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Abstract. The Poisson binomial distribution is approximated by
a binomial distribution and also by finite signed measures, resulting
from the corresponding Krawtchouk expansion. Bounds and asymp-
totic relations for the total variation distance and the point metric are
given.

1 Introduction

1.1 The aim of this paper. We consider the sum S, of n € N ={1,2,...}
independent Bernoulli random variables Xi,...,X,, with success probabili-
ties

P(X;=1)=1-P(X; =0)=p,; €[0,1], je{l,...,n}

Since the distribution PS» of S, has a complicated structure, it is often
approximated by other distributions. To get higher accuracy, several au-
thors deal with the corresponding asymptotic expansions. We can find
publications on normal approximations and the Edgeworth expansion (see
Uspensky [22, Chapter 7] for the binomial case; Makabe [12, §4]; Deheuvels et
al. [5]; Mikhailov [13]; Volkova [23]) and Poisson approximations and expan-
sions related to the Charlier polynomials (see Prohorov [14] for the binomial
case; Le Cam [10]; Franken [7, §5]; Shorgin [18]; Deheuvels et al. [2], [3], [4];
Barbour et al. [1]; Roos [16], [17]).

In this paper, we consider the approximation of PS» by the binomial
distribution B(n, p) with parameter n and arbitrary success probability p and
also by finite signed measures, resulting from the corresponding Krawtchouk
expansion of P°». Here we have to deal with the Krawtchouk polynomials,
being orthogonal with respect to the binomial counting density. We prove
some bounds and asymptotic relations for the total variation distance d, and
the point metric d; between finite signed measures ()1 and @2, which are
concentrated on Z = {0,1,...} and satisfy Q1(Zy) = Q2(Z+):

4(QuQ2) = sup |Qu(d) - Qa(4)| = z\ch {m}) = Q2({m})|,
(Q1,Q2) = sup [Qul{m}) Qz({m})\-

The presented method is similar to that used by Shorgin [18] in the Poisson
approximation. For refinements of Shorgin’s method, see Deheuvels et al. [3],
[4], and Roos [16], [17].

1.2 Some general notations. In what follows, let

by _
n

A= ij On ]_7: ’ qzl_pa p€[071]7 q:]-_pa
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n

W) => (p—p)*,  w=w@ forkeN,
j=1

and

p= 22—y VIS
npq npq
Remark. We have § < § min{1, §[4pq] '}, where 6 = Pmax — Pmin, Pmax =

maxi<;<n Pj, and Pmin = Mini<j<p p;j. The proof is given in Section 3.

Further, let

b(m,n,p) = A(m,n,p) = B(n,p)({m})

— ()P g ™ fornmeZy, m<n
0 otherwise,

and
AIb(m,n,p) = A "b(m — 1,n,p) — AT "1b(m, n, p) for j € N.

Here (%) = [[31[(x—k+1)/k] for m € Z and z € C. We write A7b(-,n,q)
for the sequence (A%b(m,n,q))mez, and set ||l = SUPpez, |f(m)| and
I£llL = X5° o |f(m)| for f : Z, — R. Always, let 0° = 1. If not de-
fined otherwise, ¢ is the imaginary unit in C. Let |x| be the largest integer
<z€eR.

1.3 Known facts. Ehm [8, Theorem 1, Lemma 2] considered the approxi-
mation of P°» by B(n,p) and proved the following estimates by using the
Stein—Chen method:

1— pn—kl _ qn—kl

(n+1)pg
< 6 min{l, npgq}. (1)

D min{l, npq} < d,(PS,B(n,p)) = d <

124 72

N

It follows that min{#,~y,} and d are of the same order; further, d is small if
and only if 0 is small (see Ehm [8, Corollary 2]).

