1 R-Matrix For A Quotient Of $U_q(\mathfrak{sl}(2))$

As in the last talk we take the underlying field to be \mathbb{C} and let $q \in \mathbb{C}$ be a root of unity of order d. We assume d is an odd integer with d > 1.

1.1 Quotient Of $U_q(\mathfrak{sl}(2))$

Recall the Hopf Algebra $U_q := U_q(\mathfrak{sl}(2))$ generated by E, F, K, K^{-1} .

Proposition 1.1. E^d, F^d, K^d are central.

Let I be the (two-sided) ideal

$$I = \left(E^d, F^d, K^d - 1\right) \tag{1.1}$$

We define the quotient algebra $\bar{U}_q := U_q/I$. \bar{U}_q is finite-dimensional. In particular,

Proposition 1.2. The set $\{E^i F^j K^l\}_{0 \le i,j,l \le d-1}$ is a basis of \overline{U}_q

We will construct a universal R-matrix for \overline{U}_q using the quantum double construction.

Proposition 1.3. There exists a unique Hopf Algebra structure on \bar{U}_q such that the canonical projection $\pi: U_q \to \bar{U}_q$ is a morphism of Hopf Algebras.

Proof. We know that given a Hopf Algebra H and a Hopf Ideal I of H there exists a unique Hopf Algebra structure on H/I such that the canonical projection $\pi : H \to H/I$ is a morphism of Hopf Algebras. It then remains to check that I is a Hopf Ideal. We can check

$$\Delta(E)^{d} = \Delta(F)^{d} = \Delta(K)^{d} - 1 = 0$$

$$\epsilon(E)^{d} = \epsilon(F)^{d} = \epsilon(K)^{d} - 1 = 0$$

$$S(E)^{d} = S(F)^{d} = S(K)^{d} - 1 = 0$$

$$\Box$$

Define B_q as the subspace of \overline{U}_q spanned by the set $\{E^m K^n\}_{0 \le m, n \le d-1}$.

Proposition 1.4. B_q is a Hopf subalgebra of \overline{U}_q .

We now apply the quantum double construction to obtain the quantum double $D(B_q)$ of B_q .

First we need to determine $X = (B_q^{op})^*$ as a Hopf Algebra.

Lemma 1.1. Let $\alpha, \eta \in B_q^*$ defined by

$$\langle \alpha, E^m K^n \rangle = \delta_{m0} q^{2n}, \quad \langle \eta, E^m K^n \rangle = \delta_{m1}.$$
 (1.3)

Then $\{\eta^i \alpha^j\}_{0 \le i,j \le d-1}$ is a basis of X and X is a Hopf Algebra with

$$\alpha^{d} = 1, \quad \eta^{d} = 0, \quad \alpha \eta \alpha^{-1} = q^{-2} \eta,$$
$$\Delta(\alpha) = \alpha \otimes \alpha, \quad \Delta(\eta) = 1 \otimes \eta + \eta \otimes \alpha,$$
$$\epsilon(\alpha) = 1, \quad \epsilon(\eta) = 0,$$
$$S(\alpha) = \alpha^{d-1}, \quad S(\eta) = -\eta \alpha^{d-1}$$

Lemma 1.2. The following relations hold in $D = D(B_q)$

$$K\alpha = \alpha K, \quad K\eta = q^{-2}\eta K$$
$$E\alpha = q^{-2}\alpha E, \quad E\eta = -q^{-2}(1 - \eta E - \alpha K)$$
(1.4)

In what follows we denote $\eta^i \alpha^j \otimes E^k K^l = \eta^i \alpha^j E^k K^l$.

Proposition 1.5. The linear map $\chi: D(B_q) \to \overline{U}_q$ determined by

$$\chi(\eta^{i}\alpha^{j}E^{k}K^{l}) = \left(\frac{q-q^{-1}}{q^{2}}\right)^{i}q^{2(i+j)k-i(i-1)}F^{i}E^{k}K^{i+j+l}$$
(1.5)

with $0 \le i, j, k, l \le d - 1$ is a surjective Hopf Algebra morphism.

Proof. Surjectivity is clear since the image of $\{\eta^i \alpha^j E^k K^l\}$ generates \overline{U}_q . We first need to show that χ is an algebra morphism. It is enough to show that the images of the generators satisfy the above relations, eg that $\chi(K)\chi(\alpha) = \chi(\alpha)\chi(K)$. Similarly, to show that χ respects the comultiplication and antipode it is enough to check it on the generators. \Box

Corollary 1.1. The Hopf Algebra \overline{U}_q is quasi-triangular.

