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Introduction

Approximation

In short, the aim of this course is to learn how to estimate the closeness of distribution of
the sum of random variables and its approximation:

P(S, € B) — W{B} ~?77.

In this course, the general principles of construction of approximations (which might be
distributions or signed measures) are given. However, comparative analysis of approxima-
tions is beyond the scopes of this course. The main emphasis is on the methods needed
for estimating and their practical usage. You’ll be given a ’toolkit’ which can be applied in
various fields (for example, when writing master or PhD thesis).

The standard three stages in investigation of the behavior of Sj:

1. Finding of the limiting distribution for S,, say D.
2. Establishing of the rate of convergency of £(S) to D.

3. Investigation what approximations to use.

Note: the best approximation unnecessary coincides with the limit distribution.
We shall learn methods useful in the second and third situations.

Accuracy

The usual estimates of the accuracy are in the form:
1. Of the type O(n™%).

2. Of the type Cn~%.

Methods

The main methods of this course are related to the characteristic function method. In
general, this method means that we use

|P(S, € B)—~W{B}| < C / F@O|F(t) - W) |dt + U(F, W, A).
teA

In the right-hand side we have the difference of the characteristic functions (Fourier-
Stieltjes transforms), f(¢) is an additional (smoothing or truncating) factor allowing esti-
mation in the neighborhood of zero and U is the remainder. Characteristic functions have
many nice properties.
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1 Definitions and preliminary facts

1.1 Useful identities and inequalities

Bergstrom identity for commutative objects:

— b”+z ( )b” (g —b)™ + rp(s + 1).
Here

ra(s+1) = En: <m N 1) "™ (q — by T

S
m=s+1

mi:ﬂ (ms_1> B (5—7:1)

Bergstrom identity can be extended to products. Particularly,

n n n k—1 n
Hak—ku:Z(ak—bk)Haj H bj,
k=1 k=1 k=1

Note that

=1 okt
n n n -1
Hak_ku_Z(ak_bk)Hbj:Z(al_bl) I @ (ar —be) H b;.
k=1 k=1 ik =2 J=i41 k=1 =1,k

Taylor’s expansion:

2 k k+1

() = F0) + £1©z + f1O) 5 +...+ FP0)

and its special case:

M2 ME MR \
—1+M+T+ +F+ %l /e (1_7-) dr.
0

We give one example of how (1.6) can be applied.
Example 1.1 Let Re a < 0. Then
[e* —1| < |al.

Indeed, we have

1 1 1
|ea—1|:‘a/ emdt‘<|a|/ |em|dt:|a|/ eTRe a gt < Jal.
0 0 0

1
T / FE D)1 - )k dr
0

(1.1)

(1.2)



Abel’s partial summation formula:

N N-1
Z akbk = ANbN — Z Ak(bk—H — bk). (17)
k=M k=M
Here
k
Ak = Z Ay, -
m=M
Some other facts. Let k =1,2,..., A > 0. Then
; t kt t
le —1] =2 sin§|, | sinE | < k| sinﬁ l,

(@ = 1) + (7 = 1) = —(& = 1)(e7 1),
(e = 1)F — (~1)¥(el = ¥ | < Klel — 1],

[t .ot 7\ (max(k,1/3)\*/? —(k41)/2
/‘smi‘ exp{—2)\sm §}dt<2\/§(1+\/;)7r(T < C(k)A .

) (1.8)
If [t| < m, then |sin(¢/2)| > |t|/m. We shall repeatedly use the following simple
estimates:

|a" =" | < nla—b|max{|a[*"", |b["1}, (1.9)
k—a 2N\ —1
Z(1+( 7 )) <1+ b, (1.10)
kEZ

> (“)p’“(l—p)""“(kﬂ)‘”’ <p V(1) (0<p<1,n>1, el o)), (1.11)

% " < a% ™ (z>0,a>0). (1.12)
Finally, note that 1 +z < €%, (x € R).

1.2 Distributions and measures

Let R denote the set of real numbers, Z denote the set of all integers, Z, = Z U {0}, and
let N={1,2,...}. The symbol C denotes (in general different) absolute positive constants.
Similarly, by C(-) we denote constants depending on the indicated argument only. We
always use 6 to denote a quantity satisfying |0 | < 1.

Let M denote the set of all finite signed measures defined on o- field B of one-dimensional
Borel subsets; Mz C M denote the set of all finite signed measures concentrated on Z;
F C M denote the set of all distributions; F denotes the set of all distributions having
nonnegative characteristic functions, Fz denote the set of all distributions concentrated
on Z; E, € F denote the distribution concentrated at a point a € R, with £ = Fy. Let
U € F. Then U(-) denotes distribution, for any Borel set X, satisfying U(-){X} = U{-X}.
Similarly U®{X} = U{X/2}. By [X], we denote a closed 7 - neighborhood of the set X.
For the distribution of random variable £ we also use notation L£(£).



