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1 Introduction

In the classical individual risk model, the aggregate claims distribution is one of the

main objectives. Usually, the aggregate claims is understood as the sum of all claims

occurring over a certain time period. But it may happen that more information about

the claims is needed. For such purposes, it may be convenient to extend the individual

model to a multivariate setting of dimension ℓ ∈ N = {1, 2, 3, . . .}, say. Here, we

consider a portfolio with n ∈ N policies, producing the ℓ-dimensional individual claims

X i = (Xi,1, . . . , Xi,ℓ) for i ∈ {1, . . . , n}, which are modeled as independent but not

necessarily identically distributed random vectors in R
ℓ. For i ∈ {1, . . . , n} and k ∈

{1, . . . , ℓ}, the Xi,k is the claim of class k, corresponding to the ith contract. The sum

Yi =
∑ℓ

k=1 Xi,k represents the total claim for the ith contract. In risk i, a claim occurs

with the probability

pi := P (Xi 6= 0)

and has the distribution

Qi := P (X i ∈ · |Xi 6= 0).

Without loss of generality, we assume that pi > 0 for all i. The aggregate claims vector

is given by

Sn =
n∑

i=1

X i.

Note that, generally, risks are non-negative random variables, so that one may

wonder, why we allow the Xi,k to be negative. The results below, however, hold when

the Xi,k are arbitrary real valued, so that non-negativity would impose an artificial

restriction.

Clearly, for ℓ = 1, we reobtain the classical univariate individual model. Perhaps

the simplest non-trivial higher dimensional example is the one, where, for all i, X i is

a random vector with at most one non-zero entry, which, in turn, must then be equal

to Yi. From the view of the univariate model, this means that, here, each non-zero

claim Yi is assigned to exactly one of the ℓ classes.

We may assume, that, for all i, the pi is small. Otherwise, the insurance company

would not have accepted this contract. It turns out that, under this assumption, the

approximation of the aggregate claims distribution L(Sn) by a compound Poisson one
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CPo(λ, Q) is good in some sense. This distribution can simply be defined by

CPo(λ, Q) =

∞∑

m=0

e−λ λm

m!
Q∗m,

where

λ =

n∑

i=1

pi, Q =
1

λ

n∑

i=1

piQi,

Q∗m, (m ∈ N) denotes the m-fold convolution of Q with itself, and Q∗0 = I0 is the

Dirac measure at point 0 ∈ R
ℓ.

In this paper, we are concerned with upper bounds for the approximation error

of L(Sn) by CPo(λ, Q). It turns out that, due to an additional (magic) factor, our

bounds are smaller than previous ones at least in the case when the Qi are different

but Q1 ≈ · · · ≈ Qn in some sense. However, it may happen that the magic factor is

compensated by an additional term which measures how well the Qi coincide.

As a measure of accuracy, we consider the total variation distance, which is defined

by

dTV(R1, R2) = sup
B∈Bℓ

|R1(B) − R2(B)|,

where B
ℓ denotes the Borel σ-algebra over R

ℓ and R1 and R2 are two finite signed

measures on (Rℓ, Bℓ). For results concerning other distances, such as the Kolmogorov

or the stop-loss metrics, see, for example, Zăıtsev (1983), Gerber (1984), Hipp (1985,

1986), de Pril and Dhaene (1992), Kuon et al. (1993), Čekanavičius (1997), Dhaene

and Sundt (1997), and Roos (2005). For a functional approach to approximations of

the individual risk model, see Pitts (2004).

2 Facts on compound Poisson approximation

2.1 Basic inequalities and the magic factor

One of the most popular results in compound Poisson approximation is essentially due

to Khintchine (1933) and Doeblin (1939) (see also Le Cam, (1960, page 1183)). The

result is also contained in Gerber (1984, Theorem 1(a)). It says that

dτ := dTV(L(Sn), CPo(λ, Q)) ≤
n∑

i=1

p2
i =: λ2. (1)
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Note that (1) was initially shown only for the univariate case ℓ = 1. But the proof

for general ℓ ∈ N is done in the same way. From an observation by Le Cam (1965,

page 188) it can be deduced that, for each n ∈ N, there exist Q1, . . . , Qn such that,

for each choice of p1, . . . , pn, we have

C1 min{λ2, 1} ≤ dτ ≤ C2 min{λ2, 1}.

