9.3 BENDING AN ELASTIC ROD I

We now show how the theory of global bifurcation in cones can be applied to the
boundary-value problem in §8.5:

¢"(z) + Asinp(z) = Oforz € [0, L], ¢'(0) = ¢'(L) =0, (9.5)
where L is fixed and A > 0 is the parameter in the problem. As before let
F=R, X={¢eC?0,L|:¢(0)=¢'(L)=0}, ¥ =C[0,1],
and define F(\, ¢) = ¢ + Asin¢. Then F: R x X — Y is R-analytic,
9sF'[(A,0)]¢ =0
if and only if
"+ p=0€Y and ¢'(0) = ¢'(L) =0

and the bifurcation points form the set {\x = (K7/L)? : K € N}.

Here we focus on finding a global extension of the local bifurcation at the point
(m/L)? corresponding to K = 1. In keeping with the notation of the last section
let Ao denote (7/L)? and let &5(z) = cos(mz/L), = € [0, L]. Next we verify the
hypotheses of Theorem 9.2.2. We have already seen that (G1) and (G3) hold. To
check (G2) let (\, %) € R x X be a solution of (9.5). Then

dsF[(X\ &) (W) = 9" + M) cos ¢, ¥ € X.

By the theory of ordinary differential equations, 1"+ cos ¢ = 0 has two linearly
independent solutions at most one of which is in X. If there are no solutions in X

the problem
'+ Mpcosp=f, pEX

has a solution 1 for every f € Y. If, on the other hand, it has a solution ¥ e X,

then (9.6) has a solution if and only if

L -~
/0 (e) () dz = 0.

In both cases the range is closed, the codimension of the range and the dimension

of kernel of dy F'[(\, $)] coincide.

This shows that in all cases dy F[(), ¢)] is a Fredholm operator of index zero

and so (G2) holds.
Now let X C X be the cone defined by

K ={u€X: uisoddabout L/2 and u > 0 on [0, L/2]}.

We have seen that in this example hypothesis (a) of Theorem 9.2.2 holds, and (c)
is obvious since the (unique up to normalization) eigenfunction corresponding the

eigenvalue (7K /L)? is cos(Krz/L) and only when K = 1isitin K.

To see that (d) holds suppose that (A, #) € R x (K \ {0}) satisties (9.5). Then
clearly A # 0, sin ¢(0) # 0 and sin ¢(L) # 0. (If any one of them is zero then ¢
is a constant, by the uniqueness theorem for the initial-value problems for second
order ordinary differential equations, and so ¢ is not odd about L/2.) Also any

solution (5\, qS) of (9.5) satisfies
18 (2)” + A cos $(0) — Acos d(z) = 0 on [0, L]
and, if A # 0, cos ¢(0) = cos ¢(L).

Since A # 0 and the derivative of cosine at ¢(0) and at ¢(L) is not zero, it
follows that if (A, ¢) is a solution of (9.5) which is sufficiently close to (X, ¢) then
#(0) = —@(L). Hence the functions ¢(z) and —@(L — z) solve the same initial

value problem, and so are equal. This shows that  is odd about L /2.

Now to show that ¢ > 0 on [0, L/2] suppose that there is a sequence (Ax, ¢x) of
solutions of (9.5) which converges to (), ¢) in R x X such that ¢(zx) < 0, z €
[0,L/2). Since ¢x(L/2) = 0 and ¢(0) > O for k sufficiently large, we may
assume that zj is a minimizer of ¢; on [0, L/2] and hence ¢%(zx) = 0. In the
limit as kK — co we find that there exists = € [0, L/2] with ¢(z) = ¢'(z) = 0. By
the uniqueness theorem for initial value problems this means that ¢ = 0, which is

false. This contradiction establishes (d).
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It remains to show (b), that R* C R x K. First we show that if (), ¢) € RT,
for € > 0 sufficiently small, then ¢ is odd about L/2. Recall from Theorem 8.4.1
that

R = {(A(s), s(60 + 7(s)) : s € (0,€)},

where A(s) — 1 and 7(s) — 0in X as s — 0. To complete the proof that
hypothesis (b) is satisfied recall that £y(z) = cos(rz/L) and hence £ (0) = 1 =
—¢o(L). So (9.7) gives ' '

cos (s(147(s)(0))) = cos (s(—1 + 7(s)(L))) = cos (s(1 — 7(s)(L)))

whence s(1 + 7(s)(0)) = £s(1 — 7(s)(L)) for s > 0 sufficiently small. It follows
that the sign must be plus, and 7(s)(0) = ~7(s)(L). Thus s(& + 7(s)) is odd
about L/2 for s > 0 sufficiently small. Now x(s) = (& + 7(s)) > 0 on [0, L/2]
follows since ©(L/2) =0, s(s)'(L/2) = s(—w/L+7(s)'(L/2)) and 7(s) — 0 in
X as s — 0. Hence hypothesis (b) is satisfied.

Thus Theorem 9.2.2 gives the existence.of a curve

M = {(A(s),s(s) : s € [0,00) }
with (A(0), £(0)) = ((x/L)?,0), &(s) € K for s > 0 and
[(A(s), &(s))]| — o0 as s — oo.

If now (A, ¢) = (A(s), k(s)) € R satisfies (9.5) it is obvious that A # 0 and, by
connectedness, A > 0 for all (A, §) € . Multiplying (9.5) by &; and integrating
by parts gives

L L .
= "oy — _(T\2  Asing
o_/o &o (¢ +s1n¢>)d:n—-/0 ¢§0( (L) + 5 )dac
Since ¢, & € K, the product ¢&p is non-negative and not identically zero. Since
A > 0and (Asing)/¢ < ), it follows that A > (w/L)? for all (), ¢) € R,
¢ # 0. Hence the global curve lies to the right of the bifurcation point. Since
¢'(0) = 0 = @¢(L/2) for all solutions of (9.5), it is immediate that the set

{()\,qS) em:ASM}
is bounded in R x X for all finite M. Since ‘R is unbounded,
{A: (A ¢) = (A(s),5(5)) : s > 0} = ((7/L)*, o).

Finally, if (), ¢) is a solution of (9.5) ¢ can be extended as a smooth 2L periodic
function on the real line. When this has been done, let

9%I{ = {(K2A7¢(K‘T)) : ()\7¢) € iR}

It is an easy matter to check that Rg is a global branch of solutions bifurcating
from (KL/7)?, K € N.

Thus many qualitative features of the global bifurcation of solutions of (9.5),
observed originally in the introduction, are a consequence of abstract considera-
tions based on the theory of real analytic varieties and it is clear that the abstract
method has much greater applicability. In the remaining chapters we give a sub-
stantial example to which the global theory makes a vital contribution.