Using the Stein—Chen method, Barbour et al. [1, Theorem 9.E| and
Soon [19, Corollary 1.3] treated the approximation of P by another bi-
nomial distribution B(7i,p), where the parameters n € N, p € (0,1) are
chosen in such a way that both, PS» and B(#, p), have the same mean and
nearly the same variance. We only cite Soon’s result: If A\, = ;-’:1 pj; for
r €N, i = |A2/Ay +1/2], and p = /71, then

1— n+l _ a4+l 2
P d 2<,\3—ﬁ>+x‘p—%

d (P>, B(#1,p)) <

= (A+1)pg A

]. @)

Note that, if 2 = A2/, the variances of B(7,p) and S, coincide.

Other notes, dealing with binomial approximations, came from Le Cam
[10, Section 4], Makabe [12, §3], Takeuchi et al. [21, Section 3], Jaksevicius
[9], and Loh [11, Corollary 3]. It should be mentioned that Takeuchi et
al. considered the Krawtchouk expansion of the counting density and the
distribution function of the sum of not necessarily independent Bernoulli
random variables, whereas JakSevitius approximated the distribution of the
sum of independent identically distributed lattice random variables by a
binomial type law.
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2 Main Results

2.1 The Krawtchouk expansion of PS5,

Theorem 1 For m € Z and arbitrary p,

n

= 3250 7m0, (3)

where ag(p) =1 and

J
Gj(p) = Z H Pr(ry — 7 JE {17 .- an}' (4)

1<k(1)<...<k(j)<n r=1

We call the right-hand side of (3) the Krawtchouk expansion of PS»
with parameter p, and ag(p), ..., a,(p) the corresponding Krawtchouk coef-
ficients. For s € {0,...,n}, the finite signed measure B;(n,p) concentrated
on Z, is defined by

Bs(n,p)({m}) = Za] ) Alb(m,n — j,p), meZ,. (5)

Note that By(n,p) = B(n,p) and that, for s > 1, Bs(n,p) depends not only
on the indicated arguments but also on pi,...,p,, though we omit these
parameters in our notation. We derive our results for the total variation
distance from the inequality

n

1 ; .
dT(PS”,Bs(n,p))S§ > lai@)I1A7D(-n — 4, p)l1-
j=s+1

For the point metric, we use a similar inequality. To get the bounds for the
distances [see Theorem 2], we have to estimate the Krawtchouk coefficients
of P5» and the norms ||(A7b(-,n — 4,p))||; for t € {1,00} [see Lemmas 1, 2,
and 4].

Remarks. 1. We have By(n,p)(Z,) = 1, since }_, Alb(m,n,p) = 0 for
j € N and n € Zy. Further, Bs(n,p)({m}) =0forme {n+1,n+2,...}.
2. By induction over j, we get

d]

@b(m n,p) = nll Adb(m,n — j,p) (6)
forn,me Zy, j €{0,...,n}, with nlil = =n!/(n — j)!, and hence,
_ a;\p) (p) d_
Bs(nap)({m}) - ]ZO nm dp] b(m n p) m e Z+' (7)

3. With our assumptions, relation (3.5) of Takeuchi et al. [21] is similar
to (3).
In the following proposition, we give some alternative formulae for the

Krawtchouk coefficients. We need the Krawtchouk polynomials K;(z,n,p) €
R[z] defined by (see Szegd [20, (2.82.2)])

J —z\ [z .
Kj(z,n,p) =) (?_ k) (k> (—p) %,  nj€Zi,zeC. (8

k=0
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Proposition 1 Let px)y = > ml P(S, = m), for k € {0,...,n}, be
the kth factorial moment of Sy,. Further, let a € (0,00) be arbitrary. Then,
forje{1,...,n},

aj(p) = > P(Sy=m)K;(m,n,p) (9)
m=0
j—1
= —12 n(p) %549 (10)

J
= Z( )- (—p)" " pe) (11)
k=0

_ 1 /027r e T 1I [1 + (p — p)aeiw] dz. (12)

