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Abstract

The Markov binomial distribution is approximated by the binomial distribution.

Estimates of accuracy are obtained for the total variation and local norms. The results

include second-order estimates and asymptotically sharp constants.
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1 Introduction and notation

The Markov binomial distribution is a generalization of the binomial one. Depending on

the choice of parameters, both distributions can be close or even equal. To the best of our

knowledge, the closeness of both distributions was not investigated in detail, though there

are some general results for the binomial approximation of the sum of dependent variables,

see Serfling (1975), Soon (1996), and Boutsikas and Koutras (2000). Apparently, the results

of Soon (1996) and Boutsikas and Koutras (2000) cannot be applied to the Markov binomial

distribution directly. Note also that numerous papers are devoted to compound Poisson

approximations of the Markov binomial distribution, see Dobrushin (1953), Serfling (1975),

Wang (1981), Serfozo (1986), Čekanavičius and Mikalauskas (1999), and the references

therein. For papers dealing with related problems, see, for example, Campbell et al. (1994),

Erhardsson (1999), and Vellaisamy (2004).

We need the following notation. Let Ik denote the distribution concentrated at an

integer k ∈ Z and set I = I0. Throughout this paper, we use the abbreviation

U = I1 − I.
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In what follows, let V and W be two finite signed measures on Z. Products and powers of

V , W are understood in the convolution sense, i.e. V W{A} =
∑∞

k=−∞ V {A−k}W{k} for

a set A ⊆ Z; further W 0 = I. Here and henceforth, we write W{k} for W{{k}}, (k ∈ Z).

The total variation norm and the local norm of W are denoted by

‖W‖ =
∞∑

k=−∞
|W{k}|, ‖W‖∞ = sup

k∈Z
|W{k}|,

respectively. The logarithm and exponential of W are given by

ln(I + W ) =
∞∑

k=1

(−1)k+1

k
W k (if ‖W‖ < 1), eW = exp{W} =

∞∑

k=0

1
k!

W k.

Note that

‖V W‖∞ 6 ‖V ‖‖W‖∞, ‖V W‖ 6 ‖V ‖‖W‖, ‖eW ‖ 6 e‖W‖.

We denote by C positive absolute constants. Sometimes, to avoid possible confusion, we

supply constants C with indices. The letter Θ stands for any finite signed measure on Z

satisfying ‖Θ‖ 6 1. The values of C and Θ can vary from line to line, or even within the

same line. For x ∈ R and k ∈ N = {1, 2, 3, . . . }, we set
(

x

k

)
=

1
k!

x(x− 1) . . . (x− k + 1),
(

x

0

)
= 1.

Let Bi(n, p∗) denote the binomial distribution with parameters n ∈ N and p∗ ∈ [0, 1]. Let

ξ0, ξ1, . . . , ξn, . . . be a Markov chain with the initial distribution

P(ξ0 = 1) = p0, P(ξ0 = 0) = 1− p0, p0 ∈ [0, 1]

and transition probabilities

P(ξi = 1 | ξi−1 = 1) = p, P(ξi = 0 | ξi−1 = 1) = q,

P(ξi = 1 | ξi−1 = 0) = q, P(ξi = 0 | ξi−1 = 0) = p,

p + q = q + p = 1, p, q ∈ (0, 1), i ∈ N.

The distribution of Sn = ξ1 + · · · + ξn (n ∈ N) is called the Markov binomial distribution.

We denote it by Fn, that is P(Sn = m) = Fn{m} for m ∈ Z+ = N ∪ {0}. We should note

that the definition of the Markov binomial distribution slightly varies from paper to paper,

see Dobrushin (1953), Serfling (1975), and Wang (1981). Sometimes ξ0 is added to Sn or

stationarity of the chain is assumed. For example, Dobrushin (1953) assumed that p0 = 1

and considered Sn−1 +1. However, if p = q, then Dobrushin’s Markov binomial distribution

becomes a binomial distribution shifted by unity. Therefore, we use the definition above
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which contains the binomial distribution as a special case. Moreover, it obviously allows

the rewriting of our results for Sn−1 + 1.