1.2.1 Convolutions

All products and powers of signed measures are defined in the convolution sense, that
is,

FG{A} = /R F{A-2)}G{dz}, F'=E.

Note that (E;)* = E.

Convolution of distributions is distribution of the sum of independent random variables.
For example, F" is distribution of {; 4+ &2 + ... + &,, where all {; are independent and have
the same distribution F'.

Let 0 < p< 1, F,G € F. Then pF + (1 — p)G € F. This property can be extended to
the case of more than two distributions.

By the exponential of W € M we call

o0

exp{W} = )

m=0

Wm

- (1.13)

Exponential measures have some nice properties, for example, exp{W } exp{V} = exp{V +
W}, exp{aW } exp{bW} = exp{(a + b)W}.

Convolutions allow to write some distributions in a convenient way. Fore example, the
Binomial distribution Bi(n,p) can be written as:

n n
n n n
(L=pE+pE)" = (k>p'“(1 —p)F(E)F =) (k>p'“(1 —p)*Ey.
k=0 k=0

Similarly, the Poisson distribution with parameter A can be written in the following way:

[ee] [e.e]

N(By — E)* DL
exp{\(E1 — E)} = Z — - Z_e T E.

k=0

- !
Pt k!

Special attention will be played to discrete measures concentrated on Z. Let W,V € M.
Then

W= > W{lE =Y W{HE; Wvikl= Y W{k-jv{j}. = (114)

j=—00 j=—o00 j=—00

1.2.2 Compound distributions

Nowadays Compound distributions attract a lot of attention, mainly due to the needs
of actuarial mathematics. In our course, we shall pay a special interest to compound
distributions and principles of their approximation. By compound (signed) measure we
understand

o0 o0
o(F) = meFm, where F € F, Z | P | < 00. (1.15)
Ifpo+pi+p+p3+...=1,0<p; <1, then p(F) is compound distribution. Any

compound distribution corresponds to the random sum of independent random variables
&1 +& + ...+ &), when all {; have the same distribution F' and 7 is independent of £; and
has distribution P(n = k) = pg, k =0,1,....



Example 1.2 Let us consider a simplified version of the insurance claims occurrence.Let
us assume that claim occurs with the probability p and the amount of claim is determined
by the distribution B. Then the aggregate claims distribution of n individuals is equal to
(1 —p)E +pB)".

Similarly, assuming that probabilities for claims occurrence and distributions of claims
differ from individual to individual, we get the aggregate claims distribution equal to
[I;=, Hi, where H; = (1 — p;)E + p;B; and, H; is the distribution of risk 4, p; is the
probability that risk ¢ produces a claim, B; is distribution of the claim in risk 4, given the
claim occurrence in risk 4.

Example 1.3 Ezamples of compound distributions:
a)Compound Poisson distribution. Let F € F, X\ > 0, then Compound Poisson distribution
is defined by

exp{MF —E)} = ) _ A eApm > AME — B)" (1.16)

m! m!
m=0 m=o

Note that exp{\(F' — E)} is a direct generalization of the Poisson law.
b) Compound Geometric distribution. Let F € F, 0 < p < 1 then Compound Geometric is

defined by

(p/(E—(1-p)F)) = ) p(l—p)™F™ (1.17)

m=0

1.2.3 Schemes of series and sequences

Methods for estimating of the accuracy of approximation can depend on the chosen scheme
of summation.

In this course, we distinguish between the scheme of sequences and scheme of series.
The difference between two schemes can be explained in terms of random variables. By the
scheme of sequences we mean a sequence of independent random variables: &1, &o,. . .;

Sn:§1+§2+---+£nzsn—1+§n-

The more general scheme of series means that random variables form a triangular array.
That is, for any n, we have (possibly different) set of random variables &1, €ops - - - Epns

Sp—1= §l,n—1 +...+ §n—1,n—la Sn = Sln +...+ Snn

In terms of distributions, the scheme of series means that the distribution of £’th summand
in the n’th series may depend on n.



