Bialgebras

1. Sweedler’s sigma notation

Let (C, A,€) be a coalgebra and x € C.

Then the element A(z) € C ® C is of the form A(z) = >, 2, ® 2/ . By omission of the subscrip
we write instead A(z) = }5, 2’ @ 2" .

Using this notation we can rewrite the condition for coassociativity:
P @ @) @ (@) @z =3, 2 @ (@) @ ("))
By convention we write for both sides of the above equation

Y @ 0" or Yy 2M 0@ @a® .

Applying the comultiplication to one of the components of the sum we get three equal expres-
sions:

Z(z) A(l’l) Q" @z, Z(m) ' ® A(x”) ® 2", Z(z) Q" ® A(fE/N).
For these we write 3, 2’ ® 2" @ 2" @ 2" or 35,y x ) @22 @z @@,
More generally we inductively define maps A : ¢ — C®+D for n, > 1 by A = A and
A — (A ®idg(n—_1))© Aln—1) — (idcgn-1) ® A) o Aln=1)
By convention we write
M (z) = Z(z) 2V @ ... @M+,
Using these conventions we can reformulate the condition for counitality as
P @z =z =37, 2'e(z") for all x € C
We get identities such as
by apllylng the reformulation of the counitality condition to the left-hand side rewritten as
We may further express the cocommutativity of the coalgebra C by
Z(x) ez = Z(x) @ for all x € C.
Also the relation (f® f)oA = A’o f for defining coalgebra morphisms can be reformulated as

Py [@) @ f(2") =2y f(@) @ f2)"



2. Bialgebras

Let H be a vector space such that (H, u,n) is an algebra and (H, A, €) is a coalgebra. We have
Theorem 1: The following statements are equivalent.

a) p and 7 are coalgebra morphisms.

b) A and € are algebra morphisms.

Proof: We write down the commutative diagrams expressing that p

HoH———py — H HoH — e®e — KK
(id2T®id)o(A®A) | 1A wl lid
(HH) @ HOH) — pe@pu—H®H H——¢— K

and 7 are coalgebra morphisms.

K——— 99— H K—n— H
id | 1A id N\ /€
KK —nen —H®H K

Now it is easy to see that these are the same as the ones expressing that A and e are algebra
morphisms:

HH ———py — H K———n—H
(id®TRid)o (AQA) | 1A id | 1A
(HH) @ H®H) — pupu—>HQH KoK —neon — H®H
HoH — e®e — KK K—n— H
o Lid idN, e
H—M— K K
]

Definition 1: A bialgebra is a quintuple (H, i, n, A, €) such that (H, u,n) is an algebra, (H, A, €) is
a coalgebra and one of the equivalent conditions of Theorem 1 is true.

Using Sweedler’s sigma notation we can rewrite the condition A(zy) = A(z)A(y) as follows:
Z(zy) (:L,y)/ ® (my)// — Z(z)(y) x/y/ ® .,L,/Iyll
We also get A(1) =1® 1, e(zy) = e(z)e(y), €(1) = 1.

We now introduce the opposite coalgebra.



Let (C, A,€) be a coalgebra. Comsider the function A°? = 7o ¢ o A where 7¢ ¢ denotes the flip
Tcc: CRC=>C®C:c;®cy—ca®ec.

Then CP := (C, A°P,¢) is a coalgebra which we call the opposite coalgebra.

Similarly, if (A, u,n) is an Algebra then (A, u°?,n) is an algebra which we call the opposite algebra
and denote by A°P. This gives us the following result:

Let H = (H,u,n,A,€) be a bialgebra. Then H? = (H, u°P,n,A,e), HP = (H, u,n, A°P e) and
HeP P = (H, u°P,n, A°P ¢€) are also bialgebras.

Theorem 2: The dual of a finite dimensional bialgebra is again a bialgebra.

Proof: We know that the dual of any coalgebra is a coalgebra and that of any finite dimensional
algebra is an algebra. All we need to do is show that the conditions of Theorem 1 are true.
O

Examples:

Let (G, *) be a group, C' = K[G] := ®4ccKg be the vector space with basis G.
The group multiplication and its neutral element naturally make C' an algebra.
We define a coalgebra structure on C via A(z) =z ®z, e(z) = 1.

Then we have

Alzy) =zy@ay = (z@x)(y ®y) = Ax)A(y) and e(zy) =1 = e(z)e(y).

This shows that A and € are algebra morphisms which makes K[G] a bialgebra.
The dual algebra C* = K[G]* is the algebra of functions on G with values in K.

In case G is finite the dual of the finite dimensional algebra K[G] has a coalgebra structure and
therefore K[G]* again is a bialgebra.

Comultiplication and counit are given by

A(f)(z@y) = f(zy) and €(f) = f(e).

Theorem 3: Let K be a field, n > 2. There is no bialgebra structure on M, (K) such that the
underlying algebra structure is that of the matrix algebra.

Proof: Suppose we had a bialgebra structure on M, (K), then the counit € : M, (K) — K is an

algebra morphism. The kernel of € is a two - sided ideal of M, (K), so it has to be either 0 or all of

M, (K) . Since ¢(1) = 1 we have ker(e) = 0 and obtain a contradiction to dim (M, (K)) > dim(K).
O

The tensor bialgebra



Let M be a K - vector space. Consider the tensor algebra (T(M), i).

We can define a coalgebra structure on T(M):

Let «, 8 be elements of T(M). By convention we write a®8 € T(M) @ T(M).

Consider the linear function f: M — T(M)®T(M) : m — m®1 + 1&@m.

By application of the universal property of the tensor algebra we get an algebra morphism
A:T(M)—T(M)®T(M) such that Ai = f.

Againforg: M - TMQTMQTM : m — m®1R1+18@mR1 + 1@1&m the same property ensures
the existance of an unique map g such that the following diagram commutes:

M - 4i—TM

£l /3

TMTM ®TM

Since we have

(A®IAMmM) = (A@I(MmR1 + 1&m) = mR1®1 + 1em®1 + 11em = g(m)

and (I ® A)A(m) = (I ® A)(m®1 + 1&m) = m@1R1 + 1&m®1 + 191&m = g(m)
We therefore have (A ® I)A(m) = (I ® A)A(m) which proves that A is coassociative.

For a counit we apply the universal property to the function 0 : M — K and receive an algebra
morphism € : T(M) — K with e(m) =0 VYm € i(M).

The same universality argument as above shows that € is a counit.

This makes T(M) a bialgebra.