Here, C1 and C2 denote positive absolute constants. It should be mentioned that, in

Zăıtsev (1989, Remark 1.1)), Le Cam’s argument has been made more precise under

the assumption that

p0 := max
i∈{1,...,n}

pi ≤
1

2
.

However, as is easily seen, this assumption can be dropped. From this we see that,

in general, there is no hope of finding an upper bound independent of the Qi, which

is of a better order than λ2. But a further result by Le Cam (1960, Theorem 2) tells

us that, under the special assumption that ℓ = 1, Q1 = · · · = Qn = I1 is the Dirac

measure at point one and that p0 ≤ 1/4, we have

dτ ≤ 8
λ2

λ
,

which is better than (1), if λ > 8. From that time on, many papers appeared on

Poisson approximation. One of the most important results is due to Barbour and Hall

(1984, Theorems 1 and 2), who, by using Stein’s method, showed that, if ℓ = 1 and

Q1 = · · · = Qn = I1, then

λ2

32
min{λ−1, 1} ≤ dτ ≤ λ2 min{λ−1, 1}. (2)

It is easily verified that λ2 min{λ−1, 1} ≥ (λ2/λ)2, which, together with (2), implies

that, under the present conditions, dτ is small if and only if λ2/λ is small. From this,

we see that the upper bound λ2/λ in (2) is much more important than the λ2. In the

literature (see, for example, Barbour et. al., 1992, Introduction), the additional factor

λ−1 is sometimes called a magic factor, since, on the one hand, it is highly desirable,

but on the other hand, the proof of its existence turns out to be difficult.

A simple observation made by Le Cam (1965, page 187) and later rediscovered by

Michel (1987, page 167) implies that the upper bound in (2) remains valid in the case

ℓ ∈ N and Q1 = · · · = Qn. Indeed, more generally, the total variation distance in the

case ℓ ∈ N and Q1 = · · · = Qn is bounded from above by the distance in the case

ℓ = 1 and Q1 = · · · = Qn = I1. Therefore, concerning upper bounds, the preliminary

restriction to ℓ = 1 above was unnecessary.



On variational bounds 5

2.2 Facts under a more general assumption

As explained above, in order to obtain upper bounds for dτ of a better order than λ2,

we have to make suitable assumptions on the Q1, . . . , Qn. In Roos (2003), some results

are given when the Q1, . . . , Qn can be jointly decomposed in the following form: for

all i ∈ {1, . . . , n},

Qi =
∞∑

r=1

qi,rUr, (3)

for suitable qi,r ∈ [0, 1] with
∑∞

r=1 qi,r = 1 and a sequence of probability measures

U1, U2, U3, . . . on (Rℓ, Bℓ), which are not allowed to depend on i. Note that it is easily

shown that this assumption can be always fulfilled, that is, for given Q1, . . . , Qn, there

exist qi,r’s and Ur’s such that (3) is valid. However, a trivial decomposition, based on

qi,r ∈ {0, 1} for all i and r, should be avoided, since generally, in this case, the order

of the respective bounds will not be better than λ2. Now, (13) in Roos (2003) states

that

dτ ≤ 8.8 β, (4)

where

β =
n∑

i=1

p2
i min

{νi

λ
, 1

}
, (5)

νi =

∞∑

r=1

q2
i,r

qr
, (i ∈ {1, . . . , n}), qr =

1

λ

n∑

i=1

pi qi,r, (r ∈ N). (6)