1.3 Fourier-Stieltjes transforms

1.3.1 General properties
Let W € M. Then its Fourier-Stieltjes transform is defined in the following way:

o
W) = / &2 W {dz}.
It is easy to check that

~ ~

exp{W}(t) = exp{W (1)}, WV(t) =WHV(®), Ba(t)=é", E@)=1

If F € F, ie. F is the distribution of random variable &, then F is the characteristic
function of £&. We recall that, in this case,

F(t) = Ee'é.
If F'(t) is the characteristic function then

1. F(—t), ReF(t) and | F()|? also are characteristic functions. Here ReF(t) denotes
the real part of F'(t).

2. |F(t)| <1, F(0) = 1.
3. The following estimate holds:

11— F(t)|? <2|1 - ReF(t)|. (1.18)

4. Let E| £ |° < 0o. Then

ﬁ()_1+(1t)11-3§+( 1" ger (1) ) SEE +((it)s_)1! Eg*%@'%ﬂﬂ\g\ﬁ (1.19)
and

gy — . (i ) 3 (i)™ pes—1, o [tI s

F'(t) {]E§+(t)]E§ T B e Ty BT Oy Bl } (1.20)

Expansion (1.19) (expansion in moments) plays the main role in the classical approximation
theory.

1.3.2 Integer-valued random variables

Let F € F be concentrated on 0,1,2,.... Then

t) = i P {k}.
k=0



Sometimes it is more natural to use expansion of F(t) in powers of (el — 1). The kth
factorial moment of F' is defined in the following way:

ve=3 30~ =2 =k + DF{). (1.21)

Lemma 1.1 Let F € F be concentrated on non-negative integers and let , for some integer

s21, v, <oo. Then

F(t)= F{j}e" =

=0
. eit_12 eit_lsfl eit_ls
1+(elt—1)l/1+%l/2+...+%l/s1+0%V3; (1.22)
A~ e . .
Flt)=i) F{j}je' =
Jj=1
. . eit_12 eit_ls—Q eit_l s—1
ie' <1/1 + (elt — 1) vy + % v3+...+ ﬁ Vs_1 + 0% 1/5>. (1.23)

If F is concentrated on non-negative integers, then we can express v, through moments
and vice versa. However, the magnitudes of v and moments are different.

Example 1.4 Let & be Bernoulli variable, that is

We can write the distribution of & in the following way:
L) =(1-pE+pE.

It is obuvious, that the characteristic function of & can be expanded in two different ways:

. . . 't2 't3
(1—p)+pe*=1+ple”—1) =1+ (it)p+ %ﬁ%ﬁ---

Thus, expansion in factorial moments is much shorter.

In what follows, the essential role will play estimates of the absolute values of charac-
teristic functions. We shall prove one estimate.



Lemma 1.2 Let F € F be concentrated on non-negative integers, \(F) = vi —v? —vy > 0.

Then
~ t
\Ft)| < exp{—2)\(F) sin’ 5}. (1.24)
Proof. Note that, for 0 <u < 1,v/1—u<1—u/2and
. t
lel* — 1|2 = (cost —1)? +sin?t =2 — 2cost = 4sin? 3"

Consequently,
[P <1+m(e 1|+ 2" — 12 =

. .ot
| (1+vi(cost — 1)) + v2sin® ¢ |'/2 + 2uy sin? 5=

t
| (14 v?(cos?t — 2cost + sin® t) + 2v; (cost — 1) |2 + 20 sin? 7=

t t
|1 —4(v, — v?)sin? 2|1/2—|—21/ sin’ 5 <1-2XF )sin2§<exp{—2)\(F)sin2§}.

1.3.3 Fourier transforms of integrable functions

We say that f: B — R belongs to the space L1 (R) if

1f 1l = / | f(z) | dz < oo

The Fourier transform for f € Ly (R) is defined by

o0

f) = / &t f(z) dz

—0o0

If f is continuous on R and f, f € L;(R), then

1 r —i T
Moreover, for F € F,
oo ) 00 L
/ fle) Fds} = / Fe)P(t) dt. (1.26)



The last relation is known as Parseval’s identity. Similarly version of Parseval’s identity for
F,G € F states that

o0

/ Fz) G{da} = / () F{ds) = Ee 1, (1.27)

-0

Here ¢ and 7 are independent random variables, having distributions F' and G, respectively.

