Lineare Algebra – Klausur 2

(24.9.2015 – Dozent: Ingo Runkel)

Name	
Vorname	
Matrikelnr.	

Anweisungen:

- Hilfsmittel: Für die Bearbeitung sind **nur Stift und Papier** erlaubt. Benutzen Sie einen permanenten Stift (Kugelschreiber o.ä., keinen Bleistift). Es sind **keine Mobiltelefone** erlaubt. Mobiltelefonklingeln wird als Täuschungsversuch gewertet.
- Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf **jedes Blatt**, das Sie abgeben, und heften Sie vor der Abgabe alle Blätter und die Klausuraufgaben mit einem Tacker zusammen.
- Die Klausur besteht aus 2 Teilen, **Teil A** und **Teil B**. Für jeden Teil gibt es 50 Punkte.
 - Die Aufgaben aus Teil A geben insgesamt 50 Punkte. Bearbeiten Sie alle Aufgaben aus Teil A.
 - Teil B besteht aus 3 Aufgaben zu je 25 Punkten. Es werden nur die besten beiden Aufgaben aus Teil B gewertet.

Für die Korrektur:

	Teil A	A1	A2	A3	A4	A5	A6	A7	Gesamt
Î	Punkte								

Teil B	B1	B2	В3	Gesamt
Punkte				

In der gesamten Klausur steht K für einen Körper.

Teil A

A1: Verständnisfragen [15 P]

Bitte beantworten Sie die folgenden Fragen und geben Sie eine kurze Begründung.

a) Existiert ein kommutativer Ring mit Eins R, ein $n \geq 1$ und eine Matrix

$A \in \mathrm{GL}(n,R) \text{ mit } A_{ij} \notin R^* \text{ für alle } 1 \leq i,j \leq n?$
Antwort:
Begründung:
b) Ist der Schnitt zweier Erzeugendensysteme eines K -Vektorraums V immer ein Erzeugendensystem von V ?
Antwort:
Begründung:

c) Gibt es in einem Körper nur die trivialen Ideale, nämlich das Nullideal und den Körper selbst?
Antwort:
Begründung:
d) Sei R ein kommutativer Ring mit 1. Wenn $A, B \in \text{Mat}(n \times n, R)$ sind mit $AB \in \text{GL}(n, R)$, gilt dann auch: $A \in \text{GL}(n, R)$ und $B \in \text{GL}(n, R)$?
Antwort:
Begründung:
e) Ist "orthogonal sein" eine Äquivalenzrelation für Vektoren in einem Euklidi-
schen oder unitären Vektorraum?
Antwort:
Begründung:

In der gesamten Klausur steht K für einen Körper.

Teil A

A2 [5 P]

Sei R ein kommutativer Ring mit 1. Zeigen Sie die folgenden Aussagen.

- a) Ist $x \in R$ nilpotent, dann ist 1 + x invertierbar.
- b) Ist $x \in R$ nilpotent und $u \in R^*$, dann ist $x + u \in R^*$.
- c) Sei S ein weiterer kommutativer Ring mit 1. Zeigen Sie, dass für jeden (einserhaltenden) Ringhomomorphismus $f: R \to S$ gilt: $f(R^*) \subset S^*$.

A3 [5 P]

Geben Sie – mit Rechnung – die Lösungsmenge des Gleichungssystems Ax=b über $K=\mathbb{R}$ an, wobei

$$A = \begin{pmatrix} 1 & 1 & 8 \\ 3 & -2 & -1 \\ -4 & 2 & -2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}.$$

A4 [4 P]

Betrachten Sie den \mathbb{R} -Vektorraum $V:=\{\sum_{i=0}^3 a_i X^i\mid a_i\in\mathbb{R}\}$ und die \mathbb{R} -lineare Abbildung

$$\Phi \colon V \to V, \quad p \mapsto p(1) + p' + 2p,$$

wobei p' die Ableitung von p ist. Geben Sie – mit Rechnung – die darstellende Matrix $\mathcal{M}_{\mathcal{B}}(\Phi)$ bezüglich der Basis $\mathcal{B} = (1, X, X^2, X^3)$ von V an.

A5 [4 P]

Sei V ein 6-dimensionaler K-Vektorraum, $U\subset V$ ein Untervektorraum der Dimension 3 und U' ein Untervektorraum der Dimension 4. Zeigen Sie, dass die Komposition $U\to V\to V/U'$ der Einbettung und der Projektion nicht injektiv sein kann.

A6 [3 P]

Sei $H = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mathrm{span}(\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix})$ eine Hyperebene im \mathbb{R}^3 . Geben Sie diese in der Form $\{v \in \mathbb{R}^3 \mid \langle N, v \rangle = r\}$ an (Nur das Ergebnis wird gewertet.).