J
2T o P}

Remarks. 1. It follows from (10) and (11) that a;(p) can be considered as

a function of (y1(p),...,v;(p)) or of (u(1y,---, K@) P)-
2. Using (10), we get

ai(p) = —m(p),  a2lp) = —[’h(p) — 72, (13)
1 1

a3(p) = % 7(p)® + 571(19) Ya(p) — g%(p), (14)

leading to a1(p) = 0, a2(p) = —72/2, and a3(p) = —3/3.
3. For m € Z,, we have

— b(m.n.p) |1 — 2P —np)
B, ) () = b(m, n,p) |1 = LT

and, if n € {2,3,...},

_ _ n(p) (m —np)
By(n,p)({m}) = b(m,n,p) [1 npq

1) = 1)
4 g BE 2 B [ — (14 2(n = Dp)m -+ (= 1)p7] |

Note that B(n,p) = Bi(n,p). For 3 < s < n, Bs(n,p) can be evaluated by
using (8), (10), and (39).

The following proposition shows that the first s moments of P5» and B,(n, p)
coincide.

Proposition 2 For s € {0,...,n}, k € {0,...,s}, and p) as in Proposi-

tion 1,
n

S ¥ By(n,p) ({m}) = ).

m=k

2.2 The bounds and asymptotic relations for the distances. In what
follows, we use the notations

np) = 27:(0) + (@)%,  0(p) = L for pe (0,1),

leading to n(p) = 22 and 6(p) = 6.
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Theorem 2 Let s € {0,...,n}, p€ (0,1),

Vs + )Y (2m)! /4 exp(1/[24(s + )20
01(3) = fa 02(5) = (8 + 1)1/4\/; )
s+1 T
Css) = — <1+ 2(s+1))
Then
4, (P Bynp) < Ci(s) o)+ L TTVIUL 0 o 1)
(1-/0(p))
d;(P5",By(n,p)) < Ca(s)n(p)"*/2 (1+/2n(p) ) exp(2n(p (16)
0(p) /(1 - 0(p))
d.(P5* By(n, < Oy(s Eal if 0 1. (17
( (n,p)) 3(s) v m) f0(p) <1. (17)

Remarks. 1. For p = p and s = 1, we get estimates close to the upper
bounds from (1).

2. Generally, an inequality d.(P%",B(n,p)) < cO[npg]~'/? with an ab-
solute constant ¢ € (0,00) cannot hold: f ke N,n =2k, p1 =...=p, =1,
and pxi1 = ... =pok =0, then p = 1/2,

?

(P, Bln,p) > [P(Sw = K) — bk, 2k, 3) | = [1 - 0] )

(k)2 22k —1

and 0[npq|~/? = \/2/k (k2e0)

Corollary 1 Letn € {2,3,...} and

z+(n,p) = [1/2 +(n—1)p+ \/1/4 + (n— 1)qu.
Then d,(P5*,B(n,p)) = H + R, where
mo= 2Pl 02 ), (18)
= ﬁ [[$+(na1_7) —(n— 1)1_7] b(z+(n,p),n — 1,p)
+[(n=1p—2 (n.P) b (n,B)n—-1P)| (19)

and
IRl < d.(P°,By(n,p))
. V3 4
< |’Y3‘mm{72[npq]3/2’ —}
+ min{1.166 (i__i\/%@, 3.695+2 (1 +2,/7) exp(472)}. (20)

Remark. We have 0 < z_(n,p) < (n—1)p < z4(n,p) <n—1.