1.4 Concentration function

Let FF € F, h > 0. The Levy concentration function is defined in the following way
Q(F,h) =sup F{[z,z + h]}, Q(F,0) = maxF{z}.
T T

It is obvious, that Q(F,h) < 1. Moreover, let F,G € F, h > 0, a > 0. Then

Q(FG,h) < min{Q(F,h),Q(G,h)}, Q(F,h) < (h/a+1)Q(F,a); (1.28)
the Kolmogorov-Rogozin inequality:
C
F" h) < ; 1.29
NS = am 29
the Le Cam inequality:
Qlexpla(F — B)},h) < ¢ (1.30)

h VaF{z:|z| >h};

and two inequalities (in principle, due to Esseen) establishing the relation between the
concentration and characteristic functions:

aEn <ch [ 1F@)a (1.31)
[t|<1/h

h / \B(t) 2 dt < CQ(F, h). (1.32)

[t|<1/h

Here F denotes distribution with the characteristic function F(t)F(—t) = |ﬁ (t) %
The following Lemma gives another relation between the concentration and character-
istic functions.

Lemma 1.3 Let F € F; and let g be measurable bounded function. Then, for any h > 0,

the following inequality holds

sup|g(t)| ) 13
: 1.33

‘/OO g F (1) i \ < 13Q(F, h) ( Lt [ s (g0

s>t



1.5 Metrics and their properties

1.5.1 Total variation norm
The total variation norm of W € M is denoted by || W ||. More precisely,
W || = W{R} + W {R}.

Here W = W' — W~ denotes the Jordan — Hahn decomposition of W. Note that, in
probability theory, the total variation distance between F,G € F is defined as a supremum
over all Borel subsets, i.e.

drv(F,G) = sup | F{A} — G{A}|.

The total variation norm is equivalent to dpy (-,-) in a sense that, for F, G € F, we have
| F — G| = 2drv(F,G). (1.34)
Moreover, for any W,V e M, F € F
[W/2 < sup [W{A}| < [|W ],
A€EB

[F=1, [WV]<IW[IVI, [|EWI|=I[W].
Let W be concentrated on Z. Then
W= Y [W{k}|. (1.35)
k=—00

We shall use the total variation norm because it is more convenient to write | F(G — E)? ||
instead of dry (FG? + F,2FQG).

1.5.2 Uniform distance
The analogue of uniform Kolmogorov distance is defined in the following way

| W | = sup[ W{(—o00,)}|.

Let VW e M, F € F, a € R, then
IWI<IWI, [VW[<|VI[IW], [EV|=|V| |F[=1. (1.36)

1.5.3 Local distance

Let W € My, i.e. let W be concentrated on Z. The analogue of the local distance is
defined in the following way

| W |oo = sup| W{j}|.
J

If W,V € My then
WV oo <IW [V ], [Wleo <[W |- (1.37)



1.5.4 Fortet - Mourier distance

Let W € My . The analogue of Fortet - Mourier distance (also known as Kantorovich,
Dudley or Wasserstein distance) is defined by

o

(W irm = Y |W{(—00,k)}|. (1.38)

k=—00

Note that Fortet-Mourier distance can be defined for W € M. However then it is more
usual to call it the Wasserstein or Kantorovich distance.

Exercises

1. To prove that, for kK =1,2,...,
kt t
|Sln5|<k|51n§|

2. Let F;,G; € F and let
|1 — G| <ai, |Fo—Gal<as.

To prove that

| FiFy — G1G2 | < a1 + ap.
To prove (1.37).
To prove (1.22).

To prove (1.18).

A A R

Let W € M. To prove that
" — Bl <exp{|| W ||} =1 < || W[l WL (1.39)

7. Let FF € F, A > 0. To prove that

I exp{X(F — E)} = F | < | (F - E) |*/2. (1.40)

8. Let W € M and W{R} = 0. To prove that then
W || = 2sup | W{A}|.
AeB

Bibliographical notes

Most of the material of this Section is quite standard and can be found in any textbook on probabil-
ity. Factorial moments and their generalizations are comprehensively studied in Franken (1964), Kruopis
(1986b),Siaulys and Cekanavicius (1988). Properties of the concentration function can be found in Arak
and Zaitsev (1988)or Petrov (1995). Metrics and distances are discussed in Pfeifer et al. (1988), or Barbour
et al. (1992). Bergstrom identity is proved in Bergstrom (1951) and generalized in Cekanavicius (1998).
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2 Direct application of the properties of total variation norm

In this section, we show how simple application of the properties of total variation norm can
be used when estimating the accuracy of compound approximation. Frequently, such direct
approach is too rough. However, many classical results were obtained in this way. Note that,
in principle, all results and methods of this section can be applied to the multidimensional
measures or commutative operators.

For convenience, we repeat the definition of the compound measure:

o o
o(F) = meFm, where F € F, Z | pm | < 0. (2.1)

2.1 Reduction to lattice case

One of the best known and most frequently used the properties of total variation is the
following one.

