METRIC MULTIVARIATE POISSON APPROXIMATION OF THE
GENERALIZED MULTINOMIAL DISTRIBUTION

Bero Roos

The aim of this paper is to introduce the multivariate Charlier B expansion to the
metric multivariate Poisson approximation of a generalized multinomial distribution
considered by Barbour (1988) and Deheuvels and Pfeifer (1988a). Bounds for the total

variation and the point metric are given.

1. Introduction. Let Xi,..., X, (n € N ={1,2,...}) be independent random vectors
of R*, k € N, where X; = (X;(1),...,X,(k)), P(X; = e;) = pj, € [0,1], and P(X; =
0)=1-Fpj, €[0,1], for j € {1,...,n} and r € {1,...,k}. Here, e, is the vector
in R* with 1 at position r» € {1,...,k} and 0 otherwise. For [ € N and r € {1,...,k},
let Ny = (N(1),...,N(k)), Mi(r) = ;-L:lpé-,T >0, A=A, 0= (001),...,0(k)), O(r) =
Aa(r)/A(r). Set S =37_; X;. Always, let 0% = 1.

In this paper, the distribution P of S,, is approximated by the multivariate Poisson
distribution P(t), for t = (t1,...,t;) € (0,00)*, and related finite signed measures of
higher order. Here

P(t)({m}) —exp< Zt)ﬁtmT form:(ml,...,mk)EZ’j_,
r=1
and Z;={0,1,2,...}. As measures of accuracy, the following metrics are considered:
d:(P,Q) = sup |P(A)—Q(A Z |[P({m}) — Q({m})| (total variation), (1)
Aczh meZk
dr(P, Q) = SEE [P({m}) = Q({m})|  (point metric), (2)
m

where P and Q are finite signed measures concentrated on Z% satisfying P(Z¥) = Q(Z* ).
Various authors treated this approximation problem. The most important papers, con-
cerning the total variation, came from Barbour (1988) and Deheuvels and Pfeifer (1988a),
using the Stein—-Chen method and the semigroup method originally developed by Le Cam
(1960), respectively.
Barbour (1988) showed that

d(P%,P(N) < znj {

where log™ (z) = max{0, log( )} for z € R. Note that in the case £k = 1, Barbour and
Hall (1984) proved that 35 min{A2(1),60(1)} < d.(P5",P(A)) < (1 - e 21)9(1).

r=1

+log* (Zk: )]i? (Zpﬂ>2}, (3)
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Deheuvels and Pfeifer (1988a) developed some asymptotic formulae, which are too
involved to state them here. It should be mentioned that their upper bounds for total
variation [see their Theorem 2.2] are only useful for bounded E?Zl(zle pjr)?. In the
case k = 1, they used the univariate Charlier B expansion due to Charlier (1905) to prove
[see Deheuvels et al. (1988b)]

A(1)b1

AT o -n) e @

o (a—X(1)) +

d-(P%", P(X)) = %A2(1)e—k<l> (
where @ = |[A(1) + 1/2 + A1) +1/4], b = [A(1) + 1/2 — /A(1) +1/4] and |R| <
V260(1)32)(1 — \/20(1)), for 6(1) < 1/2 (|z] € Z being defined by z — 1 < |z] < z,
z € R).

Other publications, concerning the multivariate problem, are: Ahmad (1985), Aren-
baev (1976), Barbour, Holst, and Janson (1992), Chen and M. Roos (1995), McDonald
(1980), Sintes Blanc (1991), Wang (1986, 1989) and Witte (1993).

The univariate setting [i.e., the case k = 1] was investigated by many authors [for
instance, see Barbour and Hall (1984), Barbour, Holst, and Janson (1992), Borovkov
(1988), Chen (1975), Deheuvels and Pfeifer (1986a, b, 1988b), Kerstan (1964), Kruopis
(1986), Le Cam (1960), Presman (1985), B. Roos (1996a, b), Serfling (1975), Shorgin
(1977).]

Various metrics were considered in the univariate setting [for instance, the total vari-
ation, Kolmogorov metric, Fortet—Mourier metric, point metric, and [P metric between
distribution functions], while in the multivariate case, the total variation and the Kol-
mogorov metric [for this, see Sintes Blanc (1991)] were treated. Here, the point metric
has not been considered before.