From the theory of orthogonal polynomials it follows that the zeros of

the Krawtchouk polynomials Kj(z,n,p) for n € N, j € {1,...,n}, and

€ (0,1), are real, simple, and lie in the interval (0,n). In what follows, we
use this fact for j = 3.
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Corollary 2 Letn € {2,3,...} and 0 < 1 < 2 < z3 < n + 1 be the zeros
of K3(z,n + 1,p) € R[z]. Then d (P> ,B(n,p)) = H' + R', where

H' = |aa(@)||1A%(n = 2,P)lloo (21)
n(n_y—f)[]zmw{l&(tm n,p)| b(|z:],n p)\z' € {1,2,3}} (22)

and

‘R,| < dW(PSHaBQ(naﬁ))

IN

s mi { 2.398 1}
3 Ny 7T—=9>
[np )
. {162702(1—§\/_)
+ min 5 s
Vipg (1 —V0)
Now we present some asymptotic relations. Let us consider the follow-

ing triangular scheme: We let n and pi,...,p, depend on an additional
parameter k € N and assume that k — co. Sometimes, we write () for 4.

3.69572 (1+ 2y/72) exp(4f)/2)}. (23)

Theorem 3 Let us assume that yo # 0 for sufficiently large k. Set

: 73] 1 }
v =min< 1, — + —+0.
{ Yevnipq Npq

Then
4-(P%, Bin,p)) = 21 IO, (24)
dr(P5*,B(n,p)) = 611+ OW)) if limsupf® < 1. (25)

2\/27’(’)1]76 k—o0

Remarks. 1. Since |y3| < 72, the preceeding asymptotics remain valid if
we replace v with min {1, [n]_)q]_l/2 + 6}.

2. The asymptotics of Theorem 3 have counterparts in the Poisson ap-
proximation: Prohorov [14, Theorem 2] gave an asymptotic formula for the
total variation distance between a binomial and a Poisson distribution with
the same means. As has been observed by Barbour et al. [1, p. 2], the
statement of Prohorov’s Theorem 2 is inaccurate. A correct version, in our
notations, is: d, (B(n,p), P(np)) = (2we)~/2p[1 + O(min{1, [np]~ 1/2 +p})],
where P(np) denotes the Poisson distribution with mean np. A proof can
be found in Roos [17]. In Prohorov’s version, the “+p” is missing, which
invalidates his result, for example, for p = 1, n — 0o. Generalizations of this
result for the Poisson approximation to the Poisson binomial distribution
can be found in Deheuvels et al. [2], [3], and Roos [16], [17].

3 Proofs

Proof of the remark in Section 1.2. The first part of the asserted
inequality follows from

n n

Pmax T Pmi ) o

Y2 = Z(%— ;) (B~ ;) EZ Ip — pj| < 6npg,
j:l :

since, letting A, = {j € {1,...,n}|p; >P}and A_={1,...,n}\ A4,

—le pjl =npq— (ﬁ S -p)+7 ), pj)

j=1 jEAL JEA_

IN

npq.
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By using v, < Z?:l(%m — p;)?, the remaining part of the inequality
is easily shown. ]
Proof of Theorem 1. We show the assertion by using generating functions
and the equality

n+j
z AIb(m,n,p) 2™ = [1+p(z — 1)]" (z — 1) (26)

m=0
for j,n € Z,, z € C, which is easily proved by induction over j. For z € C,
we have by independence

Z P(S, =m)z™
m=0

[T [t +p(z = D]+ (p; —p)(= — 1)]

n
n

.
[y

—~
Nuws

= Za] (z =1 [1+p(z =1

.
(=)

(26) [Za] Abmn—jp)]

m=0
The proof is completed by comparing the power series. [ |

Proof of Proposition 1. We use the generating functions

n

iaj(p) 7 =110+ -p2, z€C, (27)
§=0

k=1

and, forn,m € Zy,n>m, z € C,
ZK m,n,p) 2’ =1+ qz]™ (1 —pz)" ™. (28)

Equality (27) is easy to prove, and for (28), see Szegd [20, (2.82.4)]. For
z € C, |z| < 1, we have

n

Zaj(p)zj 2 (1—Pz)nﬁ[1+pk<it]qu_l>]

