Lösungshinweise zu Blatt # 10Lineare Algebra und Analytische Geometrie 1

WS 2014/15 Dozent: Ingo Runkel

Zu den kurzen Fragen (3 P)

- 1. [1P] Angenommen $\varphi \in \operatorname{Span}(v_i^*)_{i \in I}$. Dann $\varphi = \sum_{j \in J} k_j v_j^*$, für ein $J \subset I$, $|J| < \infty$. Dann ist aber $I \setminus J \neq \emptyset$. Also $\exists v_k : \varphi(v_k) = 0$. Dies ist ein Widerspruch.
- 2. [1P]

$$((AB)^t)_{ij} = (AB)_{ji} = \sum_{k=1}^l A_{jk} B_{ki} = \sum_{k=1}^l B_{ki} A_{jk}$$
$$= \sum_{k=1}^l B_{ik}^t A_{kj}^t = (B^t A^t)_{ij}.$$

3. [1P] Schreibe $M = (s_1 \dots s_n)$. Dann gilt für die Standardbasis (e_i) von K^n : $Me_i = s_i$ und somit im $\mathcal{L}(M) = \operatorname{Span}(s_i)$.

Zu Aufgabe 44 (4 P)

"⇒" Sei $W=U\oplus V$ und $w=v+u\in W$ die eindeutige Zerlegung von w in $v\in V$ und $u\in U$. Es ist $[w]=\{w+u'\mid u'\in U\}=\{v+\tilde{u}\mid \tilde{u}\in U\}$. Nun ist aber $v+\tilde{u}\in V$ genau dann, wenn $\tilde{u}=0$. Also gilt $|V\cap [w]|=1$ für alle $w\in W$.

"\(= \)" Wir beweisen durch Kontraposition. Sei $W \neq U \oplus V$.

Fall 1: $U \cap V \neq \{0\}$ Es folgt, da [0] = U, $|[0] \cap V| > 1$.

Fall 2: $U + V \subseteq W$

Sei $w \notin U + V$. Solch ein Element existiert nach Annahme. Dann ist $[w] = \{w + u \mid u \in U\}$ und $w + u \in V$ ist äquivalent zu w = (-u) + v für ein $v \in V$. Also gilt $|[w] \cap V| = 0$.

Zu Aufgabe 45 (2 P) Die Matrix lässt sich auf die folgende Zeilenstufenform bringen:

$$\begin{pmatrix}
1 & 2 & 1 & 2 & 4 \\
0 & 1 & -1 & -1 & -2 \\
0 & 0 & 0 & 0 & t - 6
\end{pmatrix}$$

Es folgt Rang $(A) = \begin{cases} 2, & \text{falls } t = 6, \\ 3, & \text{sonst.} \end{cases}$

Zu Aufgabe 46 (3 P) [1P] Es ist $T_{\mathcal{B}}^{\mathcal{C}}e_1 = \phi_{\mathcal{B}}^{-1} \circ \phi_{\mathcal{C}}(e_1) = \phi_{\mathcal{B}}^{-1}(b_1 + b_2) = e_1 + e_2$. Analog für e_2 und e_3 .

$$T_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

[2P] Es gilt $(T_{\mathcal{B}}^{\mathcal{C}})^{-1} = T_{\mathcal{C}}^{\mathcal{B}}$. Alternativ setzt man $\mathcal{C} = (c_1 = b_1 + b_2, c_2 =$ $b_2 + b_3, c_3 = b_3 + b_1$) und drückt die Basis \mathcal{B} in den c_i aus. Man erhält dann $\mathcal{B} = \left(\frac{1}{2}(c_1 - c_2 + c_3), \frac{1}{2}(c_2 - c_3 + c_1), \frac{1}{2}(c_3 - c_1 + c_2)\right)$ und verfährt wie für $T_{\mathcal{B}}^{\mathcal{C}}$. Schließlich ist

$$T_{\mathcal{C}}^{\mathcal{B}} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

Zu Aufgabe 47 (2 P)

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(D) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Zu Aufgabe 48 (10 P)

- 1. " \Rightarrow " [1P] Angenommen, es gibt ein $h \neq 0$ mit $h \circ f = 0$. Dann gibt es ein $0 \neq w \in W$ so dass $h(w) \neq 0$. Da f surjektiv ist, gilt h(f(v)) = $h(w) \neq 0$. Dies ist ein Widerspruch.
 - " \Leftarrow " [2P] Wir beweisen durch Kontraposition. Setze T=K und wähle $h = w^* : W \to T$ für ein $w \in W$ mit $w \notin \text{im } f$. Erweitere (w) zu einer Basis $(w, w_i)_{i \in I}$ von W. Dann gilt h(w) = 1 und $h(w_i) = 0$. Insbesondere ist dann $h|_{\text{im }f}=0$ und damit $h\circ f=0$ und $h\neq 0.$
- 2. " \Rightarrow " [1P] Angenommen, es gibt ein $g \neq 0$ mit $f \circ g = 0$. Dann gibt es ein $0 \neq s \in S$ so dass $g(s) \neq 0$. Da f injektiv ist, ist dann aber auch $f(g(s)) \neq 0$. Dies ist ein Widerspruch.
 - " \Leftarrow " [2P] Wir beweisen durch Kontraposition. Da f nicht injektiv ist gibt es ein $0 \neq v$ mit f(v) = 0. Setze S = K und $g: S \to V$ mit g(1) = v. Damit ist $f \circ g = 0$ und $g \neq 0$.
- 3. [2P]

" \Rightarrow " Sei $\varphi \in W^*$ beliebig. Dann gilt

$$f^*(\varphi) = 0 \Leftrightarrow \varphi \circ f = 0 \overset{\text{Aufgabenteil 1}}{\Rightarrow} \varphi = 0$$

" \Leftarrow " Sei $h:W\to T$ beliebig und gelte $h\circ f=0$. Dann gilt auch $(h\circ f)^*=0$. Aus der Vorlesung wissen wir $(h\circ f)^*=f^*\circ h^*$. Also ist auch $f^*\circ h^*=0$. Nach Aufgabenteil 2 ist dann $h^*=0$. In der Vorlesung wurde gezeigt, dass ()* injektiv ist. Damit folgt h=0.

4. [2P]

"⇐"

$$f \circ g = 0 \Rightarrow g^* \circ f^* = 0 \overset{\text{Aufgabenteil 1}}{\Rightarrow} g^* = 0 \Rightarrow g = 0$$

"⇒" Sei $\varphi \in V^*$ beliebig. Es ist zu zeigen: $\exists \psi \in W^* : \varphi = \psi \circ f$. Wähle eine Basis $(v_i)_{i \in I}$ von V. Da f injektiv ist, ist $(w_i)_{i \in I}$ mit $w_i = f(v_i)$ linear unabhängig (siehe Aufgabe 34.1.a von Übungsblatt 8). Daher lässt sich ein $\psi \in W^*$ so definieren, dass $\psi(w_i) = \varphi(v_i)$ gilt.