Here, for r ∈ N, we set q2
i,r/qr = 0 whenever qr = 0. It is easily verified that, for all

i, νi is finite. If νi/λ is less than one, then looking at (4), the magic factor λ−1 is in

use. However, from Cauchy’s inequality, it follows that, for all i, νi ≥ 1, so that νi

itself cannot become small. Note that, in (12) of Roos (2003), it was shown that, if

α(2−3/2) < (2e)−1, then

dτ ≤ α(2−3/2)

1 − 2 e α(2−3/2)
, (7)

where, for x ∈ [0, ∞),

α(x) =

n∑

i=1

g1(2pi) p2
i min

{xνi

λ
, 1

}
, g1(x) = 2

ex

x2
(e−x − 1 + x). (8)

In practice, due to the constants, (7) is often much better than (4). On the other hand,

for discussion of the order, (4) is better suited, because of the absence of a singularity.
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In Roos (2003), a further more restrictive decomposition of the individual claim

amount distributions was used. However, for the respective results, some moments

have to be finite. The main argument of the mentioned paper is a slight modification

of an expansion due to Kerstan (1964). It is not clear whether these results can also

be proved by using Stein’s method; see, for example, Barbour (2005).

3 Results

3.1 First-order results

Often in applications, the Qi are absolutely continuous. Here, it may be a problem

to derive a non-trivial decomposition (3) of the Q1, . . . , Qn. In Theorem 1 below, we

present similar bounds as in (4) and (7) but without the assumption of a decomposition

like (3). Below, Proposition 1 shows, that, to some extent, it is better to use one of

the bounds of Theorem 1 than (4) or (7).

Further notation is needed. Since, for all i ∈ {1, . . . , n}, Qi is absolutely continuous

with respect to Q, that is, Qi(B) = 0 for every set B ∈ B
ℓ with Q(B) = 0, from the

Radon–Nikodym theorem, it follows that Qi has a Q-density

fi : R
ℓ −→ [0,∞). (9)

In other words, fi is measurable and, for each B ∈ B
ℓ, we have Qi(B) =

∫
B

fi dQ.

Theorem 1 Generally, we have

dτ ≤ 8.8 β̃, (10)

dτ ≤ α̃(2−3/2)

1 − 2 e α̃(2−3/2)
, (11)

where

β̃ =

n∑

i=1

p2
i min

{1

λ

∫
f 2

i dQ, 1
}
, (12)

α̃(x) =

n∑

i=1

g1(2pi) p2
i min

{x

λ

∫
f 2

i dQ, 1
}
, (x ∈ [0,∞)), (13)

and, for (11), we assume that α̃(2−3/2) < (2e)−1. Here, g1 and fi are defined as in (8)

and (9), respectively.
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Note that, if Q1 = · · · = Qn, then, for all i ∈ {1, . . . , n},
∫

f 2
i dQ = 1,

so that β̃ = λ2 min{λ−1, 1} and, similarly as in (2), we obtain the magic factor λ−1.

If, in contrast to the above assumption, Q1 ≈ · · · ≈ Qn in some sense, then we expect

that, for all i,
∫

f 2
i dQ ≈ 1, which again gives a magic factor. Often the integrals

∫
f 2

i dQ can be evaluated as follows. Suppose that, for i ∈ {1, . . . , n}, Qi has a density

hi with respect to a σ-finite measure µ on (Rℓ, Bℓ). Then Q has the µ-density

h :=
1

λ

n∑

i=1

pihi

and it easily follows that, for all i ∈ {1, . . . , n},
∫

f 2
i dQ =

∫

{h>0}

h2
i

h
dµ.

From this, we see once more that, if the Q1, . . . , Qn and, in turn, the densities h1, . . . , hn

are approximately equal, then
∫

f 2
i dQ ≈ 1 for all i.

One may ask whether, for given Q1, . . . , Qn, a decomposition (3) exists such that (4)

is a smaller bound than (10). The following proposition shows that the answer is no, if

we concentrate on the magic factor, i.e. if, in (5) and (12), we consider the first entry

in the min-term. In this respect, using (4) or (7), there is no hope of obtaining much

better bounds than the ones of Theorem 1.