To(F) | < Te(Er) |- (2.2)

Indeed, taking into account the fact that m’th convolution of F' is a distribution and its
norm is equal to 1, we get

o)< D2 1o IF™ =Y 1om | = || D2 pnBu | = | 3 onB | = I 0B 1.
m=0 m=0 m=0 m=0
It is interesting to note that from (2.2) we get
sup || o(F) || = [l o(E1) |- (2.3)
FeF

In many cases estimate (2.2) allows reducing of the general compound approximation
to the case of integer-valued distributions.

Example 2.1 For Be F,0<p<1,
| (1 —p)E +pB)" —exp{np(B — E)} || < || ((1 —p)E + pE1)" —exp{np(E1 — E)} || =

kf;o‘ (Z)pk(l —p)"F — (n]ﬁ)ke"P .

Thus, we reduced the general estimate to the case of the difference between binomial and

Poisson distributions.

11



2.2 Expansion in factorial moments

Characteristic function of an integer-valued random variable can be expanded in factorial
moments, see Lemma, 1.1. We prove that analogous expansion holds for compound measures
(as well as for their Fourier-Stieltjes transforms), which may be preferable if one does not
apply the characteristic function method. To make our notation shorter we shall write

Z]J—l (7 — k+ )pj, (2.4)

Z]]-l (G —k+1)|pjl- (2.5)

It is evident that ay(¢) and ﬁk(go) are very similar to v, defined in section Characteristic
functions. Indeed, if all p; € (0,1), po+p1+... =1 (i.e. if p(F) is compound distribution)
then ai(¢) = Br(v) equals to the kth factorial moment for ¢(F;). In this case, we can
give probabilistic interpretation. Let us recall the fact that compound distribution can be
viewed as a distribution of random sum of random variables. Then ay(p) is kth factorial
moment of the number of summands.

Lemma 2.1 Let o(F) be defined by (2.1), p1+p2+... =1, and let Bs+1(p) < o0 for some
s>1. Then
d F - E)™
o(F) = E+ Z am(cp)( ‘ ) + O(s)(F — E)**L. (2.6)
— m!

Here O(s) € M, [|O(s) [| < Bs11(p)/(s + 1)L

Proof. Applying (1.1)-(1.2) we get

n=ym(rm g (e 5 ()e-e)-

m=0 §=0 j=
o0 S m o m ] 1
j +1 - - —
> pm ) (j)<F—E>J+<F—E)S > o > (M) = nen
m=0 7=0 m=s+1 Jj=s+1
But
o S m ] S )
L-E+ meZ(.>(F—E)J=E+Z(F—E)’aj(<p)/j!,
m=0  j=1 J j=1
i< Xm0 X a3 () =
m=s+1 j=s+1 m=s+1 j=s+1
o
> 1oml(,1)) = B/t + 10
m=s+1
.

12



Corollary 2.1 Let A>0,0<p<1, FeF,se€{0,1,..}. Then

As+1

(F' - E)
(s+1)!

exp{A(F —E)} =E + Z A" " L eu(s)(F - Byt

m=1

2.7)

m!

Here || ©1(s) || < 1.

2.3 Estimation of the accuracy of approximation

It evident, that the most natural approach in applying compound approximations is to
match as much of factorial moments as possible. We begin from the classical result which
is usually associated with the names of Khintchine or Le Cam.

2.3.1 The Le Cam inequality
Let 0 <pp <1,By € F (k=1,2,...,n). Then

H ﬁ ((1 —pp)E +pkBk) - eXp{zn:pk(Bk — E)} H < ZEn:p%. (2.8)
k=1 Pt —

The proof of (2.8) is based on the application of Corollary 2.1 or (1.40). To make things
more transparent let us introduce auxiliary notation:

Hy = (1 —pg)E —ppBg, Dy =exp{py(Br— E)}.
Then we obtain
| Dy — Hi || = || exp{px(Bx — E)} = E —pp(Br — E) || <

lpk (B — B) II7/2 < (| Be | + | E 1)? /2 = 2p}.
Now, from (1.3) it follows that

n n
| Lo~ TT 2] <
k=1 k=1

n k—1 n n n
ZHHk_DkHH 1E I] DkH = | Hy— Dgl| <2 _pi-
k=1 i k=1 k=1

=1  j=k+1

Note that there are many various other methods for proving of (2.8).
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2.3.2 The Hipp inequality

Let us write a formal equality
2 3

l—l—a:exp{ln(l—l—a)}:exp{a—%+%—...}

We shall restrict ourselves to a partial case of Hipp’s inequality only. Let 0 < p < 1/2,
B € F. Then

et k
(1-p)E+pB = exp{Z(—l)k%(B - E)k}. (2.9)

k=0

Simplified version of Hipp’s inequality can be formulated in the following way:

H (1=pE+pB)" - exp{n i:(—l)’“%k(B - E)’“} H <

k=1
2p s+1 2p s+1
(1 _) % exp{n%}. (2.10)

The proof of (2.10) is based on the properties of total variation norm. For the sake of
convenience, let us denote

H

© k
(L-pP)E+pB)", W = nk:ZH(—l)’“%(B - Bk,

S

D:exp{n (—1)k ?k(B E)}
k=1

Then
H=Dexp{W}, D=Hexp{—-W}.