Further on, we need various characteristics of Sn. Let

ν1 =
q

q + q
, ν2 =

2qq(p− q)
(q + q)3

, A1 =
q − p

(q + q)2
(q − p0(q + q)),

a = ν1 +
A1

n
, A2 = (q − p)

q
(
2q + q(q − p)

)

(q + q)4
− (1− p0)(q − p)

q + q(q − p)
(q + q)3

.

Note that q + q > 0. It is known that

ESn = nν1 + A1 −A1(p− q)n,

VarSn = n(ν2 + ν1 − ν2
1) + A1 −A2

1 + 2A2

+ (p− q)n
[
2nA1

q − q

q + q
+ A2

1(2− (p− q)n)−A1 − 2A2

]
,

see Čekanavičius and Roos (2006b). If p and q are uniformly bounded away from unity,

then (p − q)n is at least of exponentially vanishing order. Therefore, na can be viewed as

the main part of ESn.

2 Results

It is known that Sn has seven different limit laws, see Dobrushin (1953, Table 1). Typical

limit distributions are the compound Poisson and the normal one. Consequently, we can-

not expect that the binomial approximation is good for all values of parameters p and q.

However, if p = q then the Markov binomial distribution coincides with the binomial one.

Therefore, our aim is to get bounds, which are equal to zero if p = q.

What is known about the closeness of Fn to the binomial distribution? We formulate a

consequence of a more general result of Serfling (1975, Eq. (2.4b)). For arbitrary p∗ ∈ (0, 1),

the estimate

‖Fn − Bi(n, p∗)‖ 6 2
n∑

j=1

E|P(ξj = 1|ξj−1)− p∗| (1)

holds. For a better understanding of (1), let us take p∗ = a. Then from (1), we obtain

‖Fn − Bi(n, a)‖ 6 2n|p− q|
(
1 +

1
n(q + q)

)
. (2)

Estimate (2) may be good in the case |p− q| = o(n−1) only. Note that the factor n is due

to the summation in (1). Our purpose is to show that, under additional assumptions, it

can be replaced by a smaller factor. Let

p 6 1
20

, ν1 6 1
30

. (3)
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Assumption (3) was introduced by Čekanavičius and Mikalauskas (1999). Though certain

smallness of p and q is required, nevertheless both parameters can be constants. Thus, even

if (3) is satisfied, the limit distribution of Sn can be the normal one. On the other hand, it

also allows a compound Poisson limit distribution, which occurs when nq → λ̂ and p → p̂.

If p̂ = 0, we have the Poisson limit distribution, see Dobrushin (1953, Table 1). Our first

result is the following theorem.

Theorem 2.1 Let condition (3) be satisfied. Then

‖Fn − Bi(n, a)‖ 6 C1|p− q|min(1, p + nq),

‖Fn − Bi(n, a)‖∞ 6 C2|p− q|min
( 1√

nq
, p + nq

)
.

The right-hand side of (2) is always less or equal to C1|p− q|. Thus, in comparison to (2),

we get an estimate which has no factor n.

Due to the method of proof, absolute constants in Theorem 2.1 are not given explicitly.

However, we can calculate asymptotically sharp constants.

Theorem 2.2 Let condition (3) be satisfied. Then
∣∣∣‖Fn − Bi(n, a)‖ − 4√

2πe
|p− q|
q + q

∣∣∣ 6 C3|p− q|
(
|p− q|+ 1√

nq

)
, (4)

∣∣∣‖Fn − Bi(n, a)‖∞ − 1√
2π

|p− q|√
nqq

∣∣∣ 6 C4
|p− q|√

nq

(
|p− q|+ 1√

nq

)
. (5)

Note that if, in addition, |p − q| = o(1), nq → ∞, then the right hand sides of (4) and (5)

are of order o(|p− q|) and o(|p− q|/√nq), respectively.

The accuracy of approximation can be improved by the second-order estimates.

Theorem 2.3 Let condition (3) be satisfied. Set W = Bi(n, a)(I + 2−1nν2U
2). Then

‖Fn −W‖ 6 C5|p− q|
(
|p− q|min(n2q2, 1) + (p + q)min

(
1,

1√
nq

))
, (6)

‖Fn −W‖∞ 6 C6|p− q|
(
|p− q|min

(
n2q2,

1√
nq

)
+ (p + q)min

(
1,

1
nq

))
. (7)

Note that the estimate in (6) is always less or equal to C|p− q|(p + q).