=0 k=1
_ ¥ _ 1+(JZ]’” o
= X P L] 0=
D Y3 Psu=m) Kjmnp)] 2
7=0 "m=0

and, because of the binomial theorem and Y 7_, “](c’f) 2" =121 (1 + pjz),
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from which (9), (10), and (11) follow. Equality (12) follows from (27) and
Cauchy’s theorem. ™

Proof of Proposition 2. For j € {0,...,n} and k € {j,...,n}, we have

tL , 26) dF . ;
> Ab(m,n — g, p)ml 2 (14 ple - 1))z - 17

m=k

z=1

f()[jkk (e 1)) (1]

=0

_ Kl(n—j)pFd
=1 (= (n—Fk)

Similarly, 3" _, AZb(m,n — j,p) ml¥l = 0 for k € {0,...,5 — 1}. Hence

n k k—
©) ( )7
Bs(n,p)({m ) =" u
Z, B mmt § SR
for s € {0,...,n} and k € {0, ..., s}, giving the assertion. [

To prove Theorem 2, we need the following four lemmas. Remember that
0" =1.

Lemma 1 Let Iy(z) = Y5_o(z/2)?™/(m ) be the modified Bessel function
of the first kind and order 0, B(z) = e~ /*Iy(z ), © € R. Then, for j €

{1,...,n} and 12(p) £ 0,

272(p) + M’Yl(p)2 il2 n(nfﬂ)/Q
laj(p)| < K -
2j (n —j)tn=a)/
2j(n — 5)n(p)?
ﬂ<\/ : . 29
2(p) T (0 — ) 0)? )
Proof. Let a,s € (O o0) be arbitrary and ] € {1 n} Using (12), the
inequality 14z < e”, and the equality Iy(x f exp(zcosy)dy, ¢ € R,
we get
am = iz
1 _
50| < 5 [ 11 |1+~ plac”| do

: /hﬁ[ +25(py — p)acosa + s(px —p)%a’]d
Pyl S s(pr — p)acosz + s(pr — p) « T
2adsn/? Jo Pt

BRI ey ("D 4 @ i) + 257 ).

Inequality (29) follows in the case j # n by letting

2s72(p) + $?>11(p)2/) n

o=

If j = n, then (29) follows from the inequality between the arithmetic and
geometric means:

o) € (Tl -37) " < (22)""

r=

The lemma, is proved. |
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Remark. The inequalities (29), f(z) <1 for z € R, and (n — j)/n < 1 for
j €{1,...,n} lead to the estimate

n(p)19/2  nin-9/2 .
Qj] =T LY L N CU

which also holds in case of y2(p) = 0. We will use (30) in the proof of
Theorem 2.

laj(p)| < [

Lemma 2 Let ¢; = %(1 +\/7/(25)) for j € N, and fj, : [0,1] — R
with

/2 .. 92 n/2 .
fin(t) = / [1 — tsin x] sin’ z dz, Jym€Zy, te[0,1].
0
Then .
_ 9i+1 .
||Ajb(,nap)||oo S T fj,n(4PQ)a 5n S Z+a (31)
and, for je N, ne€ Z,, t € (0,1],
i T n n/2 47 (1+1)/2
< S5 (VP
2+ \n4+j+1 (n+j+ 1)t
Proof. Using (26) and Cauchy’s theorem, we get
Alb(m,n,p) = 2—/ e_”m[l + p(e*” — 1)] (e — 1) dz (33)
T J—m

for j,m,n € Z,. By (33), (31) is easily shown. Observe that 4pq € [0, 1].
To prove (32), Shorgin’s [18, proof of his Lemma 6] inequality
; )(j+1)/2

w/2 )
/ exp(—2ssin® z) sin’ z dz < ¢; 7r(—
0

4se (34)

for j € N, s € (0,00), and the estimate z < e*! for z € R are used: For
t € (0,1], j,n € N, and arbitrary y € (0, c0),

