
Bialgebras

1. Sweedler’s sigma notation

Let (C, ∆, ε) be a coalgebra and x ∈ C.

Then the element ∆(x) ∈ C ⊗ C is of the form ∆(x) =
∑

i x
′
i ⊗ x′′i . By omission of the subscrip

we write instead ∆(x) =
∑

(x) x
′ ⊗ x′′ .

Using this notation we can rewrite the condition for coassociativity:∑
(x)(

∑
(x′)(x

′)′ ⊗ (x′)′′)⊗ x′′ =
∑

(x) x
′ ⊗ (

∑
(x′′)(x

′′)′ ⊗ (x′′)′′).

By convention we write for both sides of the above equation∑
(x) x

′ ⊗ x′′ ⊗ x′′′ or
∑

(x) x
(1) ⊗ x(2) ⊗ x(3) .

Applying the comultiplication to one of the components of the sum we get three equal expres-
sions:∑

(x) ∆(x′)⊗ x′′ ⊗ x′′′,
∑

(x) x
′ ⊗∆(x′′)⊗ x′′′,

∑
(x) x

′ ⊗ x′′ ⊗∆(x′′′).

For these we write
∑

(x) x
′ ⊗ x′′ ⊗ x′′′ ⊗ x′′′′ or

∑
(x) x

(1) ⊗ x(2) ⊗ x(3) ⊗ x(4).

More generally we inductively define maps ∆(n) : C → C⊗(n+1) for n ≥ 1 by ∆(1) = ∆ and

∆(n) = (∆⊗ id⊗(n−1)) ◦∆(n−1) = (idC⊗(n−1) ⊗∆) ◦∆(n−1).

By convention we write

∆(n)(x) =
∑

(x) x
(1) ⊗ ...⊗ x(n+1).

Using these conventions we can reformulate the condition for counitality as∑
(x) ε(x

′)x′′ = x =
∑

(x) x
′ε(x′′) for all x ∈ C

We get identities such as∑
(x) x

(1) ⊗ ε(x(2))⊗ x(3) ⊗ x(4) ⊗ x(5) =
∑

(x) x
(1) ⊗ x(2) ⊗ x(3) ⊗ x(4),

by apllying the reformulation of the counitality condition to the left-hand side rewritten as∑
(x) x

(1) ⊗ (ε⊗ id)(∆x(2))⊗ x(3) ⊗ x(4).

We may further express the cocommutativity of the coalgebra C by∑
(x) x

′ ⊗ x′′ =
∑

(x) x
′′ ⊗ x′ for all x ∈ C.

Also the relation (f⊗f)◦∆ = ∆′◦f for defining coalgebra morphisms can be reformulated as∑
(x) f(x′)⊗ f(x′′) =

∑
(f(x)) f(x)′ ⊗ f(x)′′.
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2. Bialgebras

Let H be a vector space such that (H,µ, η) is an algebra and (H,∆, ε) is a coalgebra. We have

Theorem 1: The following statements are equivalent.

a) µ and η are coalgebra morphisms.

b) ∆ and ε are algebra morphisms.

Proof: We write down the commutative diagrams expressing that µ

H⊗H µ −→ H H⊗H − ε⊗ε −→ K⊗K

(id⊗τ⊗id)◦(∆⊗∆) ↓ ↓ ∆ µ ↓ ↓ id

(H ⊗H)⊗ (H ⊗H) µ⊗ µ→ H ⊗H H ε −→ K

and η are coalgebra morphisms.

K η −→ H K η −→ H

id ↓ ↓ ∆ id↘ ↙ ε

K ⊗K − η ⊗ η −→ H ⊗H K

Now it is easy to see that these are the same as the ones expressing that ∆ and ε are algebra
morphisms:

H⊗H µ −→ H K η −→ H

(id⊗τ⊗id)◦(∆⊗∆) ↓ ↓ ∆ id ↓ ↓ ∆

(H ⊗H)⊗ (H ⊗H) µ⊗ µ→ H ⊗H K ⊗K − η ⊗ η −→ H ⊗H

H ⊗H − ε⊗ ε −→ K ⊗K K η −→ H

µ ↓ ↓ id id↘ ↙ ε

H ε −→ K K

�

Definition 1: A bialgebra is a quintuple (H,µ, η,∆, ε) such that (H,µ, η) is an algebra, (H,∆, ε) is
a coalgebra and one of the equivalent conditions of Theorem 1 is true.

