
4 Hopf Algebras

4.1 Hopf Algebras

Let (C,∆, ε) a coalgebra and (A,M, u) an algebra. We define on the set Hom(C,A) an algebra
structure in which the multiplication

∗ : Hom(C,A)⊗ Hom(C,A)→ Hom(C,A), f ⊗ g 7→M ◦ (f ⊗ g) ◦∆

is given as follows: for f, g ∈ Hom(C,A)

(f ∗ g)(c) =
∑
(c)

f(c(1))g(c(2))

for any c ∈ C. This multiplication is associative, since for f, g, h ∈ Hom(C,A) and c ∈ C we
have

((f ∗ g) ∗ h)(c) =
∑
(c)

(f ∗ g)(c(1))h(c(2)) =
∑
(c)

f(c(1))g(c(2))h(c(3))

=
∑
(c)

f(c(1))(g ∗ h)(c(2)) = (f ∗ (g ∗ h))(c)

The identity element of the algebra Hom(C,A) is uε ∈ Hom(C,A), since

(f ∗ (uε))(c) =
∑
(c)

f(c(1))(uε)(c(2)) =
∑
(c)

f(c(1))ε(c(2))u(1) =
∑
(c)

f(c(1))ε(c(2))1 = f(c)

hence f ∗ (uε) = f and similarly (uε) ∗ f = f .

If we consider the dual algebra C∗ of a coalgebra C, we have the multiplication M : C∗⊗C∗ →
C∗ on C∗ given by M = ∆∗ ◦ ρ. If we denote M(f ⊗ g) by f ∗ g we obtain

(f ∗ g)(c) = (∆∗ρ)(f ⊗ g)(c) = ρ(f ⊗ g)(∆(c)) =
∑
(c)

f(c(1))g(c(2))

for f, g ∈ C∗ and c ∈ C. We call this multiplication convolution product.
If A = k, then the product ∗ on the algebra Hom(C, k) is the same as the convolution product
defined on the dual algebra C∗ of the coalgebra C. This is why in the case A is an arbitrary
algebra we will also call ∗ the convolution product.

In the following is H an bialgebra. We denote by Hc the underlying coalgebra, and by Ha the
underlying algebra of H. Define as above an algebra structure on Hom(Hc, Ha), in which the
multiplication is defined as the convolution product. Remark that the identity I : H → H is
an element of Hom(Hc, Ha).

Definition 4.1 Let H be a bialgebra. A linear map S : H → H is called an antipode of the
bialgebra H if S is the inverse of the identity map I with respect to the convolution product in
Hom(Hc, Ha).

Definition 4.2 A bialgebra H having an antipode is called a Hopf algebra.
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Remark 4.3. In a Hopf algebra the antipode is unique, being the inverse of the element I
in the algebra Hom(Hc, Ha). The fact that S : H → H is the antipode can be written as
S ∗ I = I ∗ S = uε and using the sigma notation∑

(h)

S(h(1))h(2) =
∑
(h)

h(1)S(h(2)) = ε(h)u(1)

for any h ∈ H.

Since H is a bialgebra, we keep the convention to say that a Hopf algebra has a property P if
the underlying algebra or coalgebra has the property P .

Definition 4.4 Let H and B be two Hopf algebras. A map f : H → B is called a
morphism of Hopf algebras if it is a morphism of bialgebras.

Proposition 4.5. Let H and B be two Hopf algebras with antipodes SH and SB. If f : H → B
is a bialgebra map, then SBf = fSH .

Proposition 4.6. Let H be a Hopf algebra with antipode S. Then:

1. S(hg) = S(g)s(h) for any g, h ∈ H.

2. S(1) = 1.

3. ∆(S(h)) =
∑

(h) S(h(2))⊗ S(h(1)).

4. ε(S(h)) = ε(h).

Which means that the antipode of a Hopf algebra H is an antimorphism of algebras and coal-
gebras.