1 /2 2 .
fin(t) = W/O (y —yt sin? :c)n/ sin? z dz

(y=1)n/2 rm/2 t .
e — oYU 2 £ ) sind
< T /0 exp ( 2( 1 ) sin :B) sin/ ¢ dx
1 )(j+1)/2

< ¢jmg(y)e "? (L

nte ’

where g : (0,00) — R, g(y) = /2y ("+ti+1)/2 The function g attains
its minimum at yo = (n + j + 1)/n. Substituting y = yo, (32) is shown for
n # 0. In the case n =0, j € N, and ¢ € (0, 1], we have

fio) = [ sz i< [ smodz=1 J__\U

; t:/ sin’ x :L“S/ sinx dx = Sc-w<,7> ,
3,0 0 0 J (‘7 + l)t

since [j/(j + 1)]Ut1D/2 > 1/2 and ¢; > \/e/2 for j € N. This shows the
validity of (32) also in this case and completes the proof. [

Remark. Combining the estimates (31) and (32), we get:

n/2 . i+1)/2
1AB(-, D) oo < ( n ) / ( J )“+ " )
—\n+j+1 (n+7+1)pgq

forjeN,neZy,pe(0,1), and ¢; as in Lemma 2.

The following lemma, is needed for Lemma 4.
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Lemma 3 Forne€ N and j € {1,...,n},

sy < (;)

10

(36)

Proof. It suffices to prove (36) for n € {2,3,...} and 5 € {1,...,n — 1}

For these values, let

n™ jl(n — j)! n

T(n,j) = Fn—75rIn\[j(n—j)

In what follows, it is shown that T'(n,j) <
inequality (36) can be derived. Let f(z) =
Since f(z) is decreasing and

T(n,j) f()

= ne{3,4,...},je{l,...,n—

T(na.7+1) f(n_j_l),

we have T'(n,j) <T'(n,j + 1) if and only if n — 1 < 2j. Hence

T(0,§) < max(T(n, 1), Tnn - 0} = ()7

giving the assertion.

Lemma 4 ForjeN,neZ,, and p € (0,1),

. ~1/2
(njj> [pq]j]

\/Ejl/ll( n )n/2< ] )j/Q.
n+j (n+3j)pq

Proof. We need the following relations:

1A75(-, 7, p) 1

IN

AN

) ) n+ g o
K;(m,n+ j,p)b(m,n + j,p) = ( j J)[pq]j AVb(m,n,p),

Z b(m7 nap) Kj (ma TL,p) K, (ma nap) = 6]',7“ (7;) [pQ]j
m=0

[n/(n — 1)]*~'/2, from which
[(z 4 1)/z]*t1/2, z € (0,00).

(39)

(40)

for m,n, j,r € Z and p € [0,1]. Here §;, is the Kronecker symbol. Identity

(39) follows from (26) and

n+j

m=0

S Kj(m,n+ j,p) b(m,n + j,p) 7™ <njj> [pgl (1 + p(z — 1))"(z — 1)7.

For (40), see Szegd [20, (2.82.6)]. The inequalities (37) and (38) follow from

(39), (40), (36), and Cauchy’s inequality:

. =1 n+tj
|A7b(-,m,p) 11 = [(”J“) [pq]ﬂ'] 2_ b+ jp) [Kj(m.n + .p)

m=0

<

The lemma, is proved.

. ~1/2 . . .
") pgp < el/? ji/4 (—n )/2 (73 )]/2-
j - n+j (n+j)pq
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Proof of Theorem 2. It suffices to prove the assertion in the case s < n—1.
Using (3), (30), (38), and the inequality j%/* < j(s + 1)73/% for j > s + 1,
we obtain in the case 6(p) < 1,
1 & .
d(P*, Bs(n,p)) < 2 Y lai@)I1Ab(,n — 4,p) |
j=s+1
Ve < i/2 :1/4 121_ﬁ 0(p)
< X5 N 02 < Cu(s) O(p) T2 L
2 S (1-V6(p))°
giving (15). To prove (16), we use (3), (30), the inequality
||Ajb(-,’n,,p)||1 < Zja jan € Z-I—a peE [07 1]7 (41)

