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1KERSTAN'S METHOD IN THE MULTIVARIATE POISSONAPPROXIMATION: AN EXPANSION IN THE EXPONENTBero Roos�Abstrat. The generalized multinomial distribution is approxi-mated by �nite signed measures, resulting from a Poisson type expan-sion in the exponent. In the univariate ase, this expansion was �rstused by Kornya and Presman. We apply Kerstan's method and presenta bound for the total variation distane with expliit onstants.AMS 1991 subjet lassi�ations. Primary 60F05; seondary 60G50.Key words and phrases. Expansion in the exponent, generalized multi-nomial distribution, Kerstan's method, multivariate Poisson approxi-mation, total variation distane.1. Introdution and results. Let Sn be the sum of independentBernoulli random vetors X1; : : : ;Xn in Rk (k; n 2 N = f1; 2; : : :g) withprobabilitiesPfXj = erg = pj;r 2 [0; 1℄; PfXj = 0g = 1� pj 2 [0; 1℄for j 2 f1; : : : ; ng and r 2 f1; : : : ; kg, where pj = Pkr=1 pj;r and er denotesthe vetor in Rk with entry 1 at position r and 0 otherwise. We assume that�r =Pnj=1 pj;r > 0 for all r.In this paper, we are onerned with the approximation of the distribu-tion P Sn of Sn by the �nite signed measures Ps, (s 2 N) onentrated onZk+ with the generating funtion	Ps(z) = Xl2Zk+ Ps(flg)zl = exp� sXm=1Gm(z)�; (z = (z1; : : : ; zk) 2 Ck);where Z+ = f0; 1; 2; : : :g, zl = zl11 : : : zlkk for l = (l1; : : : ; lk) 2 Zk+, and, form 2 f1; : : : ; sg and z 2 Ck,Gm(z) = (�1)m+1m nXj=1Hj(z)m; Hj(z) = kXr=1 pj;r(zr�1); (j 2 f1; : : : ; ng):An approximation by Ps may be useful, sine, for the probability generatingfuntion 	Sn(z) of P Sn , the following relations hold:	Sn(z) = Xl2Zk+PfSn = lg zl = nYj=1(1 +Hj(z)) = exp� 1Xm=1Gm(z)�;if z 2 Ck with max1�r�k jzr � 1j < 1. Note that Ps(Zk+) = 	Ps(1) = 1.In the univariate ase k = 1, the �rst results onerning the above expan-sion are due to Kornya [9℄ and Presman [11℄. Therefore we all this expansion�Shwerpunkt Math. Statistik und Stoh. Prozesse, Fahbereih Mathematik, Univer-sit�at Hamburg, Bundesstra�e 55, D-20146 Hamburg, Germany.E-mail: roos�math.uni-hamburg.de



Kerstan's method in the multivariate Poisson approximation 2a Kornya{Presman expansion. It should be mentioned that Presman onsid-ered the binomial ase with s = 2. Further results ame from Kruopis [10℄and Barbour and Xia [2℄ (for k = 1 and s = 2), and Hipp [7℄ and �Cekanavi�ius[3℄ (for k = 1 and arbitrary s). The multivariate Poisson ase with s = 1and arbitrary k was treated, for example, by Barbour [1℄, Deheuvels andPfeifer [5℄, and Roos [13, 14℄. For this ase, see also the referenes in [13℄.The method of this paper is originally due to Kerstan [8℄, who onsideredthe ase k = s = 1. Re�nements of this method ame from Daley andVere-Jones [4, pp. 297{299℄, Witte [15℄, and Roos [12, Kapitel 8℄, [14℄.In what follows, further notation is needed. Lets 2 N; p0 = max1�j�n pj; ~p0 = kXr=1 max1�j�n pj;r;�s(x) = nXj=1min�x kXr=1 p2j;r�r ; p2j�(s+1)=2; (x 2 [0;1)):Observe that p0 � ~p0; �s(x) � �1(x)(s+1)=2 � (x ~p0)(s+1)=2: (1)For y 2 C, letUs(y) = exp� sXm=1 ymm �; Vs(y) = [1� (1� y)Us(y)℄s+ 1ys+1 :Note that (1�y)Us(y) is the prime funtion used by Weierstrass (see Hille [6,p. 227℄). For x 2 R, let dxe denote the smallest integer � x. Let A;B 2 [0; 1℄with A+B = 1. However, to get reasonable inequalities, it must often beassumed that A;B 2 (0; 1). In this paper, we frequently deal with powerseries of the type W (z) = Pl2Zk+ wlzl, (wl 2 R), whih are absolutely on-vergent for all z 2 Ck. In partiular, the order of summation may be ho-sen arbitrarily. We write kW (z)k = Pl2Zk+ jwlj and use the easy fat thatkW1(z)W2(z)k � kW1(z)k kW2(z)k for two power series W1(z) and W2(z).In the following theorem, we give an upper bound for the total variationdistane ds = 2�1k	Sn(z)�	Ps(z)k between P Sn and Ps.Theorem 1 Let1(s) = ( (s+ 1) 2�5=2; for odd s;(s+ 1) 21=[2(s+1)℄�5=2; for even s;2(s; p0) = e 2s ds=2 � 1e!p2� (s+ 1) Vs(2p0);3(s; p0) = e 2s+1s+ 1 Vs(2p0); 4(s; p0) = 4e sXm=2 (2p0)m�2m ;If 3(s; p0) ps�10 �1(2�3=2B�1) < 1 and 4(s; p0)�1(2�3=2A�1) < 1, thends � 2(s; p0)�s(1(s)B�1)[1� 3(s; p0) ps�10 �1(2�3=2B�1)℄ds=2e[1� 4(s; p0)�1(2�3=2A�1)℄ : (2)



Kerstan's method in the multivariate Poisson approximation 3Remarks. (a) Considering the properties of the Weierstrass prime funtion(see Hille [6, p. 227℄), we obtain Vs(y) =P1i=0 vs;i yi, (y 2 C), where vs;0 = 1and vs;i � 0 for all i � 1. Therefore Vs(x) is inreasing in x 2 [0;1).Further, for these x, we have Vs(x) � Us(x), sine this is equivalent to1 � Us(x)�1� x+ xs+1s+ 1�;whih follows from the observation that the term on the right-hand side isinreasing in x 2 [0;1). Note also that Us(x) � (1�x)�1 for x 2 [0; 1). Theinequalities given here an be used to obtain upper bounds for the onstants2(s; p0) and 3(s; p0).(b) In the ase k = 1 and s = 2, inequality (2) substantially oinides, upto onstants, with the inequalities given by Presman [11, Assertion 1(a)℄ andKruopis [10, Theorem 3℄, respetively. If k is arbitrary and s = 1, we anhoose A = 0 and B = 1, sine 4(1; p0) = 0; in this ase, (2) is omparablewith inequality (5) in Roos [14℄.() There exist positive onstants 5 and 6(s), suh that, if ~p0 � 5, theinequality ds � 6(s)�s(1) is valid for all s. Note that 5 does not dependon s. Indeed for s = 1, suh an inequality with 6(1) = 8:8 was provedin Roos [14, formula (6)℄ without any restritions on ~p0. Further, lettingA = 0:745 and using (1), (2), and Remark (a), it is easily shown that onean hoose 5 = 1=4. Here it suÆes to verify that an � 2 (0; 1) exists suhthat, for all s 2 f2; 3; : : :g and ~p0 � 1=4,3(s; p0) ps�10 �1(2�3=2B�1) < 1� � and 4(s; p0)�1(2�3=2A�1) < 1� �:The speial value for A was taken to obtain a large 5. It should be mentionedthat, in the general ase s 2N, it is not lear, whether the above ondition~p0 � 5 an be dropped.For a suessful approximation, we have to ompute the values of Ps.In the following proposition, we give a reursive formula for the ountingdensity of Ps. Observe that Ps(f0g) = 	Ps(0). For l = (l1; : : : ; lk) 2 Zk+, weuse the standard multi-index notation jlj = l1 + : : : + lk and l! = l1! : : : lk!.Further, if additionally t 2 Zk+, we write t � l in the ase that tr � lr forall r.Proposition 1 Let l 2 Zk+ with jlj � 1, Ml;s = ft 2 Zk+ j 1 � jtj � s; t � lg,andbt = (�1)jtj+1 jtjt! nXj=1� s�jtjXm=0 (m+ jtj � 1)!m! pmj � kYr=1 ptrj;r; (t 2Ml;s):Then Ps(flg) = 1jlj Xt2Ml;s Ps(fl � tg) bt:2. Proofs. For the proof of Theorem 1, we need the following lemma.