Proposition 4.7. Let H be a Hopf algebra with antipode S. Then the following assertions are
equivalent:

1.
∑

(h) S(h(2))h(1) = ε(h)1 for any h ∈ H.

2.
∑

(h) h
(2)S(h(1)) = ε(h)1 for any h ∈ H.

3. S2 = I (S2 := S ◦ S).

Corollary 4.8. let H be a commutative or cocommutative Hopf algebra. Then S2 = I.

We have already seen that if H is a finite dimensional bialgebra, then its dual is a bialgebra.
The following result shows that if H is even a Hopf algebra, then its dual also has a Hopf
algebra structure.

Proposition 4.9. Let H be a finite dimensional Hopf algebra, with antipode S. Then the
bialgebra H∗ is a Hopf algebra, with antipode S∗.
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4.2 Examples

Example 4.10. If H and L are two bialgebras, then it is easy to check that we have a bialgebra
structure on H ⊗ L if we consider the tensor product of algebras and the tensor product of
coalgebras structures. Moreover, if H and L are Hopf algebras with antipodes SH and SL, then
H ⊗ L is a Hopf algebra with antipode SH ⊗ SL. This bialgebra (Hopf algebra) is called the
tensor product of the two bialgebras (Hopf algebras).

Example 4.11 (The group algebra). Let G be a multiplicative group, and k[G] :=
⊕

g∈G kg
group algebra. This is a k-vector space with basis {bg|bg := g ∈ G}, so its elements are of
the form

∑
g∈G αgbg with (αg)g∈G ⊂ k with only a finite number of non-zero elements. The

multiplication is defined on the basis by

bg · bh = bg·h

for g, h ∈ G. On the group algebra k[G] we also have a coalgebra structure, by ∆(bg) = bg ⊗ bg,
and ε(bg) = 1 for any g ∈ G. We already know that the group algebra becomes in this way a
bialgebra. We note that until now we only used the fact that G is a monoid. The existence
of the antipode is directly related to the fact that the elements of G are invertible. Indeed, the
map S : k[G]→ k[G] defined by S(bg) = bg−1, and then extended linearly, is an antipode for the
bialgebra k[G], since ∑

(bg)

S(b(1)g )b(2)g = S(bg)bg = bg−1bg = 1 = ε(bg)1

and similarly,
∑

bg
b
(1)
g S(b

(2)
g ) = ε(bg)1 for any g ∈ G. It is clear that if G is a monoid, which

is not a group, then the bialgebra k[G] is not a Hopf algebra.
If G is a finite group, then we know by Proposition 4.9 that on (k[G])∗ we also have a Hopf
algebra structure, which is dual to the one on k[G]. We recall that the algebra (k[G])∗ has
a basis, that is the dual basis to the basis on k[G], (pg)g∈G, where pg ∈ (k[G])∗ is defined by
pg(h) = δbg ,bh for any g, h ∈ G. Therefore,

p2g = pg, pgph = 0 for any g 6= h,
∑
g∈G

pg = 1(k[G])∗ .

The coalgebra structure of (k[G])∗ is given by

∆(pg) =
∑
x∈G

px ⊗ px−1g, ε(pg) = δ1,g.

The antipode of (k[G])∗ is defined by S∗(pg) = pg−1 for any g ∈ G.

Example 4.12 (Sweedler’s 4-dimensional Hopf algebra). Assume that char(k) 6= 2. Let H be
the algebra given by the generators and relations as follows: H is created as a k-algebra by c
and x satisfying the relations

c2 = 1, x2 = 0, xc = −cx.
Then H has dimension 4 as a k-vector space, with basis {1, c, x, cx}. The coalgebra structure
is induced by

∆(c) = c⊗ c, ∆(x) = c⊗ x+ x⊗ 1, ε(c) = 1, ε(x) = 0.

In this way H becomes a bialgebra, which also has an antipode S given by S(c) = c−1 and
S(x) = −cx.
This was the first example of a non-commutative and non-cocommutative Hopf algebra.
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