The aim of this paper is to introduce the multivariate Charlier B expansion to the
given problem. The text refers to the works of Shorgin (1977), Deheuvels and Pfeifer
(1988b), and B. Roos (1996a, b), concerning the univariate Poisson approximation with
the help of the univariate Charlier B expansion. In Section 2, the multivariate Charlier B
expansion of P is presented. Formulae and an estimate for the corresponding Charlier
coefficients are derived. Section 3 is devoted to the results. Bounds for the distances
between PS» and Poisson related signed measures in the total variation and point metric
are given. As one of the most interesting results, it is proven that d,(P%»,P(})) is of
order O([XF_, \/min{8(r), A\2(r)}]?) [see Corollary 1].

Note that the Kolmogorov metric could also have been considered in this paper; but

the resulting bounds would have been of the same order as for the total variation and are

therefore omitted.

2. The multivariate Charlier B expansion. Let 7(m,z) = e”*z™/m! for m € Z,,
z € [0,00). For f : Z;y — R, let Af : Z; — R be defined by (Af)(m) = f(m —
1) — f(m), m € N and (Af)(0) = —f(0). Further, let A°f = f and Alf = A(A71f) for
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I € N. Finally, let Aln(m, ) := Al(n(-,x))(m) for m,l € Zy, z € [0,00). Tt is easy to
show that

Z Alr(m,z)z™ = (z — 1) exp(z(z — 1)), (5)
m=0

forle Z,, z €[0,00), z € C, where C denotes the set of complex numbers. The following

lemma, gives the main argument of this paper.

Lemma 1 For m = (mq,...,my) € Z’i, t=(t1,...,t) € (0,00)%,

P(Su=m) =3 ... 3 alt HA“ (e 1), (6)

where 1 stands for (l1,...,lx) and the coefficients a;(t) are defined by

o0 o0 n k
Z...Zal il. ’“—exp( thr>H<l+ij,rzr>. (7)
11=0 Ix=0

j=1 r=1

Proof. Let g, : C¥ — C denote the probability generating function of S,,, defined by

Ps.(2) = Y oo D P(Sn=(ma,...,mp))z" - m’“‘H <1+Zp]r Zr — )
m1=0 mg=0 j=1

for z = (21,...,2;) € Ck. By the help of (7), this yields, in case of |z,| < 1 for r €

s, (2) = i...ial(t) [H( —1) ]exp@:t )

=0  1,=0 r—1
00 o0 k o)
= Z Z a(t) H Z Al r(my, t,) 2" ’“]
11=0 l=0 r=1 |m,=
) oo 00 oo
= D ) [Z Y alt HAIT (M, tr ] 2
m1=0 mE=0 |1;=0 lx=0

Here, summations may be interchanged, because |Alm(m, z)| < 2! holds for all [,m € Z .,
z € [0,00), and therefore the iterated series converge absolutely. By comparing the power
series, the assertion follows. [ ]

By similar considerations as above, one shows that the iterated series (6) converge
absolutely, so that, here, the order of summation is not relevant. The series (6) is called
Charlier B expansion of P5». The coefficients a;(t) are called Charlier coefficients of P».
In order to derive upper bounds for the total variation and point metric, an inequality for
the Charlier coefficients of P5» is needed.

In what follows, we use the notation

k
s:ZlT, for (I1,...,lk) € ZX
=1
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and
n(r,tr) = 2Xo(r) + (A(r) — t,)°
forr € {1,...,k}, (t1...,tx) € (0,00)".
Lemma 2 Let | = (I3,...,lx) € Z’i, s> 1, t = (t1,...,tx) € (0,00)k. Further, let

Iy(z) = Z?‘;O(x/2)2j/(j!)2 be the modified Bessel function of the first kind and order O
and B(z) = Iy(z)e*"/4, z € R. Then

n(r, t) se)lT/Qﬁ <\/§|/\(T) —tr\lrﬂ .