Proposition 1 Let (3) be valid. For i ∈ {1, . . . , n}, let νi and fi be defined as in (6)

and (9), respectively. Then

n∑

i=1

p2
i

∫
f 2

i dQ ≤
n∑

i=1

p2
i νi.

3.2 Second-order result

We now carry over the above idea to the second order result in Roos (2003, Theorem 3),

which says that, in comparison with CPo(λ, Q), the finite signed measure

CPo2(λ, Q) =
(
I0 −

1

2

n∑

i=1

p2
i (Qi − I0)

∗2
)
∗ CPo(λ, Q),

may be a better approximation of L(Sn). Note that CPo2(λ, Q) can be derived from

an expansion of L(Sn) due to Kerstan (1964).
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Theorem 2 If α̃(1) < 21/2e−1, then we have

dTV(L(Sn), CPo2(λ, Q)) ≤ 4

3
γ̃ + (α̃(1))2

(
1 +

0.82 α̃(1)

1 − 2−1/2e α̃(1)

)
, (14)

where

γ̃ =

n∑

i=1

g2(2pi)p
3
i min

{
0.46

(1

λ

∫
f 2

i dQ
)3/2

, 1
}
, (15)

g2(x) =
3(g1(x) − 1)

2x
, (x ∈ [0, ∞)),

and g1, fi, and α̃(1) are defined as in (8), (9), and (13), respectively.

Observe that, by continuity, g2(x) is equal to one at x = 0 and increases to 2.3958 . . .

at x = 2. Therefore, if constants do not play a great rôle, in (15), the g2(2pi) can

be replaced by 2.396. Further, note that, in the present context, Čekanavičius (1998,

proof of Corollary 3.1) has shown that,

dTV(L(Sn), CPo2(λ, Q)) ≤ 2λ2
2 +

8

3

n∑

i=1

p3
i , (16)

which, in contrast to (14), does not contain a magic factor.

3.3 Approximations by signed Kornya–Presman measures

In what follows, we present a consequence of Theorem 1 in Roos (2002) concerning

the approximation by signed Kornya–Presman measures, which are defined by

KP(s) = exp
( n∑

i=1

s∑

k=1

(−1)k+1

k
pk

i (Qi − I0)
∗k

)
,

where s ∈ N is fixed. It seems that such approximations were first considered by

Kornya (1983) and Presman (1983), as a result of which we speak of Kornya–Presman

signed measures. It should be mentioned, however, that the signed measures used by

Kornya and Presman are slightly different (see also Hipp, 1986). Let

A1 = 1 − A2 ∈ [0, 1],

be arbitrary and and fi be defined as in (9). Recall that p0 = maxi∈{1,...,n} pi. For

x ∈ [0,∞), set

β̃s(x) =

n∑

i=1

ps+1
i min

{(x

λ

∫
f 2

i dQ
)(s+1)/2

, 1
}
,

Vs(x) =
(
1 − (1 − x) exp

( s∑

m=1

xm

m

))s + 1

xs+1
.
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Let ⌈x⌉ denote the smallest integer greater or equal to x. Observe that β̃1(1) coincides

with β̃ from (12).

Theorem 3 Let

c1(s) =

{
(s + 1) 2−5/2, for odd s,

(s + 1) 21/(2(s+1))−5/2, for even s,

c2(s, p0) =
e 2s ⌈s/2 − 1⌉!√

2π (s + 1)
Vs(2p0),

c3(s, p0) =
e 2s+1

s + 1
Vs(2p0),

c4(s, p0) = 4e
s∑

m=2

(2p0)
m−2

m
.

If c3(s, p0) ps−1
0 β̃1(2

−3/2A−1
2 ) < 1 and c4(s, p0) β̃1(2

−3/2A−1
1 ) < 1, then

dTV(L(Sn), KP(s)) ≤ η β̃s(c1(s)A
−1
2 ), (17)

where

η =
c2(s, p0)

(1 − c3(s, p0) ps−1
0 β̃1(2−3/2A−1

2 ))⌈s/2⌉(1 − c4(s, p0) β̃1(2−3/2A−1
1 ))

.