Kerstan's method in the multivariate Poisson approximation 4Lemma 1 Let x 2 (0;1) and j 2 f1; : : : ; ng. ThenkVs(�Hj(z))k = Vs(2pj); (3)kHj(z)s+1 exp(xG1(z))k � min�4 1(s)x kXr=1 p2j;r�r ; 4p2j�(s+1)=2: (4)If 4(s; p0)�1(2�3=2A�1) < 1, thenT1(A) :=  exp�AG1(z) + sXm=2Gm(z)� � 11� 4(s; p0)�1(2�3=2A�1) : (5)Proof. Let Vs(y) =P1i=0 vs;i yi, (y 2 C) as in Remark (a) after Theorem 1.Using the polynomial theorem, we obtainVs(�Hj(z)) = 1Xi=0 vs;i�pj � kXr=1 pj;rzr�i= 1Xi=0 vs;i Xl2Zk+: jlj�i i! pi�jljjl! (i� jlj)! kYr=1(�pj;rzr)lr= Xl2Zk+ � 1Xi=jlj vs;i i! pi�jljjl! (i� jlj)! kYr=1 plrj;r�(�z)l;leading to (3): kV (�Hj(z))k = Vs(�Hj((�1; : : : ;�1))) = Vs(2pj). Now weprove (4). For s 2 f1; 2g, this inequality was proved in Roos [14, formulas(19) and (26)℄. For even s, we usekHj(z)s+1 exp(xG1(z))k � Hj(z) exp�xG1(z)s+ 1 �� Hj(z)2 exp�2xG1(z)s+ 1 �s=2and the fat that (4) also holds for s = 0 with 1(0) = 1=4 (see Roos [14,formula (18)℄). For odd s, the proof of (4) is similar. For the proof of (5),we may assume that s � 2. Using (4) and Stirling's formula, we obtainT1(A) =  exp� sXm=2 nXj=1 (�1)m+1m Hj(z)m� exp(AG1(z))=  exp(AG1(z)) + 1Xi=1 1i!� nXj=1 sXm=2 (�1)m+1m Hj(z)m exp�Ai G1(z)��i� 1 + 1Xi=1 1i!� nXj=1 sXm=2 kHj(z)km�2m Hj(z)2 exp�Ai G1(z)��i� 1 + 1Xi=1 iii!�4(s; p0)e �1(2�3=2A�1)�i � 11� 4(s; p0)�1(2�3=2A�1) ;if 4(s; p0)�1(2�3=2A�1) < 1. The lemma is proved.



Kerstan's method in the multivariate Poisson approximation 5Proof of Theorem 1. Consider the following expansion of the di�ereneof the generating funtions of P Sn and Ps:	Sn(z)�	Ps(z) = � nYj=1�1� (�Hj(z))s+1s+ 1 Vs(�Hj(z))� � 1�	Ps(z)= nXj=1 X1�i(1)<:::<i(j)�n jY�=1 �(�1)sVs(�Hi(�)(z))s+ 1 Hi(�)(z)s+1� exp�Bj G1(z)�� exp�AG1(z) + sXm=2Gm(z)�:By using the polynomial theorem, we obtain 2ds � T1(A)T2(B), whereT1(A) is de�ned as in Lemma 1 andT2(B) := nXj=1 1j!� nXi=1 kVs(�Hi(z))ks+ 1 Hi(z)s+1 exp�Bj G1(z)��j� nXj=1� 1j!�Vs(2p0)s+ 1 (2p0)s�1 nXi=1 Hi(z)2 exp�Bj G1(z)��j�1� Vs(2p0)s+ 1 nXi=1 Hi(z)s+1 exp�Bj G1(z)��� 2 2(s; p0)�s(1(s)B�1)ds=2� 1e! nXj=1 js=2�1h3(s; p0) ps�10 �1(2�3=2B�1)ij�1:For the latter inequality, we used (4) and Stirling's formula. In view of (5)and the relations1Xj=1 j�xj�1 � d�dx� 1Xj=1xj+��1 = d�dx� 1Xj=0xj = �!(1� x)�+1for x 2 [0; 1) and � 2 Z+, we see that (2) is valid. The proof is ompleted.Proof of Proposition 1. Using the binomial and the polynomial theoremwe obtain[	Ps(z)℄�1 Xl2Zk+ jlj Ps(flg)zl = [	Ps(z)℄�1 kXr=1 zr ��zr	Ps(z)= kXr=1 zr sXm=1 (�1)m+1m nXj=1 ��zr [Hj(z)m℄= nXj=1� kXr=1 pj;rzr� s�1Xm=0�pj � kXr=1 pj;rzr�m= � nXj=1 s�1Xm=0 mXi=0 mi !pm�ij �� kXr=1 pj;rzr�i+1= � nXj=1 s�1Xi=0 Xl2Zk+: jlj=i+1 s�1Xm=i mi ! jlj!l! pm�ij � kYr=1(�pj;r)lr�zl



