Übungsblatt # 10 Lineare Algebra und Analytische Geometrie 2

SS 2015 Dozent: Ingo Runkel

Kurze Fragen (4 P)

Bitte beantworten Sie die folgenden Fragen mit kurzer Begründung (1-2 Sätze).

- 1. Sei M eine Blockdiagonalmatrix mit Blöcken A und B. Gilt dann für die Minimalpolynome $m_M=m_Am_B$?
- 2. Rekursives Anwenden des Arguments im Beweis von Satz 5.4.5 zeigt zunächst, dass es $T,W\in \mathrm{GL}(n,K[X])$ mit $TMW^{-1}=\mathrm{diag}(d_1,d_2,...,d_n)$ gibt, wobei die $d_i\in K[X]$ Polynome mit $d_i\mid d_{i+1}$ für i=1,...,n-1 sind, die allerdings nicht normiert sind. Warum folgt daraus die Aussage des Satzes?
- 3. Warum gilt für einen Körper K und $A \in \operatorname{Mat}(n \times n, K)$ folgende Aussage für das charakteristische und das Minimalpolynom von A (Bew. von Korollar 5.4.11):

 P_A zerfällt in Linearfaktoren \iff m_A zerfällt in Linearfaktoren ?

4. Warum gibt es einen K[X]-Modulisomorphismus:

$$K[X]/\langle (X-\lambda)^n \rangle \simeq (K^n, J(n,\lambda))$$

(Details zu Lemma 5.4.14)?

Aufgabe 50 (4 P) Sind die Matrizen

$$\begin{pmatrix} 6 & 1 & 1 \\ -2 & 3 & -1 \\ -2 & -1 & 3 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 4 & 0 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & 5 \end{pmatrix}$$

ähnlich? Geben Sie Ihren Rechenweg an.

Aufgabe 51 (2 P)

Bestimmen Sie eine Jordan-Normalform und die Frobenius-Normalform für die Matrix:

$$A = \begin{pmatrix} 6 & 1 & 1 \\ -2 & 3 & -1 \\ -2 & -1 & 3 \end{pmatrix}$$

Aufgabe 52 (4 P) Sei $n \ge 1$, $\lambda \in K$ und $J(n, \lambda)$ der Jordanblock der Größe n.

- 1. Bestimmen Sie die Invariantenteiler von $J(n, \lambda)$. Bestimmen Sie damit das charakteristische Polynom und das Minimalpolynom von $J(n, \lambda)$.
- 2. Bestimmen Sie die Eigenwerte und jeweils eine Basis der zugehörigen Eigenräume von $J(n, \lambda)$.
- 3. Hat $J(n,\lambda)$ eine Hauptraumzerlegung? Wenn ja, bestimmen Sie diese.

Aufgabe 53 (3 P) (Beweis von Satz 5.3.10 1)) Sei K ein Körper und $A \in \operatorname{Mat}(n \times n, K)$. Zeigen Sie, dass der letzte Invariantenteiler der charakteristischen Matrix M_A gleich dem Minimalpolyonom m_A ist: $c_n(M_A) = m_A$.

Aufgabe 54 (3 P) Sei R ein Ring mit 1. Zeigen Sie, dass die Struktur eines R-Moduls auf einer abelschen Gruppe M äquivalent zu einem einserhaltenden Ringhomomorphismus $R \to \operatorname{End}(M)$ ist.

D.h., geben Sie eine Bijektion zwischen der Menge von Wirkungen

$$\{\varphi: R \times M \to M \mid (M, \varphi) \text{ ist ein } R\text{-Modul}\}$$

und der Menge $\operatorname{Hom}(R,\operatorname{End}(M))$ von Ringhomomorphismen an, wobei $\operatorname{End}(M)$ den Ring der Gruppenhomomorphismen von M nach M bezeichnet.

Aufgabe 55 (4 P) Geben Sie genau einen Repräsentanten für jede Ähnlichkeitsklasse in $Mat(4 \times 4, \mathbb{F}_3)$ an. Wie viele Ähnlichkeitsklassen gibt es insgesamt?