So far we considered one-parametric binomial approximation. It is possible to make use

of both parameters of the binomial distribution Bi(N, p̃), where N and p̃ are chosen in order

to match two moments of Sn. The main benefit of two-parametric binomial approximation

is that the estimates become comparable with the ones obtained in the normal approxima-

tion. Such two-parametric approach was used for independent and dependent indicators by

Barbour et al. (1992, p. 188), Čekanavičius and Vaitkus (2001), and Soon (1996), respec-

tively. However, in Soon’s paper, N and p̃ depend on the variance of independent indicators

rather than on the variance of the approximated sum.
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Since we want to fit two moments of the Markov binomial and binomial distributions,

one should note that this is not always possible. Indeed, one can check that the Markov

binomial distribution can be so close to a compound Poisson limit distribution that its sec-

ond factorial cumulant becomes positive. Meanwhile the binomial distribution has negative

second factorial cumulant. Therefore, we use some additional assumptions. Let p 6 q and

nν1 > 1. Then ν2 6 0 and ν2
1 − ν2 > ν2

1 > 0. Now we can define N ∈ N and p̃ ∈ [0, 1] in the

following way:

N =
⌊ na2

ν2
1 − ν2

⌋
=

na2

ν2
1 − ν2

− δ, 0 6 δ < 1, Np̃ = na.

From the definition of VarSn, it follows that the main part of the second factorial cumulant

of Sn is equal to n(ν2 − ν2
1)/2. Now

1
2
|n(ν2 − ν2

1) + Np̃2| = δ(ν2 − ν2
1)2

2(a2 + δ(ν2 − ν2
1)/n)

6 Cδq2.

Thus, we see that N and p̃ are indeed chosen to match two factorial cumulants (and con-

sequently moments) of Sn closely.

Theorem 2.4 Let condition (3) be satisfied, p 6 q and nν1 > 1. Then

‖Fn − Bi(N, p̃)‖ 6 C7

(√
q

n
(q − p) +

δq

n

)
, (8)

‖Fn − Bi(N, p̃)‖∞ 6 C8

(q − p

n
+

δ

n

√
q

n

)
. (9)

It is clear that (8) is at least of order O(n−1/2). Thus, in this case, it becomes comparable

to the classical Berry-Esseen bound in the context of independent summands. If p = q,

then the right-hand sides of (8) and (9) are equal to zero. Therefore, the closeness of p and

q is also reflected in the bounds.

3 Auxiliary results

In what follows, C(k) denotes a positive constant depending on k.

Lemma 3.1 Let t ∈ (0,∞) and k ∈ Z+. Then we have

‖U2etU‖ 6 3
te

, ‖UketU‖ 6
(2k

te

)k/2
, ‖UketU‖∞ 6 C(k)

t(k+1)/2
. (10)

The first inequality was proved in Roos (2001, Lemma 3). The second bound follows from

formula (3.8) in Deheuvels and Pfeifer (1988) and the properties of the total variation norm.

Here and throughout this paper, we set 00 = 1. The third relation is a simple consequence

of the formula of inversion.
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Lemma 3.2 For n ∈ N and p∗ = 1− q∗ ∈ (0, 1), we have
∣∣∣‖U2(I + p∗U)n‖ − 4√

2πe np∗q∗

∣∣∣ 6 C

(np∗q∗)2
, (11)

∣∣∣‖U2(I + p∗U)n‖∞ − 1√
2π (np∗q∗)3/2

∣∣∣ 6 C

(np∗q∗)5/2
. (12)

Lemma 3.2 was proved in Roos (2000, Lemma 8), see also Čekanavičius and Roos (2006a,

Prop. 3.5 and Rem. 3.1). We now give some facts about Fn. It is known that, if condition

(3) is satisfied, then Fn can be expressed as Fn = Λn
1W1 + Λn

2W2, see Čekanavičius and

Mikalauskas (1999, p. 215). The properties of Λ1,2 and W1,2 are given in the following

lemma.

