Ph.D. Haibo Ruan WS 2013/14

Übungen zu Dynamische Systeme

Blatt 3

Aufgabe 3.1 (10 Punkte) Stören Sie die Lotka-Volterra-Gleichung

$$\begin{cases} \dot{x} = x(a - by) \\ \dot{y} = y(-c + dx) \end{cases}$$

mit einer ε -Störung sodass das neue System eine einzige Ruhelage P in $\operatorname{int}(\mathbb{R}^2_+)$ besitzt, die alle Orbits die in $\operatorname{int}(\mathbb{R}^2_+)$ anfangen abstößt, d.h. $\alpha(x) = \{P\}$ für alle $x \in \operatorname{int}(\mathbb{R}^2_+)$.

Aufgabe 3.2 (30 Punkte) Es sei $\bar{x} \in \mathbb{R}^n$ eine hyperbolische Ruhelage vom dynamischen System $\dot{x} = f(x)$, wobei $f: U \to \mathbb{R}^n$ differenzierbar in einer Umgebung $U \subset \mathbb{R}^n$ von \bar{x} ist. Es seien $\varepsilon > 0$ und $g: U \to \mathbb{R}^n$ eine differenzierbare Funktion. Betrachte

$$\dot{x} = f(x) + \varepsilon g(x) := F_{\varepsilon}(x). \tag{1}$$

Zeigen Sie:

- (i) für ausreichend kleines ε besitzt F_{ε} einen eindeutigen Fixpunkt \hat{x} in einer Umgebung von \bar{x} . (*Hinweis: Satz von der impliziten Funktion*.)
- (ii) für geeignetes ε ist \hat{x} hyperbolisch mit

$$\dim E^s(A) = \dim E^s(B), \quad \dim E^u(A) = \dim E^u(B), \tag{2}$$

wobei $A = Df(\bar{x}), B = DF_{\varepsilon}(\hat{x}), E^s$ bzw. E^u Eigenräume von Eigenwerten mit negativen bzw. positiven Reellteilen bezeichnen. (Hinweis: die Eigenwertefunktion $EW: M_{n\times n} \to \mathbb{C}^n$ mit $EW(M) = (\lambda_1, \ldots, \lambda_n)^T$ ist eine stetige Funktion, die stetig von Komponenten von Matrix M abhängt. Betrachte $C = DF(\bar{x})$. Dann sind A, C bzw. B, C ausreichend nah für geeignetes ε .)

(iii) die Flüsse erzeugt von $\dot{x} = f(x)$ und von (1) sind topologisch konjugiert. (Hinweis: Satz von Hartman-Grobman und die Tatsache: zwei Flüsse $\phi(x,t) = e^{tA}x$ und $\psi(x,t) = e^{tB}x$ mit hyperbolischen Matrizen A, B (d.h. $\sigma_c(A) = \sigma_c(B) = \emptyset$) sind genau dann topologisch konjugiert wenn (2) gilt.)

Aufgabe 3.3 (20 Punkte) Betrachten Sie die Konkurrenz-Gleichung

$$\begin{cases} \dot{x} = x(a - bx - cy) \\ \dot{y} = y(d - ex - fy) \end{cases}$$
 für $a, b, c, d, e, f > 0.$ (3)

Zeigen Sie:

- (i) im Fall $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$ folgt jeder Orbit in $\operatorname{int}(\mathbb{R}^2_+)$ eine Niveau-Linie von $V(x,y) = xy^{-k}$ mit $k = \frac{a}{d}$, d.h. $\frac{d}{dt}V\big(x(t),y(t)\big) \equiv 0$.
- (ii) $Q(x,y)=be(x-\bar x)^2+2ce(x-\bar x)(y-\bar y)+cf(y-\bar y)^2$ ist eine Lyapunov-Funktion für (3), wobei $(\bar x,\bar y)$ eine Ruhelage von (3) ist.

Aufgabe 3.4 (10 Punkte) Beweisen Sie jeder Orbit eines 2-dimensionalen Konkurrenz-Systems konvergiert entweder gegen eine Ruhelage oder gegen ∞ .

Abgabe: 18.11.2013