It should be mentioned that the left-hand side of (17) is independent of A1. Therefore,

in applications, one can minimize the upper bound over all possible A1 ∈ [0, 1]. Further

note that Hipp (1986, formula (6)) has shown that, if p0 < 1/2, then

dTV(L(Sn), KP(s)) ≤ exp
( n∑

i=1

(2pi)
s+1

(s + 1)(1 − 2pi)

)
− 1. (18)

Due to the magic factor λ−(s+1)/2, the bound in (17) can be much more precise than

the one in (18). Indeed, one of the reasons is that, if λ → ∞ and if maxi∈{1,...,n}

∫
f 2

i dQ

is bounded by an absolute constant, then β̃s(1) → 0. However, an error bound derived

from (18), which is too large for a given order of approximation can easily be reduced by

increasing the order of approximation, which is usually possible with a small increase

of computation time.

3.4 Comparison of the results

Let us give a comparison of the order of the bounds in Theorems 1–3. For the sake of

simplicity, we consider the univariate case ℓ = 1 and assume that maxi∈{1,...,n}

∫
f 2

i dQ
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is bounded by some absolute constant. In order to get rid of the singularities in the

upper bounds in (14) and (17), we assume that λ2 min{λ−1, 1} is bounded by some

suitable small absolute constant.

Table 1 collects the main terms of the bounds without consideration of constants.

The bounds with (resp. without) magic factors λ−κ for κ > 0 are derived by taking the

first (resp. second) entry in the min-terms of the results. The terms in the last line of

Table 1 coincide with the order of the bounds in (1), (16), and (18). For (18), we have

to assume that p0 is bounded by some absolute constant c < 1/2. As is easily shown,

we have
∑n

i=1 p3
i ≤ λ

3/2
2 . Therefore, (14) yields a bound of a better order than (10).

Similarly, if s ≥ 2, (17) is better than (14). Further, we have
∑n

i=1 ps+1
i ≤ λ, which

implies that, if s ≥ 2, the bound in (17), unlike the other ones, is small when λ is

large.

Table 1: Comparison of the order of the bounds in Theorems 1–3

number of formula (10) (14) (17)

order of the upper bound

with magic factor

λ2

λ

1

λ3/2

n∑

i=1

p3
i +

(λ2

λ

)2 1

λ(s+1)/2

n∑

i=1

ps+1
i

order of the upper bound

without magic factor
λ2

n∑

i=1

p3
i + λ2

2

n∑

i=1

ps+1
i

3.5 A numerical example

In what follows, we consider the univariate case ℓ = 1 and assume that we have n = 93

contracts with

pi =





0.03, if i = 1, . . . , 24,

0.04, if i = 25, . . . , 42,

0.05, if i = 43, . . . , 72,

0.06, if i = 73, . . . , 93.

Here, we have λ = 4.2 and λ2 = 0.201. Our portfolio is three times larger than

Gerber’s (1979, page 53) portfolio. However, in contrast to Gerber’s assumptions, our

aim is to discuss an example, where the individual claim amount distributions Qi,

(i ∈ {1, . . . , 93}) are non-identical and absolutely continuous with finite mean and
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infinite variance. Therefore, we suppose that Qi has the Pareto-type Lebesgue density

hi(x) =
2

i(1 + x/i)3
, (x ∈ (0, ∞)).

Note that the mean of Qi is equal to i, so that, loosely speaking, we cannot say that

the Qi coincide well. But, on the other hand, Table 2 shows that, even in this example,

the upper bounds with magic factors are considerably smaller than the comparable

ones without magic factors. Further, we see that, as we expect, (11) is much better

than (10). Note that, in the case s = 1, (17) has been used with A1 = 0. This

is not problematic since, as usual, we set 1/0 = ∞, so that, for A1 = 0, we get

β̃1(2
−3/2A−1

1 ) = λ2.

