Übungsblatt #8 Lineare Algebra und Analytische Geometrie 2

SS 2015 Dozent: Ingo Runkel

Kurze Fragen (4 P)

Bitte beantworten Sie die folgenden Fragen mit kurzer Begründung (1-2 Sätze).

1. Sei R ein kommutativer Ring mit Eins. Warum gilt

$$\forall a, b \in R \colon ab \in R^* \implies a, b \in R^*$$
?

- 2. Gilt diese Implikation auch, wenn R nichtkommutativ ist?
- 3. Warum gelten die Identitäten $l_{\mathbb{Z}}(\mathbb{Z}) = \infty$ und $l_{\mathbb{Z}}(\mathbb{Q}) = \infty$?
- 4. Sei R ein Integritätsbereich. Warum gibt es für alle $0 \neq a \in R$ einen R-Modulisomorphismus zwischen R und $\langle a \rangle$?

Aufgabe 38 (4 P)

- 1. Sei H ein Hauptidealring und $h \in H \setminus \{0\}$. Zeigen Sie, dass das Hauptideal $\langle h \rangle$ genau dann maximal (siehe Blatt 6, Aufgabe 32) ist, wenn h irreduzibel ist
- 2. Sei \mathbb{F}_2 der Körper $\mathbb{Z}/2\mathbb{Z}$. Zeigen Sie, dass der Quotientenring $\mathbb{F}_2[X]/\langle X^2+X+1\rangle$ ein Körper mit 4 Elementen ist.
- 3. Fertigen Sie eine Multiplikationstabelle für diesen Körper an.

Aufgabe 39 (3 P) Sei K ein Körper und seien $p, q \in K[X]$, nicht beide 0. Dann definieren wir den größten gemeinsamen Teiler ggT(p,q) von p und q als das normierte Polynom maximalen Grades in K[X], das sowohl p als auch q teilt.

Seien $p,q\in K[X]$ nicht beide 0 und $g\in K[X]$ normiert. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- 1. $\langle p \rangle + \langle q \rangle = \langle g \rangle$.
- 2. g teilt p und q, und jeder andere Teiler von p und q teilt auch g.
- 3. ggT(p, q) = g.

Aufgabe 40 (3 P) Seien A, B, C R-Moduln, $i: A \to B$ ein injektiver und $\pi: B \to C$ ein surjektiver R-Modulhomomorphismus mit $\operatorname{im}(i) = \ker(\pi)$. (Man nennt dies auch eine kurze exakte Sequenz.)

- 1. Zeigen Sie, dass $l_R(B) = l_R(A) + l_R(C)$.
- 2. Finden Sie ein Beispiel, so dass B nicht isomorph zur direkten Summe von A und C ist.

Aufgabe 41 (2 P) Sei R ein Integritätsbereich. Zeigen Sie:

- 1. $R[X]^* = R^*$.
- 2. Zwei normierte Polynome in $\mathbb{R}[X]$ sind genau dann assoziiert, wenn sie gleich sind.

Aufgabe 42 (2 P) Zeigen Sie, dass für K-Vektorräume gilt:

- 1. Ist V endlichdimensional, so ist $l_K(V) = \dim_K(V)$.
- 2. Ist V unendlichdimensional, dann gilt $l_K(V) = \infty$.

Aufgabe 43 (2 P) Bestimmen Sie eine Primfaktorzerlegung von

$$X^5 + X^4 + 5X^3 + 5X^2 + 4X + 4 \in \mathbb{R}[X].$$

Aufgabe 44 (4 P) Sei K ein Körper und $M \in \text{Mat}(n \times n, K)$.

- 1. Zeigen Sie: Ist M nilpotent, so gilt $tr(M^k) = 0$ für alle k > 0.
- 2. Zeigen Sie: Ist $\operatorname{char}(K) = 0$ und $\operatorname{tr}(M^k) = 0$ für $k = 1, \ldots, n$, so ist M nilpotent. (Machen Sie kenntlich, an welcher Stelle ihres Arguments $\operatorname{char}(K) = 0$ eingeht.)

Hinweis: Benutzen Sie den Satz von Cayley-Hamilton (4.3, Satz 11).