Note that H € F and || H || = 1 and we can apply (1.39). Consequently,
|H =D =|H—-Hexp{-W}| = [| E—exp{=W}[ <[ W [|exp{|| W [}

To end the proof it suffices to note that

9]

||W||<’ﬂ Z kHB EHk n Z 2 )s—|—1(1_2)—1

X p P p .
k=s+1 k=s+1

Exercises

1. Let a > 0,b> 0, F € F. To prove that

| exp{a(F — E)} — exp{b(F - E)} || <2[a - b|.
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2. To prove the Hipp (1986) theorem. Let s € {1,2,...},

0<p;<1/2, B;eF, (i=12,..n),

n S

H; = (1 -p)E+piB;, = eXP{ZZ 1)/ (1/5)(H; — EY }
i=1 j=1
(2pi)s+1

u; = .

(1 -2pi)(s+1)

Then
n n
H HHZ — D(s) H < exp{Zui} - 1.
=1 =1
3. Let n € N,

H= = F™.
> (3)
m=0

To prove that
|H" — F"|| < n||F - E|.

4. Let W € M. To obtain the estimate for

|pew-e(2-20)|.

Bibliographical notes

The properties of total variation norm are discussed in detail in Le Cam (1965), Hipp (1986) and Cekanavicius
(1998). The estimate (2.2) is widely used; see, for example, Michel (1988), Roos (2003).
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3 Local estimates

We begin to study the characteristic function method. In general, the characteristic func-
tion method means that we estimate differences between distributions (measures)through
differences between their characteristic functions (Fourier-Stieltjes transforms). Though
the method is usually associated with Esseen and CLT, it is much simpler to use it for
integer-valued distributions.

Throughout the following few sections, when estimating the difference of two character-
istic functions f™ — ¢g" we frequently use the same general scheme:

1. The following rough estimate:
|/ —g"| <nmax{| f """, |g """} f —gl.

2. Estimate of the difference:
| f—g| < CU(®).

3. Estimates for the characteristic functions:

PP <oV, gt < ovi)
4. Collecting of all estimates and application of trivial inequality z%¢~* < C(a), z,a > 0.

In this section, we consider local estimates, for W € M ;. By definition

o0

W)=Y e*w{k).

k=—o

It is easy to verify that

it(k—m) — 0, if k 7é m,
/e dt {27‘(’, if k= m.

-
Therefore, the following formula of inversion holds, for k € Z,:

Wik} = % / eIV (1) dt. (3.1)

-

Now it is very simple to get the estimate in terms of Fourier-Stieltjes transforms.
1 m
Wlw < — [ |W(t)|dt. 3.2
Wie <5 [ 170)] (32
-7

We shall examine some applications of (3.2).
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3.1 Local Poisson approximation to the Binomial law

Let us estimate the difference between the Binomial and Poisson distributions. From
Le Cam’s estimate we have that

| (1=p)E+pE1)" —exp{np(E1 — E)} | < || (1—=p)E+pE1)" —exp{np(E — E)} || < 2np”.

However, the above estimate can be very rough. Therefore, we shall use (3.2). We have

n mn k
(L= PB4 pB)" — exp{np(Bs ~ D)} oo =sup | ()0 - * = e | <

1/ i i
or [ 1= p ey = explrp(e = 1)} . (3.3)
It is easy to check directly that

| exp{p(eit —1)}| = exp{pRe (eit -1)} = exp{—2p sin? %} (3.4)

We need a similar estimate for the Binomial distribution. Noting that, for the Bernoulli
random variable v1 = p, v, = 0 (see Example 1.4), by (1.24) we get

i oot
| (1 —p) + pe'| gexp{—Zp(l—p)anE}. (3.5)

In this course, we do not seek to minimize the absolute constants. Therefore, we shall use
the following rough estimate, replacing n — 1 by n:

. . t
max{] (1 - p) + pe [",| exp{p(e” — D} "7} < e?exp{~2np(1 ~p)sin _ |  (3.6)