Table 2: Numerical comparison of the bounds

bounds with magic factors bounds without magic factors

number of value value upper number of value upper

formula of s of A1 bound formula of s bound

(10) – – 0.506408 – – –

(11) – – 0.025529 (1) – 0.201000

(14) – – 0.004989 (16) – 0.107698

(17) 1 0 0.028195 (18) 1 0.563695

(17) 2 0.5 0.004066 (18) 2 0.030490

(17) 3 0.5 0.000254 (18) 3 0.002357

(17) 4 0.5 0.000028 (18) 4 0.000203

4 Proofs

Proof of Theorem 1. Let ε ∈ (0, 1/2] be fixed. Then ai,r,ε ∈ [0,∞), (i ∈ {1, . . . , n},
r ∈ N), and pairwise disjoint sets B1,ε, B2,ε, · · · ∈ B

ℓ exist such that, letting

hi,ε :=

∞∑

r=1

ai,r,ε1(Br,ε) for i ∈ {1, . . . , n},

we have, for all i ∈ {1, . . . , n} and x ∈ R
ℓ,

0 ≤ fi(x) − hi,ε(x) ≤ ε.
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Here, 1(B) denotes the indicator function of a set B ⊆ R
ℓ. For all i, let

mi,ε =

∫
hi,ε dQ.

Then mi,ε = 1 −
∫

(fi − hi,ε) dQ ∈ [1 − ε, 1], that is 1/2 ≤ mi,ε ≤ 1. For all i, let Qi,ε

be the probability measure on (Rℓ, Bℓ) with Q-density

fi,ε =
hi,ε

mi,ε
.

For i ∈ {1, . . . , n} and r ∈ N, let

qi,r,ε =
ai,r,ε

mi,ε
Q(Br,ε)

and let the probability measure Ur,ε be defined by

Ur,ε(·) =





Q(Br,ε ∩ · )
Q(Br,ε)

, if Q(Br,ε) > 0,

I0, otherwise.

Then, for all r and all i, qi,r,ε ≥ 0 and
∑∞

r=1 qi,r,ε = 1. Further, for a set B ∈ B
ℓ and

all i ∈ {1, . . . , n},

Qi,ε(B) =

∫

B

∞∑

r=1

ai,r,ε

mi,ε
1(Br,ε) dQ =

∞∑

r=1

qi,r,εUr,ε(B).

Let

Qε =
1

λ

n∑

i=1

piQi,ε, fε =
1

λ

n∑

i=1

pifi,ε.

Then Qε has the Q-density fε and, for all r ∈ N, we have

Qε(Br,ε) =
1

λ

n∑

i=1

pi
ai,r,ε

mi,ε

Q(Br,ε) =
1

λ

n∑

i=1

piqi,r,ε =: qr,ε.

Let

R(1)
ε =

n

∗
i=1

((1 − pi)I0 + piQi,ε) and R(2)
ε = CPo(λ, Qε).

Then

dτ ≤ dTV(L(Sn), R(1)
ε ) + dTV(R(1)

ε , R(2)
ε ) + dTV(R(2)

ε , CPo(λ, Q))

=: T (1)
ε + T (2)

ε + T (3)
ε , say.
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In what follows, we use some basic properties of the total variation distance: Firstly, it

is subadditive, that is, if Wi, W̃i, (i ∈ {1, . . . , n}) are probability measures on (Rℓ, Bℓ),

then

dTV

( n

∗
i=1

Wi,
n

∗
i=1

W̃i

)
≤

n∑

i=1

dTV(Wi, W̃i).

Secondly, if W1 and W2 have densities w1 and w2 with respect to a measure µ on

(Rℓ, Bℓ), then

dTV(W1, W2) =
1

2

∫
|w1 − w2| dµ.

