1 Yang-Baxter equation and Artin Braid group

Definition 1.1. A group F is called free if there exists $X \subset F$ such that $\langle X \rangle = F$ and for all groups H and maps $f : X \to H$ there exists a unique grouphomomorphism

$$\phi: F \to H, \quad \phi|_X = f.$$

Remark 1.2. • The last property is the universal property of free groups.

• For an arbitrary set I one can construct a free group F with basis I.

Proposition 1.3. Let G be a group. Then there exists a free group F and a surjective grouphomomorphism $\phi: F \to G$.

Remark 1.4. Every group G is a quotient group for some free group F.

$$G \simeq F/N$$

Let $R \subset F$ be a subset such that $\langle R \rangle = N$. The pair (X, R) is called the presentation of the group G:

 $r = 1, r \in R$ are called relations.

Notation 1.5. $G = \langle X | R \rangle$

Example 1.6. G cyclic $G = \langle x | x^n = 1 \rangle$

Definition 1.7. The Artin Braid group B_n is the group generated by n-1 generaters $\sigma_1, ..., \sigma_{n-1}$ and the following relations.

- 1. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for all i, j = 1, ..., n-1 with $|i-j| \ge 2$ and
- 2. $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for i = 1, ..., n-2

These relations are called "braid relations".

Remark 1.8. *i)* Note $|i - j| \ge 2$ in (1), so $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1!$

 $\begin{array}{l} ii) \hspace{0.2cm} B_n = \langle \sigma_1, ..., \sigma_{n-1} | \sigma_i^{-1} \sigma_j^{-1} \sigma_i \sigma_j = 1 \hspace{0.2cm} with \hspace{0.2cm} |i-j| \geq 2, \\ \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} \sigma_i \sigma_{i+1} \sigma_i = 1 \rangle \end{array}$

iii) Obviously for a given $f \in Hom(B_n, G)$, G a group, the elements $s_i = f(\sigma_i)$, i = 1, ..., n - 1 satisfy 1) $s_i s_j = s_j s_i |i - j| \ge 2$ 2) $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ **Lemma 1.9.** Let G be a group, $s_1, ..., s_{n-1} \in G$ satisfying (1) and (2) (the braid relations), then there is a unique group homomorphism $f : B_n \longrightarrow G$ such that $s_i = f(\sigma_i)$ for i = 1, ..., n-1.

Corollary 1.10. $B_2 \simeq \mathbb{Z}$ (Why?)

Now we have a look at S_n , the symmetric group on n elements. A transposition $\tau \in S_n$ only permutates two elements. Let $s_1, ..., s_{n-1}$ be the transpositions, where s_i permutes i and i + 1.

Observation:

 $\{s_1, ..., s_{n-1}\}$ satisfy (1) and (2).

 $S_n = \langle s_1, ..., s_{n-1} | s_i^{-1} s_j^{-1} s_i s_j = 1 \text{ with } |i-j| \ge 2, \ s_{i+1}^{-1} s_i^{-1} s_{i+1}^{-1} s_i s_{i+1} s_i = 1$ for $i = 1, ..., n-2, \ s_i^2 = 1$ for $i = 1, ..., n-1 \rangle$

Lemma 1.11. The group B_n $n \ge 3$ is nonabelian.

From now on we analyse B_n from a geometric point of view.

Definition 1.12. A geometric braid on $n \ge 1$ is a set $b \subset \mathbb{R}^2 \times I$ formed by *n* disjoint topological intervals (called strings), such that $\pi : \mathbb{R}^2 \times I \longrightarrow I$ maps each string homeomorphically onto *I*.

$$b \cap (\mathbb{R}^2 \times \{0\}) = \{(1,0,0), (2,0,0), ..., (n,0,0)\}$$
$$b \cap (\mathbb{R}^2 \times \{1\}) = \{(1,0,1), ..., (n,0,1)\}$$

Definition 1.13. Two geometric braids on n strings are isotopic if there is a continuus map $F : b \times I \longrightarrow \mathbb{R}^2 \times I$ such that $F_s : b \longrightarrow \mathbb{R}^2 \times I$, sending $x \in b$ to F(x, s) is a geometric braid on n strings and $F_0 = id_b : b \longrightarrow b$, $F_1(b) = b'$.

The relation of isotopy is an equivalence relation.

- Can you explain why?
- Does the definition of isotopy is known to you from somewhere?

The equivalence classes are called braids on n strings.

Definition 1.14. Let b_1, b_2 be two geometric braids. The product b_1b_2 is the set of points $(x, y, t) \in \mathbb{R}^2 \times I$, such that

$$(x, y, 2t) \in b_1 \quad 0 \le t \le \frac{1}{2}$$

 $(x, y, 2t - 1) \in b_2 \quad \frac{1}{2} \le t \le 1.$

 b_1b_2 is a geometric braid on n strings.

Why?

Is there a neutral element of multiplication?

Notation 1.15. \mathcal{B}_n is the set of braids on n strings with multiplication.

Lemma 1.16. Each $B \in \mathcal{B}_n$ has a twosided inverse.

Theorem 1.17. There is a unique isomorphism

$$\phi: B_n \longrightarrow \mathcal{B}_n$$

such that $\sigma_i \mapsto \sigma_i^+$.

Braid group representations from R-matrices

V vector space, c linear automorphism of $V \otimes V$. Define a linear automorphism c_i of $V^{\otimes n}$

$$c_i = \begin{cases} c \otimes id_{V^{\otimes (n-2)}}, & i = 1\\ id_{V^{\otimes (i-1)}} \otimes c \otimes id_{V^{\otimes (n-i-1)}}, & 1 < i < n-1\\ id_{V^{\otimes (n-2)}} \otimes c, & i = n-1 \end{cases}$$

Lemma 1.18. With c_i defined above we have $c_ic_{i+1}c_i = c_{i+1}c_ic_{i+1}$ for all i iff c is a solution of the Yang-Baxter equation.

Corollary 1.19. Let $c \in Aut(V \otimes V)$ be a solution of the Yang-Baxter equation. For any n > 0, there exists a group morphism

$$\rho_n^c: B_n \longrightarrow Aut(V^{\otimes n})$$

such that $\rho_n^c(\sigma_i) = c_i$, i = 1, ..., n - 1, ρ_n^c is unique.

Let R_{λ} be the universal R-matrix of Sweedler's 4-dim. Hopf algebra. Since $R_{\lambda}^2 \neq id$, this gives a representation with $c_i^2 \neq 1$. This is a representation that do not factor through S_n .