2l /2]l sn(r, t,)

|ay (¢ |<H

Proof. Let Ry,...,R; € (0,00). By Cauchy’s theorem,

(8)

™ ™ . . k
a(t) = (%)kR; — /_W.../_W h(R1€™™, ..., Rpe'™) exp (—zElw) dzy ... duy,
(9)
where h(z) = ps, (21 + 1,25 + D exp(—=XF_, t,2,), 2 = (21,...,2) € Ck. Because
cos(z1) cos(za) + sin(z) sin(ze) = cos(z1 — z2), 1,22 € Rand 1 + 2 < €”, z € R,

k
exp <— Z trRTeiz’“> ‘
r=1

k
]. + ij’err,-ezwr

n
|h(Rie™,..., Rpe'™)| <[]
j= r=1

1/2
k E ok
1+2 ij,rRr cos(z,) + Z Z Djr1Pjrs Bri Ry cO8(zy, — wm)]

r=1 ri=1lro=1

n
11
j=1

k
X exp (— Z t-R, cos(xT)>

r=1
6 2
< exp Z()\()—t)R cos(z,) ZlZp” ] .
r=1 j=1 Lr=1
Since Ip(z) = L [ exp(z cos(y)) dy, = € R, this leads to
1 2k k
lai(t)] < T Z [ij, r] + Y () = )R | TT BIA(r) — t)Ry).
1 -t j 1 Lr=1 r=1 r=1
Using Cauchy’s inequality, the following estimate is valid:
n Tk 2 2
S [Soen] = % 5 (Sonmn ) < (S 0m
j=1 Lr=1 ri=1rz=1

Hence, |ai(t)] < g(Ry, .., Ri) [TE; BUAr) =) Ry), where g ¢ (0,00)F —> R, defined by

1 1| & Tt
1 ..
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attains its minimum for R = (Ry,..., Ry), Ry = v2l,/\/sn(r, 1), r € {1,...,k}. Substi-
tuting R for (Ry,...,Ry), the desired result is shown. [

Note that 0 < B(z) = B(]z|]) <1, z € R. The next lemma gives a recursive formula
for the Charlier coefficients of P°». Lemmata 2 and 3 are multivariate generalizations of
results of B. Roos (1996a, b) [for ¥ = 1 and arbitrary ¢] and Shorgin (1977) [for ¥ = 1 and
t=A.

Lemma 3 Let b € {1,...,k}, | = (l1,...,lx) € Z’j_, Iy > 1, t = (t1,...,t) € (0,00).
Then

al(t):—%al—eb(t)—%zt:?< 's—J ' ) 1)+ [anlr JT‘|

fa hh—=Jg1e ol — gk =5
(10)

where A denotes the set of all j = (j1,.--,jk) € Zﬁ_ such that 0 < j, < I, for r €
{1,...,E} \ {b} and 0 < jy < Iy — 1, and further J is the sum Y F_, j,.

Proof. Tt suffices to prove the assertion for b = 1. Let z = (z1,...,2;) € (—1,1)%,
g(2z) = exp(f(2)), f(z) = — Efﬂ trzr + E?:l In(1 + Efﬂpj,rzr)- Then

al1+---+lk li-1 ll -1 8[2—|—...—|—lk 8]1 allfjl
——g(2) = , —g(z —f(z
PR jlz_o it azl2 oz azﬂg ) = (%)
J1=0352=0  j=0 j2 Ik
§irt-+ik (‘9(11*31)+---+(1k*jk)
X — —9(2) —— T
0z ...0zF Oz . Oz Tk
Hence,
1 6l1+"'+lk
a(t) = 9(2)
) lel. 02,
12:1 f: Z a;(t) =)+ A(le—Jjk) )
= = . . . - —f(z
LA 2 2 T )i — g (e — gt oA g |
Since
8l1+'"+lk f( ) )‘( ) —tc if (lla 'alk) =é€,CcE {laak}
- Z = .
a2l [“)z,lck 0 (HT 1Py T) (s —1)(—=1)51 otherwise,
for (I1,...,lg) € Z’i, s > 1, the assertion follows immediately. [ |
It is clear that ag(t) = 1 and, as the preceeding lemma shows, for r,v € {1,...,k},
r#v, t=(ty,...,t) € (0,00)*,
ae,(t) = Ar) —tr, (11)
1
aze,(t) = 5 ((AC) —1:)* = da(r)) (12)

Qe +ey (t) = (/\(T) - t,«)(/\(U) - tv) - ij,rpj,v- (13)
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3. Main results. For the first main result of this paper, the next technical lemma is

necessary.