Lemma 3.3 Let condition (3) be satisfied. Then

Λ1 = I + ν1U + ν2U
2Θ, (13)

Λ1 = I + ν1U +
ν2

2
U2 + Cq|p− q|(p + q)U3Θ, (14)

lnΛ1 = ν1U +
ν2

2
U2 +

∞∑

j=2

(−1)j+1

j
νj
1U

j + Cq|p− q|(p + q)U3Θ, (15)

Λ2 = 2|p− q|Θ, Λn
2 = C(s) |p− q|se−C(s)nΘ (if n > s > 0), (16)

W1 = I + A1U + C|p− q|(p + q)U2Θ, W1 = I +
1
2
Θ, (17)

ln W1 = A1U + C|p− q|(p + q)U2Θ, W2 = C|p− q|UΘ. (18)

For any finite signed measure V on Z and any t ∈ (0,∞), we have

‖V et ln Λ1‖ 6 C ‖V e0.1tν1U‖. (19)

Estimate (19) also holds if the total variation norm on both sides is replaced by the local

one.

Proof. Estimates (13), (14), (16), (17), (18), (19) can be obtained from the explicit formulas

for Λ1,2, W1,2 in Čekanavičius and Mikalauskas (1999, p.p. 214–215) and are already proved

in Čekanavičius and Roos (2006b). For the proof of (15) note that (13), (14) and the trivial

fact ‖U‖ = 2 imply that

Λ1 − I =
3ν1

2
UΘ, Λ1 − I − ν1U = C|p− q|qU2Θ.

Consequently, for j > 2,

(Λ1 − I)j − νj
1U

j =
j∑

i=1

(Λ1 − I)i−1νj−i
1 U j−i

(
Λ1 − I − ν1U

)

= C|p− q|qU2
j∑

i=1

(3ν1

2

)i−1
νj−i
1 U j−1Θ

= Cj|p− q|qU3ν1

(3ν1

2

)j−2
2j−2Θ = Cj|p− q|q2U3

( 1
10

)j−2
Θ
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and
∞∑

j=2

(−1)j+1

j

(
(Λ1 − I)j − νj

1U
j
)

= C|p− q|q2U3
∞∑

j=2

( 1
10

)j−2
Θ = C|p− q|q2U3Θ. (20)

Estimate (20) combined with (14) completes the proof of (15). ¤

Lemma 3.4 Let condition (3) be satisfied. Then

∞∑

j=3

(−1)j+1aj

j
U j =

∞∑

j=3

(−1)j+1νj
1

j
U j + C

|p− q|(p + q)2

n
U3Θ.

Proof. Note that, due to (3), we have

|a| 6 0.12, ν1 6 1
30

, |aj − νj
1| 6 Cj

|p− q|
n(q + q)

0.2j−3(p + q)2.

Now the proof is obvious. ¤

Lemma 3.5 Let condition (3) be satisfied. Then, for any finite signed measure V on Z

and any t ∈ (0,∞), we have

‖V exp{t ln(I + aU)}‖ 6 C‖V exp{0.1tν1U}‖, (21)

‖V exp{t ln(I + aU) + 0.5tν2U
2}‖ 6 C‖V exp{0.1tν1U}‖. (22)

The estimates remain valid if the total variation norm on both sides is replaced by the local

one and a is replaced by ν1.

Proof. Noting that a 6 0.1, we obtain

t ln(I + aU) +
tν2

2
U2 = taU +

ta2

2
U2

∞∑

j=2

0.2j−2Θ +
tν1

19
U2Θ = CΘ + tν1U + 0.08tν1U

2Θ.

Moreover, applying (10), we get

‖ exp{0.9tν1U + 0.08tν1U
2Θ}‖ 6 1 +

∞∑

r=1

1
r!

∥∥∥0.08tν1U
2 exp

{0.9tν1

r
U

}∥∥∥
r

6 1 +
∞∑

r=1

er

rr
√

2πr

(0.24r

0.90e

)r
6 C.

The last estimate and the properties of the norms are sufficient for the proof of (22).

Estimate (21) is proved similarly. ¤

4 Proofs

Proof of Theorem 2.1. Let B = I + aU , M1 = n lnΛ1 + lnW1, and M2 = n lnB. We

have

‖Fn − Bi(n, a)‖ 6 ‖Λn
1W1 −Bn‖+ ‖Λn

2‖‖W2‖.



