Übungen zu Dynamische Systeme

Blatt 1

Aufgabe 1 (20 Punkte) Ergänzen Sie die Stabilitätsanalysis des Fixpunktes $p = \frac{R-1}{R}$ für die Abbildung $F: (0,1) \to (0,1)$ mit F(x) = Rx(1-x), indem Sie zeigen:

- (a) für $1 < R \le 2$ konvergieren alle Orbits in (0,1) gegen p letztendlich monoton, d.h. $\forall x \in (0,1) \exists N > 0$ s.d. $x_n < x_{n+1} < p$ für alle n > N und $x_n \to p$ als $n \to \infty$ gilt;
- (b) für 2 < R < 3 konvergieren alle Orbits in (0,1) gegen p letztendlich abwechselnd, d.h. $\forall x \in (0,1) \exists N > 0$ s.d. (x_n-p) und $(x_{n+1}-p)$ umgekehrte Vorzeichen besitzen für alle n > N und $x_n \to p$ als $n \to \infty$ gilt.

Aufgabe 2 Betrachten Sie die *Bernoulli-Abbildung* (oder Dopplung-Abbildung) $D: [0,1) \to [0,1)$ mit $D(x) = 2x \pmod{1}$, oder äquivalent

$$D(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2x - 1, & \frac{1}{2} \le x < 1 \end{cases}.$$

- (a) (10 Punkte) Beschreiben Sie den Orbit von
 - (a1) $x_0 = 0.3$;
 - (a2) $x_0 = 0.7;$
 - (a3) $x_0 = \frac{1}{8}$;
 - (a4) $x_0 = \frac{1}{7}$;
 - (a5) $x_0 = \frac{3}{11}$.
- (b) (10 Punkte) Erklären Sie warum das Bestimmen des Orbits von $\frac{1}{7}$ einem Computer Schwierigkeit bereitet würde wenn man mit Dezimalbruchentwicklung anfängt.
- (c) (10 Punkte) Bestimmen Sie die explizite Formel von $D^2(x)$ und zeichnen Sie den Graph von $D^n(x)$ für n = 1, 2, 3.
- (d) (10 Punkte) Bestimmen Sie alle Fixpunkte von $D^n(x)$ für n = 1, 2, 3. Wie viele Fixpunkte besitzt $D^n(x)$ für beliebiges $n \in \mathbb{N}$?

Aufgabe 3 (20 Punkte)

- (a) Begründen Sie, dass das durch Bernoulli-Abbildung erzeugte dynamische System chaotisch ist (*Hinweis: änhlich gezeigt als für* F(x) = 4x(1-x)).
- (b) Entwerfen Sie ein weiteres chaotisches System mit dem gleichen Prinzip.

Abgabe: 28.10.2013