Lemma 4 Let k€N, ly,...,ly € Z,. Then

s® s 2 < 2
m = <m> - (ll,---,lk> ) (14)

Proof. It suffices to assume that {1,...,ly € N, k € {2,3,...}. Then

k—1 Up+1
s

kil lrr1?
Hr:l I r=1 UZTLT lrr—:_ll

where u, =Y _ 1, forr € {l,...,k}. Fora e N, be {1,...,a—1},

a® _(g)b( a )“_b< ﬁa—m+1 af[b a—m-+1 _[a 2
b(a—b)et \b a—>b T bmmtl] | a—b-m+1 S \b)
The proof is easily completed. [ |

For f : Zy — R, Tet |[flloo = suppez, |F(m)] and [|fll = S5 |£(m)].

Theorem 1 Let t = (t1,...,t) € (0,00) and

7(7‘7 tT) = 77(7"a t'l‘) min{l/(Qt'I‘)a 6}
forre{l,....k}. Ik \/2v(r,t,) <1 then
(Shy VA ))”

1=k V2y(rt,)

4, (P50, P <2|A )~ tr| min{(2te) V2, 1) + (19)

If Q(u,t) denotes the finite signed measure concentrated on Z’j_ with counting density

Q(u,t)({m}) = Z Z lal H Alrﬂ(mr,tr)] , (16)

s=01€A; r=1
for m = (my,...,my) € Zk %, where u € N and A, = {(ly,...,lx) € Zﬁ_|2lel,« = s} for
s € Zy, then, in the case YF_ \/2v(r,t,) < 1,
u+1
ot VA t)
dr(P*",Q(u,1)) <20 o (Z ) (17)

1- Z’r:l 2’7("3 tT) .

Proof. Tet T = YF_ |\(r) — t,|min{(2t,e)1/2,1}. By the use of ||APx(-,z)|; <
min{[2b/(ze)]*/?,2°}, € (0,00), b € Z, [see Deheuvels and Pfeifer (1988b)] in addi-
tion to (6), (8), (11) and (14), the inequality (15) is shown as follows. Assume that
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Zle 27y(r,t,) < 1, then

k

Z Z ai(t) H Alrﬂ(mratr)

meZk 1eZk \ Ao r=1

d. (P, P(t)) <

N =

1
<5 Xl |H||M (5tlh

lEZk \Ao

n(r, t, se)r/2 . 21, bn/2 L
r5 3 5 I e f (2)

sQleArl r

AN

. SE VA )
T 7‘/ = ( 1
< T+ ZZ (11, k) @t =T+ P s

s=21€A; r=1

The rest of the assertion is proven analogously. [ |
It is easy to verify that Q(1,)\) = P(A) and, for m = (my,...,mg) € Z’i, t =
(t1,...,tk) € (0,00)F,

k k
Q(L,t)({m}) = [1:[ W(mratr)] [1 + Z éO‘(T) —t)(m, — tr)‘| ) (18)
k k 1
Q@) = |TLxtmet)| 143 20 1) 1)
k 2 n k - (. — 2
+3 (Z Z\0) = 1) e tr)) -3 (; M)
1 k_m " _
—3 Z 2 () - t)? — /\2(7”)]] : (19)

As a consequence of Theorem 1,

k)
d. (PS5, P(\)) < 1(_25,;_1 j/(% if T_zkjl,/zy(r) <1, (20)

where (1) = y(r, A(r)), 7 € {1, ..., k}. The following corollary shows that the singularity

n (20) can be removed.

Corollary 1 Let 6(r) = min{6(r), Ao(r)}, 7 € {1,...,k}. Then
2

1 1 k 2ke &
Xé(r)SdT(PS",P(/\))SZ_\/?—)(Z 7(7")) SZ_ﬁzé(r)- (21)

— Ima
32 1<r<k
r=1

Proof. The first inequality is shown as follows. For r € {1,...,k},

d. (PS5, P(\) > sup |P(S, €ZT ' x AxXZETY —PO)(ZT! x Ax ZET))
=44

= dT(PB(n;pl,r7 o apn,r)ap(k(’r)))a
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where PB(n;pir,-..,Pn,r) is the Poisson binomial distribution with parameters n € N,
DPiys---2Pny € [0,1], ie. the distribution of the sum of n independent random variables
Yi,...,Y, with P(Y; =1) =1—-P(Y; =0) = pj,, j € {1,...,n}. Hence, using a lower
bound for the latter term obtaind by Barbour and Hall (1984),

