(k). Note that the algebra End(FA) is described purely in terms of the structures
of Mod(A) and FA as (k-linear) category and functor, respectively. To construct it we do not need Mod(A)
to be the representation category of an algebra.

3 Monoidal categories and monoidal functors

A bialgebra is an algebra with additional structure: co-multiplication. This is mirrored by additional
structure on the category of modules over a bialgebra. One can form tensor products of modules. We
introduce the formal notion of a category with such additional monoidal structure:

Definition 3.1. A monoidal category (or tensor category) (C,⊗, I, a, l, r) consists of

• a category C,
• a functor ⊗ : C × C → C (called tensor product),

• an object I ∈ Ob(C) (called unit),

• a natural isomorphism a : ⊗(⊗× id)⇒ ⊗(id×⊗) (called associativity constraint), and

• natural isomorphisms l : ⊗(I × id)⇒ id and r : ⊗(id×I)⇒ id (called left and right unit constraint),

that together satisfy the following axioms (Pentagon Axiom and Triangle Axiom): The diagrams(
(U ⊗ V )⊗W

)
⊗X

(
U ⊗ (V ⊗W )

)
⊗X

(U ⊗ V )⊗ (W ⊗X)

U ⊗
(
V ⊗ (W ⊗X)

)
U ⊗

(
(V ⊗W )⊗X

)

aU⊗V,W,X

aU,V,W⊗idX

aU,V ⊗W,X

aU,V,W⊗X

idU ⊗aV,W,X

(V ⊗ I)⊗W

V ⊗W

V ⊗ (I ⊗W )

aV,I,W

rV ⊗idW

idV ⊗lW

commute for all objects U, V,W,X ∈ Ob(C).
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Example 3.2.

1. The conventional tensor product of vector spaces and linear maps endows the category Vect(k) with
the structure of a monoidal category. The tensor unit is the vector space given by the ground field k.
Furthermore, for vector spaces U , V and W , we have canonical isomorphisms

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ), k ⊗ V ∼= V and V ⊗ k ∼= V.

2. Let H be a bialgebra. Then the category Mod(H) of (left) H-modules is a monoidal category as
follows. Given two H-modules M and N we can endow their tensor product as vector spaces M ⊗N
with the structure of an H-module using the co-multiplication of H. Also, we can endow the vector
space tensor unit k with an H-module structure using the co-unit of H. Finally, the same associativity,
left unit and right unit constraints as for vector spaces also become isomorphisms of H-modules.

When one tries to reconstruct the bialgebra H from the monoidal category Mod(H) and the forgetful
functor into Vect(k), one needs this functor to respect the additional monoidal structure:

Definition 3.3. Let C = (C,⊗, I, a, l, r) and D = (D, ⊗̃, Ĩ, ã, l̃, r̃) monoidal categories. A tensor functor
(F,ϕ0, ϕ2) from C to D consists of

• a functor F : C → D,

• an isomorphism ϕ0 : Ĩ → F (I), and

• a natural isomorphism
(
ϕ2(U, V ) : F (U)⊗̃F (V )→ F (U ⊗ V )

)
U,V ∈Ob(C)

such that the diagrams

(
F (U)⊗̃F (V )

)
⊗̃F (W ) F (U)⊗̃

(
F (V )⊗̃F (W )

)

F (U ⊗ V )⊗̃F (W ) F (U)⊗̃F (V ⊗W )

F
(
(U ⊗ V )⊗W

)
F
(
U ⊗ (V ⊗W )

)
,

ãF (U),F (V ),F (W )

ϕ2(U, V )⊗ idF (W ) idF (U)⊗ϕ2(V,W )

ϕ2(U ⊗ V,W ) ϕ2(U, V ⊗W )

F (aU,V,W )

Ĩ⊗̃F (U) F (U)

F (I)⊗̃F (U) F (I ⊗ U)

l̃F (U)

ϕ0⊗̃ idF (U)

ϕ2(I, U)

F (lU )

F (U)⊗̃Ĩ F (U)

F (U)⊗̃F (I) F (U ⊗ I)

r̃F (U)

idF (U) ⊗̃ϕ0

ϕ2(U, I)

F (rU )

commute for all objects U, V,W ∈ Ob(C).

Example 3.4. Let H be a bialgebra. Then the forgetful functor FH : Mod(H) → Vect(k) is a functor
between monoidal categories. In fact, it becomes a tensor functor using ϕ0 = idk : k → FH(k) = k and
ϕ2(M,N) = idFH(M⊗N) : FH(M)⊗ FH(N)→ FH(M ⊗N) for H-modules M and N .
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