Stirling’s formula (see Feller [6, p. 54])

) 1 1
i — /o 4i1T1/2 9. — 7 9. [7 _] e N
j T j exp (4 —j), i€ gy gl TN

and the inequalities 1 + z < e® for £ € R, and

2 z™ zJ J z™ 9
=< =) =, <—=(1+
for z € [0,00), m € Z. We get
1 & 1 & 2q(p) e
LP B ) < 5 > @<y 3 (212
= - J
j=s+1 j=s+1
(2m)!/* exp(1/[24(s +1)] i (2n(p)’"” i/
- 2 i VA

*
< Co()n(p) 72 (1+1/2n(p) ) exp(2n(p)).

The proof of (17) is similar. Here we use (3), (30), (35), and the inequalities
14+z<e®forz€Rand j/2 <j(s+1)"Y2 for j > s+ 1. [ ]

Proof of Corollary 1. Only (19) and (20) require a proof. We have

d: (P>, By(n,p)) < S laz ()| |A%(-,n — 3,p) |1 + dr (P, Bs(n, P))

N =

if n > 3, and R = 0 in case of n = 2. Inequality (20) can be shown by using
Theorem 2, (41), a3(p) = —v3/3 and, in case of n > 3,

(37) n —-1/2 3 3/2
A3b K B 3’ P < |: Pq 3:| < ( ) )
[A%6(,n = 3,p)[1 < <3> [pa] <73
Identity (19) follows from az(p) = —y2/2 and the next lemma. ]

Lemma 5 Let n € {2,3,...}, p € (0,1), and z+(n,p) as in Corollary 1.
Then

2
(n—1)pg

+[(TL— 1)p—x_(n,p)]b(x_(n,p),n— 1ap) . (42)

1A2b(-, 7 = 2,p) 11 [z+(n,p) = (n = D)plb(z+(n,p),n —1,p)
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Proof. Let v,, = A%b(m,n—2,p) for m € Z . Observe that z..(n, p) are the
integer parts of the zeros of Ko(z,n,p) = £[z2—(1+2(n—1)p)z+n(n—1)p?] €

R]z], and hence,

—1 n
l@m)mez.ln Z (’;) [pal 2 3 [Ko(m,n, p)| b(m, . p)

m=0
z—(n,p) z+(n,p) o0
= Z Um — Z Um + Z Um,
m=0 m=z_(n,p)+1 m=z4+(n,p)+1

= Q[Alb(a:+(n,p),n—2,p) _Alb(x*(nap)an_Qap)]
By using (39), the proof is completed. [
Corollary 2 is easily proved by using the following lemma.

Lemma 6 Letn € {2,3,...}, p€ (0,1), and 0 < 21 < x9 < 23 <n+ 1 be
the zeros of K3(z,n+ 1,p) € R[z]. Then

2
A?b(-,n — 2 =
x max {|Ks(|zi],m,p)  b(lws),mp) | € {1,2,8 ). (43)
Proof. For m € {0,...,n — 1} and vy, as in the proof of Lemma 5,

U < Uyl & A3(m+1,n—2,p)§0 (<?£>) Ks(m+1,n+1,p) <0

& [0<m+1<z or z9<m+1<uz3]
and
Un > Umy1 © [z1<m+1<zy or z3 <m+1<n).

Hence, letting 9 = 0 and z4 = n,

SUp U, = Max v, inf v, = min v, .
meZy ic{la} @il meZ ic{0,2,4} =il

This yields sup,,cz, [vm| = max;cqo,.. 4} [V|4;)[- Since 0 < vg < vy, and
0 < vy < Vg, the assertion follows from (39). [

For the proof of Theorem 3, we need the following two lemmas.