A7 [14 P]

 Sei

$$A = \begin{pmatrix} -5 & -8 & 0\\ 4 & 7 & 0\\ 20 & 40 & -1 \end{pmatrix} \in \text{Mat}(3 \times 3, \mathbb{R}).$$

Geben Sie – mit Rechnung –

- a) das charakteristische Polynom,
- b) die Eigenwerte,
- c) die Eigenräume,
- d) das Minimalpolynom,
- e) und die Jordansche Normalform

von A an.

Teil B

- Sie können alle Sätze aus der Vorlesung verwenden. Ergebnisse der Übungsaufgaben dürfen Sie natürlich nur dann verwenden, wenn Sie diese nicht gerade zeigen sollen.
- Fangen Sie für jede der Aufgaben B1, B2, B3 ein neues Blatt an.
- \bullet In der gesamten Klausur steht K für einen Körper.

B1

Seien V, W zwei K-Vektorräume.

1. Sei $\dim_K(V) < \infty$, und

$$\phi \colon W \otimes V^* \to \operatorname{Hom}_K(V, W)$$

der aus der Vorlesung bekannte eindeutige Isomorphismus mit $\phi(w \otimes \varphi) = \varphi(-) \cdot w$ für $w \in W$ und $\varphi \in V^*$.

Sei nun V=W und sei $(v_i)_{i\in I}$ eine Basis von V. Drücken Sie $\phi^{-1}(\mathrm{id}_V)$ durch die Basis $(v_i)_{i\in I}$ und die zugehörige duale Basis $(v_i^*)_{i\in I}$ aus.

- 2. Seien U und Z weitere K-Vektorräume.
 - (a) Sei $b\colon V\times W\to U$ K-bilinear und $f\colon U\to Z$ sei K-linear. Zeigen Sie, dass $f\circ b$ wiederum K-bilinear ist.
 - (b) Sei

$$Bil(V \times W, Z) = \{f : V \times W \to Z \mid f \text{ ist } K\text{-bilinear}\}.$$

Zeigen Sie, dass ein K-linearer Isomorphismus

$$Bil(V \times W, Z) \cong Hom_K(V \otimes W, Z)$$

existiert.

(c) Zeigen Sie, dass ein K-linearer Isomorphismus

$$\operatorname{Hom}_K(V \otimes W, Z) \cong \operatorname{Hom}_K(V, \operatorname{Hom}_K(W, Z))$$

existiert.

3. Sei $U \subseteq W$ ein Untervektorraum. Wir definieren

$$U^{\wedge} = \{ f \in W^* \mid f(u) = 0 \text{ für alle } u \in U \}.$$

Zeigen Sie die folgenden Aussagen.

- (a) U^{\wedge} ist ein Untervektorraum von W^* .
- (b) $W^*/U^{\wedge} \cong U^*$.

B2

Wir betrachten den Vektorraum $W=\mathrm{Mat}(n\times n,\mathbb{R}).$ Zeigen Sie die folgenden Aussagen:

1. Die Abbildung

$$\beta \colon W \times W \to \mathbb{R}, \quad (A, B) \mapsto \operatorname{tr}(AB)$$

ist bilinear, symmetrisch und nicht-entartet.

- 2. Es gilt $\beta(A, B) = \beta(A^T, B^T)$.
- 3. Die symmetrischen Matrizen bilden einen Untervektorraum U von W.
- 4. Geben Sie ohne Begründung $\dim_{\mathbb{R}}(U)$ an.
- 5. Die schiefsymmetrischen Matrizen bilden einen Untervektorraum V von W.
- 6. Es gilt: $W = U \oplus V$.
- 7. Sei $U^{\perp} = \{ w \in W \mid \beta(w, u) = 0 \text{ für alle } u \in U \}$. Zeigen Sie, dass $U^{\perp} = V$.

B3

- 1. Sei $A \in \text{Mat}(n \times n, K)$. Zeigen Sie, dass A und A^T die gleichen Invariantenteiler haben.
- 2. Sei V ein endlich-dimensionaler K-Vektorraum, $f \in \text{End}_K(V)$ und $f^* \in \text{End}_K(V^*)$ die zugehörige duale Abbildung. Zeigen Sie die folgenden Aussagen.
 - (a) $P_f = P_{f^*}$.
 - (b) $m_f = m_{f^*}$.
- 3. Seien $A, B \in \text{Mat}(3 \times 3, K)$. Zeigen Sie, dass A und B genau dann ähnlich sind, wenn $P_A = P_B$ und $m_A = m_B$ gilt.
- 4. Sei V ein endlich-dimensionaler Euklidischer oder unitärer Vektorraum und $F \in \operatorname{End}_{\mathbb{K}}(V)$ ein selbstadjungierter Endomorphismus.
 - (a) Zeigen Sie: Falls F nilpotent ist, so folgt F = 0.
 - (b) Zeigen Sie, dass alle Eigenwerte von F genau dann positiv sind, wenn $\langle v, F(v) \rangle > 0$ für alle $v \in V \setminus \{0\}$ gilt.