Kerstan's method in the multivariate Poisson approximation 6= Xl2Zk+: 1�jlj�s �(�1)jlj+1 jlj!l! nXj=1� s�1Xm=jlj�1 mjlj � 1!pm�jlj+1j � kYr=1 plrj;r�zl= Xl2Zk+: 1�jlj�s bl zl:ThereforeXl2Zk+ jlj Ps(flg)zl = 	Ps(z) Xl2Zk+: 1�jlj�s bl zl = Xl2Zk+: jlj�1 Xt2Ml;s Ps(fl�tg) bt zl:Comparing the power series, the assertion is shown.Referenes[1℄ Barbour A. D. Stein's method and Poisson proess onvergene. | J. Appl.Probab., 1988, v. 25 A (Speial Vol.), p. 175{184.[2℄ Barbour, A. D., Xia, A. Poisson perturbations. | ESAIM: Probab. Statist.,1999, v. 3, p. 131{150.[3℄ �Cekanavi�ius, V. Approximation of the generalized Poisson binomial distri-bution: Asymptoti expansions. | Liet. Mat. Rink., 1997, v. 37, p. 1{17(Russian). Engl. transl. in Lith. Math. J., 1997, v. 37, p. 1{12.[4℄ Daley D. J., Vere-Jones D. An Introdution to the Theory of Point Proesses.| New York: Springer-Verlag, 1988, 702 p.[5℄ Deheuvels P., Pfeifer D. Poisson approximations of multinomial distributionsand point proesses. | J. Multivariate Anal., 1988, v. 25, p. 65{89.[6℄ Hille, E. Analyti Funtion Theory, Volume I. | Fifth printing, Providene,RI: AMS Chelsea Publishing, 1982, 308 p.[7℄ Hipp, C. Improved approximations for the aggregate laims distribution in theindividual model. | ASTIN Bull., 1986, v. 16, p. 89{100.[8℄ Kerstan J. Verallgemeinerung eines Satzes von Prohorow und Le Cam. | Z.Wahrsheinlihkeitstheor. verw. Gebiete, 1964, v. 2, p. 173{179.[9℄ Kornya P. S. Distribution of aggregate laims in the individual risk theorymodel. | Soiety of Atuaries: Transations, 1983, v. 35, p. 823{858.[10℄ Kruopis J. Preision of approximation of the generalized binomial distributionby onvolutions of Poisson measures. | Litov. Mat. Sb., 1986, v. 26, p. 53{69(Russian). Engl. transl. in Lith. Math. J., 1986, v. 26, p. 37{49.[11℄ Presman �E. L. Approximation of binomial distributions by in�nitely divisibleones. | Teor. Veroyatnost. i Primenen., 1983, v. 28, p. 372{382 (Russian).Engl. transl. in Theory Probab. Appl., 1983, v. 28, p. 393{403.[12℄ Roos, B. Metrishe Poisson-Approximation. Ph. D. thesis, Fahbereih Mathe-matik, Universit�at Oldenburg, 1996.[13℄ Roos B.Metri multivariate Poisson approximation of the generalized multino-mial distribution. | Teor. Veroyatnost. i Primenen., 1998, v. 43, p. 404{413.(See also in: Theory Probab. Appl., 1998, v. 43, p. 306{315).[14℄ Roos B. On the rate of multivariate Poisson onvergene. | J. MultivariateAnal., 1999, v. 69, p. 120{134.[15℄ Witte H.-J. A uni�ation of some approahes to Poisson approximation. | J.Appl. Probab., 1990, v. 27, p. 611{621.


