
1 R-Matrix For A Quotient Of Uq(sl(2))
As in the last talk we take the underlying field to be C and let q ∈ C be a root of unity of
order d. We assume d is an odd integer with d > 1.

1.1 Quotient Of Uq(sl(2))
Recall the Hopf Algebra Uq := Uq(sl(2)) generated by E,F,K,K−1.

Proposition 1.1. Ed, F d, Kd are central.

Let I be the (two-sided) ideal

I =
(
Ed, F d, Kd − 1

)
(1.1)

We define the quotient algebra Ūq := Uq/I. Ūq is finite-dimensional. In particular,

Proposition 1.2. The set {EiF jK l}0≤i,j,l≤d−1 is a basis of Ūq

We will construct a universal R-matrix for Ūq using the quantum double construction.

Proposition 1.3. There exists a unique Hopf Algebra structure on Ūq such that the canon-
ical projection π : Uq → Ūq is a morphism of Hopf Algebras.

Proof. We know that given a Hopf Algebra H and a Hopf Ideal I of H there exists a
unique Hopf Algebra structure on H/I such that the canonical projection π : H → H/I

is a morphism of Hopf Algebras. It then remains to check that I is a Hopf Ideal. We can
check

∆(E)d = ∆(F )d = ∆(K)d − 1 = 0

ε(E)d = ε(F )d = ε(K)d − 1 = 0 (1.2)

S(E)d = S(F )d = S(K)d − 1 = 0

Define Bq as the subspace of Ūq spanned by the set {EmKn}0≤m,n≤d−1.

Proposition 1.4. Bq is a Hopf subalgebra of Ūq.

We now apply the quantum double construction to obtain the quantum double D(Bq)
of Bq.

First we need to determine X = (Bop
q )∗ as a Hopf Algebra.
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Lemma 1.1. Let α, η ∈ B∗q defined by

〈α,EmKn〉 = δm0q
2n, 〈η, EmKn〉 = δm1. (1.3)

Then {ηiαj}0≤i,j≤d−1 is a basis of X and X is a Hopf Algebra with

αd = 1, ηd = 0, αηα−1 = q−2η,

∆(α) = α⊗ α, ∆(η) = 1⊗ η + η ⊗ α,

ε(α) = 1, ε(η) = 0,

S(α) = αd−1, S(η) = −ηαd−1

Lemma 1.2. The following relations hold in D = D(Bq)

Kα = αK, Kη = q−2ηK

Eα = q−2αE, Eη = −q−2(1− ηE − αK) (1.4)

In what follows we denote ηiαj ⊗ EkK l = ηiαjEkK l.

Proposition 1.5. The linear map χ : D(Bq)→ Ūq determined by

χ(ηiαjEkK l) =
(
q − q−1

q2

)i

q2(i+j)k−i(i−1)F iEkKi+j+l (1.5)

with 0 ≤ i, j, k, l ≤ d− 1 is a surjective Hopf Algebra morphism.

Proof. Surjectivity is clear since the image of {ηiαjEkK l} generates Ūq. We first need to
show that χ is an algebra morphism. It is enough to show that the images of the generators
satisfy the above relations, eg that χ(K)χ(α) = χ(α)χ(K). Similarly, to show that χ
respects the comultiplication and antipode it is enough to check it on the generators.

Corollary 1.1. The Hopf Algebra Ūq is quasi-triangular.

Proof. We know that D = D(Bq) is quasi triangular. Let RD ∈ D ⊗ D be its universal
R-matrix. Define R̄ ∈ Ūq ⊗ Ūq by

R̄ = (χ⊗ χ)(RD) (1.6)

R̄ is invertible and since χ is a surjective Hopf Algebra morphism it follows that Ūq is
quasi-triangular.
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The following is our main result:

Theorem 1. The universal R-Matrix R̄ of Ūq is given by

R̄ = 1
d

∑
0≤i,j,k≤d−1

(q − q−1)k

[k]! qk(k−1)/2+2k(i−j)−2ijEkKi ⊗ F kKj (1.7)

Proof. We will prove the general form of R̄. Given a basis {ei}i∈I of Bq with corresponding
dual basis {ei}i∈I we have

RD =
∑
i∈I

ei ⊗ ei (1.8)

Hence
R̄ = (χ⊗ χ)(RD) =

∑
i∈I

χ(ei)⊗ χ(ei) (1.9)

We know {EiKj}0≤i,j≤d−1 is a basis of Bq. Denote by {βij}0≤i,j≤d−1 the corresponding dual
basis which can be expanded as

βij =
∑

0≤k,l≤d−1
µij

klη
kαl (1.10)

for some coefficients µij
kl. One can show that µij

kl = 0 for i 6= k. Hence

R̄ =
∑
i∈I

µij
ilχ(EiKj)⊗ χ(ηiαl) (1.11)

Now using our explicit formula for χ we obtain

R̄ =
∑

0≤i,j,k≤d−1
cijkE

kKi ⊗ F kKj (1.12)

for come coefficients cijk.

1.2 R-Matrix on V1 ⊗ V1

Let V1 be the vector space spanned by {v0, v1}. The following defines a representation of
Ūq on V1

Kv0 = qv0, Kv1 = q−1v1

Ev0 = 0, Ev1 = v0 (1.13)

Fv0 = v1, Fv1 = 0

.
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Recall that given a universal R-matrix R for a Hopf Algebra H and finite dimensional
H-modules V and W then a solution cR

V,W of the Yang-Baxter Equation (YBE) is given by

cR
V,W (v ⊗ w) = τV,W (R(v ⊗ w)), v ∈ V,w ∈ W (1.14)

Using the R-matrix given above and the module V1 of Ūq then a solution of the YBE is
given by

cR̄
V1,V1(v0 ⊗ v0) = λqv0 ⊗ v0

cR̄
V1,V1(v0 ⊗ v1) = λv1 ⊗ v0 (1.15)

cR̄
V1,V1(v1 ⊗ v0) = λ(v0 ⊗ v1 + (q + q−1)v1 ⊗ v0)

cR̄
V1,V1(v1 ⊗ v1) = λqv1 ⊗ v1

where λ = q(d−1)/2.
We know that {v0, v1} is a basis of V1, hence {v0⊗ v0, v0⊗ v1, v1⊗ v0, v1⊗ v1} is a basis

of V1 ⊗ V1. With respect to this basis the R-matrix takes the form

cR̄
V1,V1 =


λq 0 0 0
0 0 λ 0
0 λ λ(q − q−1) 0
0 0 0 λq

 (1.16)
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