For the estimate of the difference of characteristic functions we shall use Taylor expansion
(1.6). Note that Re (e — 1) = —2sin?(¢/2) < 0. Consequently,

1
| exp{p(e —1)} —1—p(e’ —1)| = ‘pz(eit — 1)2/0 exp{rp(e" —1)}(1 —7)dr ‘ <

1
; t
p?et —1 \2/ (1 —7)dr = 4p*sin® 3" (3.7)
0

Collecting (3.4),(3.5) and (3.6) from (1.9) we get the estimate for the difference of
characteristic functions. Substituting the obtained result it into (3.3) and applying (1.8)
we get the following estimate

71'
n 4e” 2.2t ot
| (1—p)E+pE1)" —exp{np(F1 — E)} |0 < 9. [ mpsin® g exp{—2np(1 —p) sin 5} dt <

—T

C min {an, (1-— p)3/2\/g}. (3.8)

It is easy to see, that (3.8) provides better accuracy for large n. Indeed, we see that the
local Poisson approximation is tending to zero, even for p = constant.
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3.2 General case

We shall generalize previous example for the case of arbitrary chosen integer-valued random
variable. Let F' € Fz and F{k} = g, that is

F(t) = f: are™®. (3.9)

k=—0o0

Note that all g5 € [0,1] and their sum equal 1. For approximation we shall use a special
case of compound distributions — the so called accompanying distribution exp{F — E}.
Note that

exp{F — B} = eXp{ i ax(Ex — E)},

k=—00
i.e., we have convolution of various Poisson distributions concentrated on different sub-
latices of Z. Applying (1.9) we get

| B () - exp{n(F(t) - 1)}| <
nmax{| F(t) "™, | exp{F(t) = 1} "'} F(¢) — exp{F(t) — 1} . (3.10)

If g0 = 1 then F = exp{F — E} = E and the difference of distributions equal to 0.
Therefore, further we assume that ¢y < 1. It is easy to check that

| exp{F(t) — 1} | = exp{Re F(t) — 1}.

We need similar estimate for F(t).

Lemma 3.1 Let ﬁ(t) be defined by (3.9). Then, for all t,

| F(t)| < exp{go(Re F(t) — 1)}. (3.11)

Proof. The essential step is the following expression

Ft)=qo+ (1 - qo)V(2). (3.12)
Here q
V() = itk 9k
(t) Ee T
kEZ
k£0

It is obvious, that V(t) is characteristic function. But all characteristic functions satisfy
inequality

Consequently, R R
(ReV (1) + (ImV(#)* < 1.

For the proof of Lemma we use the same idea as in (1.24). We have

|F(t)* = g0+ (1= qo)Re V() +i(1 — go)ImV(t) |* =

18



@} +200(1 — 0)Re V(1) + (1 - ) ((Re V(1)) + (ImV(1))?) <

g5+ 200(1 — @o)Re V(1) + (1 = q0)* = 1+ 2q0(1 — qo) (Re V(1) ~ 1) <
exp{200(1 — g0) (Re V(t) — 1)} = exp{2q0(Re F(t) — 1)}.
For the last step, one should note that from (3.12) it follows that

(1-q)(V®) -1)=Ft) -1, (1-q)(ReV(t)—1)=ReF(t) - 1.

Similarly to (3.7) we have
| F(t) —exp{F(t) —1}| < C| F(t) — 1~
Submitting all estimates into (3.10), we get
| F™(t) — exp{n(F(t) - 1)} | < Cn| F(t) — 1|? exp{ngo(Re F(t) — 1)} =
Cn(1 = q0)*| V() — 12 exp{n 2 (1 — o) (Re V(1) — D) fexp{n T (Re F(t) - 1)} <

Cn(1— qo)?| ReV(t) — 1| exp{an—O(l — o) (Re V(1) — 1)} exp{n(;—O(Reﬁ(t) - 1)} <

. 2 (1 —qo) 9 iy
len{n(l q)~, ” }exp{n 5 (Re F(t) 1)} (3.13)
In above we used (1.18) and (1.12). Consequently, from (3.2) we get

| F* — exp{n(F — E)} |0 <

C min {n(l — ), (1;70(]0)}] exp{n%—O(Reﬁ(t) - 1)} dt. (3.14)

Obviously, we can estimate the integral by constant. However, sometimes a more precise
estimate is needed. The following estimate is useful in quite many cases.