Using Sweedler’s sigma notation we can rewrite the condition ∆(xy) = ∆(x)∆(y) as follows:∑
(xy)(xy)′ ⊗ (xy)′′ =

∑
(x)(y) x

′y′ ⊗ x′′y′′

We also get ∆(1) = 1⊗ 1, ε(xy) = ε(x)ε(y), ε(1) = 1.

We now introduce the opposite coalgebra.
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Let (C, ∆, ε) be a coalgebra. Comsider the function ∆op = τC,C ◦ ∆ where τC,C denotes the flip
τC,C : C ⊗ C → C ⊗ C : c1 ⊗ c2 7→ c2 ⊗ c1.

Then Ccop := (C,∆op, ε) is a coalgebra which we call the opposite coalgebra.

Similarly, if (A,µ, η) is an Algebra then (A,µop, η) is an algebra which we call the opposite algebra
and denote by Aop. This gives us the following result:

Let H = (H,µ, η,∆, ε) be a bialgebra. Then Hop = (H,µop, η,∆, ε), Hcop = (H,µ, η,∆op, ε) and
Hop cop = (H,µop, η,∆op, ε) are also bialgebras.

Theorem 2: The dual of a finite dimensional bialgebra is again a bialgebra.

Proof: We know that the dual of any coalgebra is a coalgebra and that of any finite dimensional
algebra is an algebra. All we need to do is show that the conditions of Theorem 1 are true.

�

Examples:

Let (G, ∗) be a group, C = K[G] := ⊕g∈GKg be the vector space with basis G.

The group multiplication and its neutral element naturally make C an algebra.

We define a coalgebra structure on C via ∆(x) = x⊗ x, ε(x) = 1.

Then we have

∆(xy) = xy ⊗ xy = (x⊗ x)(y ⊗ y) = ∆(x)∆(y) and ε(xy) = 1 = ε(x)ε(y).

This shows that ∆ and ε are algebra morphisms which makes K[G] a bialgebra.

The dual algebra C∗ = K[G]∗ is the algebra of functions on G with values in K.

In case G is finite the dual of the finite dimensional algebra K[G] has a coalgebra structure and
therefore K[G]∗ again is a bialgebra.

Comultiplication and counit are given by

∆(f)(x⊗ y) = f(xy) and ε(f) = f(e).

Theorem 3: Let K be a field, n ≥ 2. There is no bialgebra structure on Mn(K) such that the
underlying algebra structure is that of the matrix algebra.

Proof: Suppose we had a bialgebra structure on Mn(K), then the counit ε : Mn(K) → K is an
algebra morphism. The kernel of ε is a two - sided ideal of Mn(K), so it has to be either 0 or all of
Mn(K) . Since ε(1) = 1 we have ker(ε) = 0 and obtain a contradiction to dim(Mn(K)) > dim(K).

�

The tensor bialgebra
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Let M be a K - vector space. Consider the tensor algebra (T(M), i).

We can define a coalgebra structure on T(M):

Let α, β be elements of T(M). By convention we write α⊗̄β ∈ T (M)⊗ T (M).

Consider the linear function f : M → T (M)⊗ T (M) : m 7→ m⊗̄1 + 1⊗̄m.

By application of the universal property of the tensor algebra we get an algebra morphism

∆ : T (M)→ T (M)⊗ T (M) such that ∆i = f .

Again for g : M → TM⊗TM⊗TM : m 7→ m⊗̄1⊗̄1+1⊗̄m⊗̄1+1⊗̄1⊗̄m the same property ensures
the existance of an unique map ḡ such that the following diagram commutes:

M − i −→ TM

f ↓ ↙ ḡ

TM ⊗ TM ⊗ TM

Since we have

(∆⊗ I)∆(m) = (∆⊗ I)(m⊗̄1 + 1⊗̄m) = m⊗̄1⊗̄1 + 1⊗̄m⊗̄1 + 1⊗̄1⊗̄m = g(m)

and (I ⊗∆)∆(m) = (I ⊗∆)(m⊗̄1 + 1⊗̄m) = m⊗̄1⊗̄1 + 1⊗̄m⊗̄1 + 1⊗̄1⊗̄m = g(m)

We therefore have (∆⊗ I)∆(m) = (I ⊗∆)∆(m) which proves that ∆ is coassociative.

For a counit we apply the universal property to the function 0 : M → K and receive an algebra
morphism ε : T (M)→ K with ε(m) = 0 ∀m ∈ i(M).

The same universality argument as above shows that ε is a counit.

This makes T(M) a bialgebra.
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