Now, we obtain

T (1)
ε ≤

n∑

i=1

pi dTV(Qi, Qi,ε),

where

dTV(Qi, Qi,ε) =
1

2

∫
|fi − fi,ε| dQ

≤ 1

2

∫ (
|fi − hi,ε| + hi,ε

∣∣∣1 − 1

mi,ε

∣∣∣
)

dQ

≤ 1

2
(ε + 1 − mi,ε) ≤ ε.

This gives T
(1)
ε ≤ λε. On the other hand, we have

T (3)
ε ≤

∞∑

m=1

e−λ λm

m!
dTV(Q∗m

ε , Q∗m),

where, in view of the above, we see that

dTV(Q∗m
ε , Q∗m) ≤ m dTV(Qε, Q) ≤ m

λ

n∑

i=1

pi dTV(Qi,ε, Qi) ≤ m ε.

Hence

T (3)
ε ≤ ε

∞∑

m=1

e−λ λm

(m − 1)!
= λε.

Estimating T
(2)
ε with the help of (4) and using the inequalities already proved, we get

dτ ≤ 2λε + 8.8

n∑

i=1

p2
i min

{1

λ

∞∑

r=1

q2
i,r,ε

qr,ε
, 1

}
.

A similar inequality can be written down by using (7). By letting ε → 0, we see

that, in order to prove the assertion, we have to verify that, for all i ∈ {1, . . . , n},
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∑∞
r=1 q2

i,r,ε/qr,ε →
∫

f 2
i dQ, as ε → 0. Note that, for i, j ∈ {1, . . . , n},

∫
fifj dQ ≤

λ/pj < ∞, since

1 =

∫
fi dQ =

1

λ

n∑

j=1

pj

∫
fi dQj =

1

λ

n∑

j=1

pj

∫
fifj dQ.

In particular
∫

f 2
i dQ < λ/pi < ∞. Now, we derive

∣∣∣
∫

f 2
i dQ −

∞∑

r=1

q2
i,r,ε

qr,ε

∣∣∣ ≤
∣∣∣
∫

(f 2
i − f 2

i,ε) dQ
∣∣∣ +

∣∣∣
∫

f 2
i,ε dQ −

∞∑

r=1

q2
i,r,ε

qr,ε

∣∣∣

=: J
(1)
i,ε + J

(2)
i,ε , say.

On the one hand,

J
(1)
i,ε ≤

∫
|fi − fi,ε|(fi + fi,ε) dQ

≤
∫ (

ε + hi,ε

( 1

mi,ε
− 1

))
(fi + fi,ε) dQ

≤ 2ε
(
1 +

∫
hi,ε(fi + fi,ε) dQ

)
.

Using the inequalities hi,ε ≤ fi and fi,ε ≤ 2hi,ε ≤ 2fi, we get

J
(1)
i,ε ≤ 2ε

(
1 + 3

∫
f 2

i dQ
)
≤ 2ε

(
1 +

3λ

pi

)
(ε→0)−→ 0.

On the other hand,

J
(2)
i,ε =

∣∣∣
∫ ∞∑

r=1

a2
i,r,ε

m2
i,ε

1(Br,ε) dQ −
∞∑

r=1

q2
i,r,ε

qr,ε

∣∣∣

≤
∑

r∈N : qr,ε>0

a2
i,r,ε

m2
i,ε

Q(Br,ε)

qr,ε
|qr,ε − Q(Br,ε)|

≤ λ

pi

∞∑

r=1

ai,r,ε

mi,ε
|Qε(Br,ε) − Q(Br,ε)|

≤ 1

pi

n∑

j=1

pj

∞∑

r=1

ai,r,ε

mi,ε

∫

Br,ε

|fj,ε − fj| dQ

=
1

pi

n∑

j=1

pj

∫ ∞∑

r=1

ai,r,ε

mi,ε

1(Br,ε)|fj,ε − fj| dQ

≤ ε

pi mi,ε

n∑

j=1

pj

∫
fi(1 + 2fj) dQ

≤ 2ε

pi

n∑

j=1

pj

(
1 +

2λ

pi

)
(ε→0)−→ 0.
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This completes the proof of Theorem 1. �

Proof of Theorem 2. We use the assumptions and definitions from the proof of

Theorem 1. Letting

R(3)
ε =

(
I0 −

1

2

n∑

i=1

p2
i (Qi,ε − I0)

∗2
)
∗ CPo(λ, Qε),

we obtain

dTV(L(Sn), CPo2(λ, Q)) ≤ dTV(L(Sn), R(1)
ε )

+ dTV(R(1)
ε , R(3)

ε ) + dTV(R(3)
ε , CPo2(λ, Q))

=: T (1)
ε + T (4)

ε + T (5)
ε , say.