Proof. We know that $D = D(B_q)$ is quasi triangular. Let $R_D \in D \otimes D$ be its universal R-matrix. Define $\bar{R} \in \bar{U}_q \otimes \bar{U}_q$ by

$$\bar{R} = (\chi \otimes \chi)(R_D) \tag{1.6}$$

 \overline{R} is invertible and since χ is a surjective Hopf Algebra morphism it follows that \overline{U}_q is quasi-triangular.

The following is our main result:

Theorem 1. The universal *R*-Matrix \overline{R} of \overline{U}_q is given by

$$\bar{R} = \frac{1}{d} \sum_{0 \le i, j, k \le d-1} \frac{(q - q^{-1})^k}{[k]!} q^{k(k-1)/2 + 2k(i-j) - 2ij} E^k K^i \otimes F^k K^j$$
(1.7)

Proof. We will prove the general form of \overline{R} . Given a basis $\{e_i\}_{i \in I}$ of B_q with corresponding dual basis $\{e^i\}_{i \in I}$ we have

$$R_D = \sum_{i \in I} e_i \otimes e^i \tag{1.8}$$

Hence

$$\bar{R} = (\chi \otimes \chi)(R_D) = \sum_{i \in I} \chi(e_i) \otimes \chi(e^i)$$
(1.9)

We know $\{E^i K^j\}_{0 \le i,j \le d-1}$ is a basis of B_q . Denote by $\{\beta^{ij}\}_{0 \le i,j \le d-1}$ the corresponding dual basis which can be expanded as

$$\beta^{ij} = \sum_{0 \le k, l \le d-1} \mu^{ij}_{kl} \eta^k \alpha^l \tag{1.10}$$

for some coefficients μ_{kl}^{ij} . One can show that $\mu_{kl}^{ij} = 0$ for $i \neq k$. Hence

$$\bar{R} = \sum_{i \in I} \mu_{il}^{ij} \chi(E^i K^j) \otimes \chi(\eta^i \alpha^l)$$
(1.11)

Now using our explicit formula for χ we obtain

$$\bar{R} = \sum_{0 \le i, j, k \le d-1} c_{ijk} E^k K^i \otimes F^k K^j \tag{1.12}$$

for come coefficients c_{ijk} .

.

1.2 *R*-Matrix on $V_1 \otimes V_1$

Let V_1 be the vector space spanned by $\{v_0, v_1\}$. The following defines a representation of \bar{U}_q on V_1

$$Kv_{0} = qv_{0}, \quad Kv_{1} = q^{-1}v_{1}$$

$$Ev_{0} = 0, \quad Ev_{1} = v_{0}$$

$$Fv_{0} = v_{1}, \quad Fv_{1} = 0$$

(1.13)

Recall that given a universal *R*-matrix *R* for a Hopf Algebra *H* and finite dimensional *H*-modules *V* and *W* then a solution $c_{V,W}^R$ of the Yang-Baxter Equation (YBE) is given by

$$c_{V,W}^{R}(v \otimes w) = \tau_{V,W}(R(v \otimes w)), \quad v \in V, w \in W$$
(1.14)

Using the *R*-matrix given above and the module V_1 of \overline{U}_q then a solution of the YBE is given by

$$c_{V_1,V_1}^R(v_0 \otimes v_0) = \lambda q v_0 \otimes v_0$$

$$c_{V_1,V_1}^{\bar{R}}(v_0 \otimes v_1) = \lambda v_1 \otimes v_0 \qquad (1.15)$$

$$c_{V_1,V_1}^{\bar{R}}(v_1 \otimes v_0) = \lambda (v_0 \otimes v_1 + (q + q^{-1})v_1 \otimes v_0)$$

$$c_{V_1,V_1}^{\bar{R}}(v_1 \otimes v_1) = \lambda q v_1 \otimes v_1$$

where $\lambda = q^{(d-1)/2}$.

We know that $\{v_0, v_1\}$ is a basis of V_1 , hence $\{v_0 \otimes v_0, v_0 \otimes v_1, v_1 \otimes v_0, v_1 \otimes v_1\}$ is a basis of $V_1 \otimes V_1$. With respect to this basis the R-matrix takes the form

$$c_{V_1,V_1}^{\bar{R}} = \begin{pmatrix} \lambda q & 0 & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & \lambda & \lambda (q - q^{-1}) & 0 \\ 0 & 0 & 0 & \lambda q \end{pmatrix}$$
(1.16)