Pfingstblatt Lineare Algebra und Analytische Geometrie 2

SS 2015 Dozent: Ingo Runkel

Aufgabe P1 (7 P) Sei R ein Integritätsbereich. Wir betrachten die Menge $\operatorname{Quot}(R) := (R \times (R \setminus \{0\})) / \sim$ mit der Äquivalenzrelation

$$(r,s) \sim (r',s') \Longleftrightarrow rs' = r's.$$

Wir bezeichnen die Äquivalenzklassen [(r,s)] mit $\frac{r}{s}$. Also $\frac{r}{s}=\frac{r'}{s'}\Leftrightarrow rs'=r's$. Weiterhin definieren wir

$$\frac{r}{s} + \frac{t}{u} = \frac{ru + st}{su}, \qquad \frac{r}{s} \cdot \frac{t}{u} = \frac{rt}{su}.$$

Zeigen Sie die folgenden Aussagen.

- 1. Die Relation "∼" ist eine Äquivalenzrelation.
- 2. Die Operationen "+" und ":" hängen nicht von der Wahl der Repräsentanten ab.
- 3. (Quot(R), +) ist eine abelsche Gruppe.
- 4. $(\operatorname{Quot}(R) \setminus \{0\}, \cdot)$ ist eine abelsche Gruppe.
- 5. $(Quot(R), +, \cdot)$ ist ein Körper.
- 6. Es existiert ein injektiver Ringhomomorphismus $R \to \text{Quot}(R)$.

Bemerkung: Man nennt $\operatorname{Quot}(R)$ den $\operatorname{Quotientenk\"{o}rper}$ von R. Zum Beispiel ist $\operatorname{Quot}(\mathbb{Z})=\mathbb{Q}$ und der Quotientenk\"{o}rper des Polynomrings $\operatorname{Quot}(K[X])=:K(X)$ (K beliebiger K\"{o}rper) ist der K\"{o}rper der $\operatorname{rationalen}$ Funktionen, dessen Elemente Quotienten von Polynomen sind, wobei der Nenner nicht das Nullpolynom sein darf.

Aufgabe P2 (6 P) Sei V der unendlich-dimensionale Vektorraum aller reellen Folgen (a_1, a_2, \ldots) und sei $f(a_1, a_2, \ldots) = (a_2, a_3, \ldots)$.

- 1. Bestimmen Sie alle Eigenwerte und Eigenvektoren von f.
- 2. Betrachten Sie den Untervektorraum $W = \{(a_1, a_2, \ldots) \mid a_{n+2} = a_{n+1} + a_n \text{ für alle } n \in \mathbb{N}\} \subseteq V$. Zeigen Sie, dass $\dim(W) = 2$, indem Sie eine Basis von W bestehend aus Eigenvektoren zu f angeben. Was sind die zugehörigen Eigenwerte?
- 3. Sei $(a_1, a_2, ...)$ die *Fibonacci-Folge*, d.h. die Folge mit $a_1 = a_2 = 1$ und $a_n = a_{n-1} + a_{n-2}$ für $n \geq 3$. Berechnen Sie eine explizite (eine nichtrekursive) Formel für a_n .

Aufgabe P3 (2 P) Sei $M \in \operatorname{Mat}(n \times n, K)$. Zeigen Sie, dass ein Untervektorraum $U \subseteq \operatorname{Mat}(n \times n, K)$ mit $\dim_K U = n$ existiert, so dass $M^k \in U$ für alle $k \in \mathbb{N}$.

Aufgabe P4 (5 P) Sei K ein Körper der Charakteristik 0, V ein K-Vektorraum und $f \in \operatorname{End}_K(V)$ nilpotent. Wir definieren

$$\exp(f) := \sum_{i=0}^{L} \frac{1}{i!} f^i \in \operatorname{End}_K(V)$$

mit L groß genug, so dass $f^L = 0$. Zeigen Sie die folgenden Aussagen.

- 1. Sind f und g nilpotente Endomorphismen mit fg=gf, dann ist f+g auch nilpotent.
- 2. Sind f und g nilpotente Endomorphismen mit fg=gf, dann gilt:

$$\exp(f+g) = \exp(f)\exp(g).$$

3. Es existieren nilpotente Endomorphismen f, g, so dass f+g nilpotent ist, jedoch $\exp(f+g) \neq \exp(f) \exp(g)$.

Aufgabe P5 (4 P) Sei $V \neq 0$ ein endlich-dimensionaler K-Vektorraum der Dimension n und sei $f \in \operatorname{End}_K(V)$ mit $f^n = 0$. Zeigen Sie die Äquivalenz folgender Aussagen:

- 1. Es existiert ein Vektor $v \in V$ so, dass $\{v, f(v), \dots, f^{n-1}(v)\}$ eine Basis von V ist.
- 2. $\dim_K(\ker(f)) = 1$.