From Theorem 3 in Roos (2003), it follows that

T (4)
ε ≤ 4

3
γε + α2

ε

(
1 +

0.82 αε

1 − 2−1/2e αε

)
,

where

γε =

n∑

i=1

g2(2pi)p
3
i min

{
0.46

(1

λ

∞∑

r=1

qi,r,ε

qr,ε

)3/2

, 1
}

,

αε =
n∑

i=1

g1(2pi) p2
i min

{1

λ

∞∑

r=1

qi,r,ε

qr,ε

, 1
}
,

and we assume that αε < 21/2e−1. In the proof of Theorem 1, we have shown that

lim
ε→0

T (1)
ε = 0 and lim

ε→0

∞∑

r=1

q2
i,r,ε

qr,ε
=

∫
f 2

i dQ.

Further, it is easily proved that limε→0 T
(5)
ε = 0. This completes the proof. �

The proof of Theorem 3 is based on Theorem 1 in Roos (2002). It is similar to the

above and is therefore omitted. For the proof of Proposition 1, we need the following

lemma.

Lemma 1 For i ∈ {1, . . . , n} and r ∈ N, let bi,r ∈ [0,∞) with b̃i =
∑∞

r=1 bi,r < ∞,
∑n

i=1 b̃i > 0, and b′r =
∑n

i=1 bi,r. Then

∑n
i=1 b̃2

i∑n
i=1 b̃i

≤
∑

r∈N : b′r>0

n∑

i=1

b2
i,r

b′r
.
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Proof. It is not difficult to show that, if b′1, b
′
2 > 0 and i ∈ {1, . . . , n},

(bi,1 + bi,2)
2

b′1 + b′2
≤

b2
i,1

b′1
+

b2
i,2

b′2
.

The proof is easily completed. �

Proof of Proposition 1. The Radon–Nikodym theorem says that, for all r ∈ N,

Ur has a density ur : R
ℓ −→ [0,∞) with respect to the probability measure µ =

e−1
∑∞

r=1 Ur/(r − 1)!. Then Qi and Q have the µ-densities hi :=
∑∞

r=1 qi,rur and

h :=
∑∞

r=1 qrur, respectively. Using Lemma 1, we obtain

n∑

i=1

p2
i

∫
f 2

i dQ =

n∑

i=1

p2
i

∫

{h>0}

h2
i

h
dµ

= λ

∫

{h>0}

∑n
i=1(

∑∞
r=1 piqi,rur)

2

∑n
i=1

∑∞
r=1 piqi,rur

dµ

≤ λ

∞∑

r=1

∫
1
({ n∑

i=1

piqi,rur > 0
})∑n

i=1(piqi,rur)
2

∑n
i=1 piqi,rur

dµ

=

n∑

i=1

p2
i νi.

The proposition is shown. �
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[5] Čekanavičius, V., 1998. Estimates in total variation for convolutions of compound

distributions. Journal of the London Mathematical Society, Second Series 58, 748–

760.

[6] de Pril, N., Dhaene, J., 1992. Error bounds for compound Poisson approximations

of the individual risk model. ASTIN Bulletin 22, 135–148.

[7] Dhaene, J., Sundt, B., 1997. On error bounds for approximations to aggregate

claims distributions. ASTIN Bulletin 27, 243–262.

[8] Doeblin, W., 1939. Sur les sommes d’un grand nombre de variables aléatoires
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