Coalgebras

Let k be a field and each map a linear map.

Definition 1

We define an algebra as a triple (A,M,u) with A a vector space over k, $M: A \otimes A \to A$ and $u: k \to A$ maps such that the following diagrams commute:

With the natural isomorphisms $\phi_r(a \otimes x) = ax$ and $\phi_l(x \otimes a) = xa$.

If we say A is an algebra, we mean a triple (A, M_A, u_A) .

Definition 2

We define a coalgebra as a triple (C, Δ, ε) with C a vector space over $k, \Delta: C \to C \otimes C$ and $\varepsilon: C \to k$ maps such that the following diagrams commute:

With the natural isomorphisms $\phi_{i^{-1}}(c) = 1 \otimes c$ and $\phi_{r^{-1}}(c) = c \otimes 1$.

If we say C is a coalgebra, we mean a triple $(C, \Delta_C, \epsilon_C)$.

Examples 3

- 3.1) The field k is a coalgebra with $\Delta(x) = 1 \otimes x$ for any $x \in k$ and $\epsilon = id$.
- 3.2) Let S be a non-empty set and kS a vector space with basis S. Then kS is a coalgebra with $\Delta(s) = s \otimes s$ and $\varepsilon(s) = 1$ for any $s \in S$ and called the coalgebra of a set.

- 3.3) For $n \in \mathbb{N}$ let M(n,k) be a vector space over k with dimension n^2 and basis $(e_{ij})_{i,j \in \{1,\dots,n\}}$, e.g. the quadratic matrices of size n. This is a coalgebra with $\Delta(e_{ij}) = \sum_{k} e_{ik} \otimes e_{kj}$ and $\varepsilon(e_{ij}) = \delta_{ij}$. It's called the matrix coalgebra.
- 3.4) Let G be a finite group and k(G) the vector space $\{f: G \to k\}$. Using the fact that $\rho': k(G) \otimes k(G) \to k(GxG)$, $f \otimes g \mapsto ((x,y) \mapsto f(x)g(y))$ is an isomorphism, we can define: $\rho' \circ \Delta(f)(x,y) = f(xy)$ and $\epsilon(f) = f(e)$. Now k(G) is a coalgebra.

3.5) Sweedler's 4-dimensional Hopf algebra

Consider a field k with char(k) \neq 2. Let H be the algebra given by generators and relations as follows. H is generated as a k-algebra by c and x satisfying the relations $c^2=1$, $x^2=0$, xc=-cx.

H also becomes a coalgebra with:

$$\Delta(1) = 1 \otimes 1$$
, $\Delta(c) = c \otimes c$, $\Delta(x) = 1 \otimes x + x \otimes c$, $\Delta(cx) = c \otimes cx + cx \otimes 1$ $\varepsilon(1) = 1$, $\varepsilon(x) = 0$, $\varepsilon(c) = 1$, $\varepsilon(cx) = 0$.

If V is a vector space over k and we have $f \in V^*$, $v \in V$ we will write $\langle f, v \rangle$ instead of f(v).

Proposition 4

Let V and W be k-vector spaces. The map $\rho: V^* \otimes W^* \to (V \otimes W)^*$ given by

$$< \rho(f \otimes g), v \otimes w > := < f, v > < g, w > \text{ for } f \in V^*, g \in W^*, v \in V, w \in W \text{ is injective.}$$

Proposition 5

Let (C, Δ, ε) be a coalgebra. We receive an algebra (C^*, M, u) by defining:

$$\begin{split} M &= \Delta^* \circ \rho \text{: } C^* \bigotimes C^* \to C^* \\ u &= \epsilon^* \circ \phi \text{: } k \to C^* \end{split}$$

with
$$\phi$$
: $k \to k^*$, $< \phi(a)$, $x > = ax$

Proposition 6

Let (A, M, u) be a finite-dimensional algebra. We receive a coalgebra $(A^*, \Delta, \varepsilon)$ by defining:

$$\begin{split} &\Delta \coloneqq \rho^{-1} \circ M^* \colon A^* \to A^* \otimes A^* \\ &\epsilon \coloneqq \phi^{-1} \circ u^* \colon A^* \to k \end{split}$$
 with $\phi^{-1} \colon k^* \to k, \ \phi^{-1}(f) = < f, 1 >$

Proposition 7

For two coalgebras C,D we get a new coalgebra $C \otimes D$ if we define the following:

$$\begin{array}{l} \Delta_{C\otimes D}\!=\!(I\otimes T\!\otimes\! I)\circ (\Delta_{C}\!\otimes\! \Delta_{D})\!:C\otimes D\to C\otimes D\otimes C\otimes D\\ \epsilon_{C\otimes D}\!=\!\varphi_{r}\circ (\epsilon_{C}\!\otimes\! \epsilon_{D})\!:C\otimes D\to k \end{array}$$

where T is the "twist" T: $C \otimes D \rightarrow D \otimes C$, $T(c \otimes d) = d \otimes c$)

Definition 8

Let A,B be algebras and $f: A \to B$ a map. We call f an algebra homomorphism if the following diagrams commute:

Definition 9

Let C,D be coalgebras and g: $C \to D$ a map. We call g a coalgebra homomorphism if the following diagrams commute:

Remark 10

This concept works very well with proposition 4 and 5 which means:

If $f: A \to B$ is an algebra homomorphism, $f^*: B^* \to A^*$ is a coalgebra homomorphism (this only makes sense for A being finite-dimensional) and if $g: C \to D$ is a coalgebra homomorphism, $g^*: D^* \to C^*$ is an algebra homomorphism.

Definition 11

Let C be a coalgebra and V a subspace of C. We call V a (two-sided) coideal if:

1.)
$$\Delta(V) \subseteq V \otimes C + C \otimes V$$

2.) $\varepsilon(V) = \{0\}$

Theorem 12 (fundamental homomorphism theorem for coalgebras)

Let C be a coalgebra, V a coideal, $\pi \colon C \to C/V$ the natural projection and $f \colon C \to D$ a coalgebra map. Then

- a.) C/V has a unique coalgebra structure such that π is a coalgebra map.
- b.) ker f is a coideal.
- c.) If $V \subseteq \ker f$ there is a unique coalgebra map \bar{f} such that

