Dr. Haibo Ruan SS 2012

Übungen zu Verzweigungstheorie

Blatt 2

Aufgabe 6 (10 Punkte) Es seien X, Y, Z Banachräume, $U \subset X, V \subset Y$ offene Mengen und $x_0 \in U$.

(a) (Addition) Sind $F, G: U \to Y$ zwei Operatoren wessen Fréchet Ableitungen $dF[x_0]$ und $dG[x_0]$ existieren, so existiert $d(F+G)[x_0]$ und

$$d(F+G)[x_0] = dF[x_0] + dG[x_0] \in \mathcal{L}(X,Y).$$

(b) (**Kettenregel**) Es seien $F: U(\subset X) \to Y$ und $G: V(\subset Y) \to Z$ sodass $F \circ G: U \to Z$ wohl-definiert ist. Existieren $dF[x_0]$ und $dG(F(x_0))$, so existiert $d(G \circ F)[x_0]$ und

$$d(G \circ F)[x_0] = dG(F(x_0)) \circ dF[x_0] \in \mathcal{L}(X, Z).$$

Aufgabe 7 (10 Punkte) Es seien X ein Banachraum und $\mathcal{L}(X,X)$, der Banachraum der linearen beschränkten Opertoren. Betrachte $f: \mathcal{L}(X,X) \to \mathcal{L}(X,X)$ von $f(A) = A \circ A = A^2$ definiert. Dann ist $Df[A](B) = A \circ B + B \circ A$. Was ist Df[A](B) für $f(A) = A^n$, $n \in \mathbb{N}$?

Aufgabe 8 (5 Punkte) Es seien X,Y,Z Banachräume, $U \subset X \times Y$ eine offene Menge und $(x_0,y_0) \in U$. Ist $F:U \to Z$ sodass $dF[x_0,y_0]$ existiert, so existieren $\partial_x F[x_0,y_0]$ und $\partial_y F[x_0,y_0]$ mit

$$dF[x_0, y_0](x, y) = \partial_x F[x_0, y_0]x + \partial_y F[x_0, y_0]y, \quad \forall (x, y) \in X \times Y.$$

Aufgabe 9 (5 Punkte) Es seien X, Y Banachrä um, $U \subset X$ offen und $F : U \to Y$ ein kompakter Operator sodass $dF[x_0]$ existiert für ein $x_0 \in U$. Dann ist $dF[x_0] \in \mathcal{L}(X,Y)$ ein kompakter linearer Operator.

Aufgabe 10 (10 Punkte) Es sei $(X, \langle \cdot, \cdot \rangle)$ ein \mathbb{R} -Hilbertraum. Zeigen Sie:

- (i) $f: X \to \mathbb{R}$ mit $f(x) = ||x||^2$ ist stetig differenzierbar und $\nabla f(x) = 2x$;
- (ii) $f: X \to \mathbb{R}$ mit f(x) = ||x|| ist stetig differenzierbar auf $X \setminus \{0\}$ und $\nabla f(x) = \frac{x}{||x||}$ für $x \in X \setminus \{0\}$.

Aufgabe 11 (5 Punkte) Es sei $F: \mathbb{F} \times X \to Y$ eine C^2 -Abbildung, wobei X,Y Banachräume sind. Zeigen Sie:

$$\partial_{\lambda,x}^2 F[\lambda_o, x_o](1, \xi_o) = \lim_{t \to 0} \frac{\partial_x F[\lambda_o + t, x_o] \xi_o - \partial_x F[\lambda_o, x_o] \xi_o}{t},$$

für alle $(\lambda_o, x_o) \in \mathbb{F} \times X$, $1 \in \mathbb{F}$, $\xi_o \in X$.

Aufgabe 12 (15 Punkte) Es seien $\mathbb{F} = \mathbb{R}$, $X = Y = \mathbb{R}$. Prüfen Sie die Crandall-Rabinowitz-Transversalitätsbedingung für $(\lambda_o, 0) = (0, 0)$, im Fall von

- (i) $F(\lambda, x) = x(\lambda^2 + x^2)$;
- (ii) $F(\lambda, x) = x(\lambda + x^2)$;
- (ii) $F(\lambda, x) = x(\lambda^3 + x^3)$

Ist $(\lambda_o, 0) = (0, 0)$ ein Bifurkationspunkt für $F(\lambda, x) = 0$? Begründen Sie Ihre Antwort.

Abgabe: 3.5.2012