Lemma 7 Let p € (0,1), n € N, and m € {0,...,n}. Further, let x =
(m — np)[npq] /%, satisfying |z| < A, where A € (0,00) is an absolute
constant. Then

b(m,n,p) =

\;%T/;q 14 @ _Gi’;%_p) +(’)<i>],

npq
where the constant intervening in O([npq] ') depends on A only.

Proof. See Uspensky [22, p. 135, problem 7] or, in case of fixed p, Rényi [15,
p. 151, Theorem 1] . [

Lemma 8 Forpe€ (0,1) and n € {2,3,...},

1A%b(-,n —2,p)|l1 = Jz—%m[Ho(n%q)]’ (44)
1A% n —2,p)]00 = W[Pr@(nipq)] (45)
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Proof. Since ||A%b(-,n — 2,p)||1 < 4, we may assume npq — oo. First,
we prove (44) by using Lemma 5. Let n € {2,3,...}, p € (0,1), z+(n,p)
as in Corollary 1, and y(n,p) = (z+(n,p) — (n — 1)p)[(n — 1)pg]~"/2. For
simplicity, we omit the indicated arguments for z1 and y.. Using Lemma 7
and the relations

1 o 2F yy 1
:F1=(9< > eyiﬁ:—ﬂf)(—),
v N Ve npq

1 1 +(9< 1 )
V(n—1)pg  /npg [npq)®/2)’

we get
b(os,n — 1,p) = —a b (v — 3y+)(a —p) ( 1 )
E) ’ \/W 6v/2me npg [npq]g/g
Since

xi—<n—1)p=yi(m+0(\ﬁ%)), |y+|—|y|:0(w%),

it follows that

[z — (n—Dp]b(zy,n—1,p)+[(n—1)p—z_]b(z_,n—1,p)

S TN (7 S e ek 1V et V) (e ) 1
= et 6v/Zrenpy +0(,)

- —+0()
V2me npq)’
giving relation (44). Now we prove (45). For j € Z,, n € N, t € (0,1], and
fin(t) as in Lemma 2, we have

i) < fyea(t) + S(EED) (2)7 (16)

since, by using sin? z+cos?z = 1, z € R, we get fjn(t) = fiton(t) +Ljn(t),
where

/2 9 '
Lin(t) = /0 [1 — tsin? :1:] n sin/ z cos® z dz

_ [ty Vg e—ny/2 G-1)/2 4

) t(y+1 /2 y<s 2t J+1)/2 y 4
(7+1)/2

<G

- 2 2 nt

With j =2, n >3, and p € (0, 1), it easily follows from (31), (46), and (32)
that, for an absolute constant M € (0, 00),

1 M

AQb RRLAN 2a oo < + .
H ( n p)“ = \/ﬂ[npq]:‘}ﬂ [npq]5/2

To prove (45), we show a similar lower bound. We have

39
1A2b(,n — 2,p)]l00 > |A2b(|np),n — 2,p)]| 2 Ty T, T3,
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where, letting r = np — |np|,

2 2 1
N = Db el *O([nqu)’
npq

1
T, = IKz(anJ,n,p)I=§\npq+7"(p—q—r)|=7+0(1),

1 1
Ty = lmplnp) = S+ 0L ).

For the latter bound, Lemma 7 has been used. Hence

1 1
TN ToTy= — -
P \/27T[npq}3/2+0<[npq]5/2)’

leading to
S 1 M!
~ Ver[npgPl? [npgls/?

for an absolute constant M’ € (0, 00) and sufficiently large npq. The lemma
is proved. [ |

1A2b(-,m — 2,p)lloo

Proof of Theorem 3. In the case limsupy_,,, %) < 1, the relations (24)
and (25) are easily shown by using the Corollaries 1, 2, Lemma 8, and the
inequalities (15), (17) for s = 1, p = p. Since d, (P, B(n,p)) < 1, the above
condition for (24) can be dropped. ]
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