Übungsblatt #4 Lineare Algebra und Analytische Geometrie 2

SS 2015 Dozent: Ingo Runkel

Kurze Fragen (4 P)

Bitte beantworten Sie die folgenden Fragen mit kurzer Begründung (1-2 Sätze).

- 1. Im Beweis von 4.2, Satz 4: Warum gilt $\tilde{\alpha}(p \cdot q) = \tilde{\alpha}(p)\tilde{\alpha}(q)$?
- 2. Geben Sie für den Fall, dass Rnicht nullteilerfrei ist, ein Gegenbeispiel zu 4.2, Satz 12 an.
- 3. Sind $M, N \in \text{Mat}(n \times n, R)$, so wissen wir, dass $\det(MN) = \det(M) \det(N)$. Gilt dies auch für charakteristische Polynome, also $P_{MN} = P_M P_N$?
- 4. Sei V endlichdimensional und $f \in \operatorname{End}_K(V)$. Sei \mathcal{A} eine beliebige Basis von V. Wir definieren die $Spur\ von\ f$ als $\operatorname{tr} f = \operatorname{tr} \mathcal{M}_{\mathcal{A}}(f)$. Warum hängt $\operatorname{tr} f$ nicht von der Wahl von \mathcal{A} ab?

Aufgabe 16 (2 P)

Weisen Sie die Assoziativität der Multiplikation und die Distributivität von R[X] nach. (Dies ist Teil des Beweises von 4.2, Satz 2.)

Aufgabe 17 (3 P)

Sei L ein Körper und K ein Unterkörper von L. Zeigen Sie: Sind $p, q \in K[X], f \in L[X]$ mit $p = q \cdot f$ und $q \neq 0$, so folgt bereits $f \in K[X]$.

Aufgabe 18 (5 P)

1. Sei K ein Körper und $x_1, \ldots, x_n, y_1, \ldots, y_n \in K$ mit $x_i \neq x_j$ für alle $i \neq j$. Geben Sie ein Polynom $p \in K[X]$ vom Grad $\leq n-1$ an, so dass $p(x_i) = y_i$ für $i = 1, \ldots, n$ gilt.

Hinweis: Konstruieren Sie zuerst Polynome $g_k \in K[X]$ vom Grad $\leq n-1$ mit

$$g_k(x_i) = \begin{cases} 1 & i = k \\ 0 & \text{sonst} \end{cases}.$$

- 2. Zeigen Sie, dass p eindeutig bestimmt ist.
- 3. Was können Sie damit für die Abbildung $\varphi \colon K[X] \to \mathrm{Abb}(K,K)$ aus 4.2, Bemerkung 6 folgern, falls K endlich ist?

1

Aufgabe 19 (2 P)

Berechnen Sie das charakteristische Polynom P_M der Matrix $M \in \text{Mat}(3 \times 3, K)$,

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

Aufgabe 20 (4 P)

Aus 4.3, Lemma 4: Seien $A \in \text{Mat}(n \times n, K), C \in \text{Mat}(m \times m, K)$ und

$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right) \in \operatorname{Mat}\left((n+m) \times (n+m), K\right).$$

Zeigen Sie, dass $P_M = P_A \cdot P_C$ gilt.

 $\mathit{Hinweis:}$ Zeigen Sie zunächst, dass $\det M = \det A \det C$ allgemein für Matrizen über einem kommutativen Ring mit 1 gilt.

Aufgabe 21 (2 P)

Zeigen Sie, dass die Ähnlichkeit von Matrizen eine Äquivalenzrelation darstellt.

Aufgabe 22 (2 P)

Geben Sie für $f(X) = X^5 + X^4 - 7X^3 + X^2 + 10X - 6 \in \mathbb{Z}[X]$ eine Zerlegung wie in 4.2, Satz 15 an, also

$$f = g(X - a_1)^{m_1} \dots (X - a_k)^{m_k}, \qquad g$$
 hat keine Nullstellen.