dr (P, P(N)) >

For the second inequality, it suffices to assume that z := Zle V2v(r) < 1. But in

this case, d.(P%,P()\)) < min{l, f(z)} < 22/(2(2 — V/3)), where f(y) = ¥?/(2(1 —v)),

y € [0,1). By application of Cauchy’s inequality, the third inequality is shown. [
By Corollary 1 and

k k

k
0(r)> <> 6(r) <D 6(r),
1 r=1

r=1

1 (& ?
z (Z 9(7”)> <
r=1 r

it follows that, for fixed or bounded &, d, (P, P())) tends to zero if and only if >°F_, 6(r)
tends to zero.

In the general case, one can not remove the factor k£ from the right hand side of (21):
Generally, an inequality of type d,(P%»,P(\)) < Mk® Y *_, (r) with absolute constants
M € (0,00) and « € [0,1) cannot hold. In order to verify this assertion, let, for example,
pjr = 1/(kn) for all j € {1,...,n}, r € {1,...,k}. Using an identity by Deheuvels
and Pfeifer (1988a, Lemma 5.1) in addition to an asymptotic result by Deheuvels and
Pfeifer (1986b), d,(P»,P(\) = d.(B(n,1/n),P(1)) ~ 3/(4en), n — co. Under these
assumptions, Corollary 1 leads to d.(P5*,P()\)) < 2e/((2 — v/3)n).

Note that Corollary 1 shows that d, (PS5, P(\)) < ¢XF_, 6(r), with ¢ < (2ke)/(2 —
V/3), whereas Barbour’s result (3) implies ¢ < 1/2 +log™ (23 F_, A\(r)).

The next result concerns the point metric, for which the following lemma is needed.

Lemma 5 The following inequalities are valid:

AT () oo < min {ct/(ze) D221} 1€ N, 5 € (0,00), (22)

where ¢ = %(1 +/7/2),
| A7 (-, ) || oo < min{(2ze) /2, 1}, z € (0,00). (23)

Proof. First, note that [|Aln(-,z)||e < [|Al7(,2)|1 € 2!, for I € Z,, x € [0,00). The
rest of (22) and (23) are results of Shorgin (1977) and Deheuvels and Pfeifer (1988b),
respectively. [ |

Note that a result by B. Roos (1996a, Satz 6.31 [being published in a subsequent
paper|) asserts that (22) remains valid if ¢ is replaced by %(1 +/7/8).
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Theorem 2 Let t = (t1,...,1;) € (0,00)k. Let ¢ be a constant satisfying inequality (22)
and ¢g = (2¢) /2 max{c,1}. Finally, let

k
H = Z |A(r) — tp| min{c/(tre),2} H min{(2t,e) /2, 1}.
r=1

v;ér

If Yk /2y(r,t,) <1 then
de(PS", P(t)) < H + 2} ﬁ 2 by )] (£t vAG) : (24)
AR - LV nlnt) | 1- Yk Vo)

If Q(u,t) denotes the finite signed measure with counting density (16), for u € N, then,
under assumption of F_ \/2v(r, 1) < 1,

u+1
ﬁ 27(r, t,«)] (Zle VA, tr))
r=1 ’I}(’f‘, tr) 1 - Zf:l \% 2'7(7'5 tT) .
Proof. Let A, be defined as in Theorem 1 and assume that >%_, \/2y(r,#,) < 1. Using
(6), (11), (22), (23), (8), (14) and b < 2*~!, b € N, the assertion follows as in the proof of

Theorem 1:

dr (P, Q(u, 1)) < 20+D/2ck [ (25)

00 k
4P < mey 3 I] | U A )
s=2lcAsr=1 2 / lT
00 k l,«/2 2,), T, t'r) /2
< H+ZZH[WO Tt)(zv(r,tr))T/]
s=21€As r=1
il tr)
< H+2E H 27rt ( ! ) .
SV on(nt) |1k 27(?", tr)
The rest of the assertion is proven analogously. [ |
Theorem 2 yields
d(P5, P(\)) < 2ck ﬁ 1) | (Er 'W))2 if f;‘/z (ry <1, (26)
v n7 - ¢ 1 ’Y r ?
° oV A2(r) | 1 — >k V() r—1

where ¢ is defined as in Theorem 2. One can assume that ¢y < 1.
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