8 V. Čekanavičius and B. Roos

Applying (19) and Lemma 3.5, we get

‖Λn
1W1 −Bn‖ = ‖eM1 − eM2‖ =

∥∥∥eM2

∫ 1

0

(
e(M1−M2)τ

)′
dτ

∥∥∥

6
∫ 1

0
‖(M1 −M2)eM1τ+M2(1−τ)‖dτ 6 C‖(M1 −M2)e0.1nν1U‖.

Now it suffices to apply Lemmas 3.1, 3.3, and 3.4. The estimate for the local norm is proved

similarly. ¤

Proof of Theorem 2.3. Let B and M1 be defined as in the proof of Theorem 2.1. Taking

into account (22) and arguing as in the proof of Theorem 2.1, we get

∥∥∥Λn
1W1 −Bn exp

{nν2

2
U2

}∥∥∥ 6 C
∥∥∥e0.1nν1U

[
M1 − n ln B − nν2

2
U2

]∥∥∥

6 C|p− q|(p + q)
(

min
(
nq,

1√
nq

)
+ min

(
1,

1
nq

))
.

Further,

∥∥∥Bn
(

exp
{nν2

2
U2

}
− I − nν2

2
U2

)∥∥∥ =
(nν2)2

4

∥∥∥U2

∫ 1

0
Bn exp

{
τ
nν2

2
U2

}
(1− τ) dτ

∥∥∥

6 C(nν2)2‖U4e0.1nν1U‖ 6 C
(
nq|p− q|)2 min

(
1,

1
(nq)2

)
.

Combining the last two estimates, we get (6). The local estimate is proved using (10). ¤

Proof of Theorem 2.2. Due to Theorem 2.1, without loss of generality, we can assume

that nq > 1. Let

b =
4|p− q|√
2πe (q + q)

=
n|ν2|

2
· 4√

2πe nν1(1− ν1)
,

b1 =
|p− q|√
2π nqq

=
n|ν2|

2
· 1√

2π (nν1(1− ν1))3/2
.

Then

∣∣∣‖Fn − Bi(n, a)‖ − b
∣∣∣ 6

∥∥∥Fn − Bi(n, a)
(
I +

nν2

2
U2

)∥∥∥

+
∥∥∥nν2

2
U2

(
Bi(n, ν1)− Bi(n, a)

)∥∥∥ +
∣∣∣
∥∥∥nν2

2
U2Bi(n, ν1)

∥∥∥− b
∣∣∣.

Taking into account Lemma 3.5, similarly to the proof of Theorem 2.1, we get

∥∥∥nν2

2
U2

(
Bi(n, ν1)− Bi(n, a)

)∥∥∥ 6 C
∥∥∥A1nν2 U3e0.1nν1U

∥∥∥ 6 C
|p− q|2√

nq
.

Now the proof of (4) follows from (11) and Theorem 2.2. The estimate (5) is obtained with

b replaced by b1 and the total variation norm replaced by the local norm. ¤
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Proof of Theorem 2.4. We give only a sketch of the proof. Due to assumption p 6 q

we have ν2 6 0. The following estimates can be obtained:

ν2
1 − ν2

ν1
6 0.14, p̃ 6 C(p + q), p̃ 6 1

4
, nν1 + A1 > 18

19
,

|p̃− a| =
∣∣∣− p̃

ν2 + 2ν1A1/n + A2
1/n2

ν2
1 − ν2

+
p̃δ

n

∣∣∣ 6 C
(
|p− q|+ δq

n

)
,

|Np̃j − naj | = na
∣∣∣p̃j−1 − aj−1

∣∣∣ 6 Cnq2(j − 1)|p̃− a|
(1

4

)j−3

6 Cjnq2
(
q − p +

δq

n

)(1
4

)j−3
, (j > 3),

∞∑

j=3

(−1)j+1

j
U j

(
Np̃j − naj

)
= Cnq2

(
q − p +

δq

n

)
U3Θ,

n lnΛ1 + ln W1 −N ln(I + p̃U) = Cnq2
(
q − p +

δq

n

)
U3Θ

+Cq(q − p)U2Θ + Cδq2U2Θ.

The proof of the theorem is now similar to the one of Theorem 2.1. ¤
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