Lemma 3.2 Let F be defined by (3.9). Then

m m

~ ad otk C
/exp{/\(ReF(t) _ 1)}dt - /exp{—2)\j_z_ooqj sin? ?}dt < (3.15)

-7 —T

Proof. Proof of (3.15) is based on the properties of concentration function. First, note
that

ARe F(t) —1) = A(1 — qo)(Re V (t) — 1)
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and Re V(t) is non-negative characteristic function of symmetric distribution V, which is
concentrated on Z \ {0}. Therefore, by (1.32) and (1.30) we get

m m

/exp{A(Reﬁ(t) ~nla= /exp{)\(l ~a0)(ReP (1) - D}t <

C _ C .
\/A(l —g)V{z:|z| >} VAL —q0)

CQV, 77" <

O.
Applying (3.15) to (3.14) we get the final estimate: if F' is defined by (3.9), then

| F* — exp{n(F — E)}|co < Cmin {n(l - q0)2,q0_3/2, /%}, (3.16)

If F has the Binomial distribution, then gg = 1 — p and the general estimate (3.16) has
the same order of accuracy as (3.8).

3.3 Local Franken-type estimate

Previous example was a direct generalization of the Poisson approximation to the Binomial
law. Now we shall consider another generalization of the same inequality. Let us assume
that F,G € F are concentrated on non-negative integers and have s finite moments (s > 1
some fixed integer). The corresponding factorial moments (see (1.21)) we denote by v (F)
and vg(Q), respectively. Let

v(F)r,=v(Q), (k=1,2,...,8—1) (3.17)

A = min{v (F) = V3(F) — u(F), 11 (G) — V3 (G) — (@)} > 0. (3.18)

Condition (3.18) is known as Franken’s condition. In general, it is quite restrictive one. For
example, it requires for both distributions F' and G to have means less than 1.
We shall prove that if (3.17) and (3.18) are satisfied, then

| F™ — G™ | oo < C(8)(s(F) + v5(G)) A" H1/2)p=(=1)/2, (3.19)

Indeed, from expansion in factorial moments (1.22) we have that
~ ~ . ot
[F(t) = G(t)| < (vs(F) +v5(@)) € = 1]*/s! = (v5(F) +v5(G))4°| sin 5 |".
Moreover, by (1.24),

. . ot
max{| F(t)],| Gt |} < exp{—2)\s1n 5}.
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Consequently, collecting both estimates and substituting them into (1.9) and (3.2) we get

| F" — G" |oo < C(s)n(vs(F) + vs(G)) iexp{—%\ sin? %} dt.

-

The desired estimate follows from (1.8).

We shall check that (3.19) indeed is some generalization of the Poisson approximation to
the Binomial distribution with s = 2. Let F' be the Binomial distribution with parameters
p and n. Then

F=(01-pE+pE =E+pE —E) v(F)=p, wn(F)=0.
Similarly, if G is corresponding Poisson law, then
G =exp{p(E1 — E)}, v(G)=p, wn(G)= p2.

It is easy to check that, vo(F) + 15(G) = p®. Now comes the important step. Formally, we
should take A = 11 (G) — v3(G) — 1»(G) = p — 2p%. Substituting these estimates into (3.19)
we shall get a slightly different estimate than in (3.8). On the other hand, we already know
that characteristic function of the Poisson law can be estimated through A = p(1 — p), i.e.
better than in (1.24).

Exercises

1. Let F and G have s — 1 coinciding factorial moment and finite factorial moments of
the sth order. To prove that then

| F™ — G™ |00 < C(8)n(us(F) + 15(G)). (3.20)

2. Let W € M. To prove that

k=—00

S Wk = %/|W(t)\2dt. (3.21)

Hint. To use the inversion formula for the convolution of F' and distribution with
characteristic function F'(—t).

3. Let F be defined by (3.9) with gy = 1/5. To prove that then
| (F — E)* exp{n(F — E)} |o < C(k)n~ *TD/2,

4. Let n € N, F be defined by (3.9) with ¢o = const < 1,

[es} 1 m+1
ZO(E) F™.

m

H

To get the estimate for
| H" — F" | oo
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5. Let F € Fz and a > 0, b > 0. To prove that

| exp{a(F ~ B)} — exp{b(F ~ B)} |, < 0120,

Hint. Consider three cases b < a, a < b < 2a and 2a < b. For the last case apply

L_la=b]
b

[\

Bibliographical notes

Formula of inversion (3.1) is well known and can be found in numerous papers. The characteristic func-
tion method for lattice local estimates under Franken’s condition was applied by Franken (1964), Kruopis

(1986b),Siaulys and Cekanavicius (1988).

22



4 The Tsaregradskii inequality

One of the most popular methods for the uniform estimates of W € M is the Tsaregradskii
inequality. It can be written in the following way. Let W € Mz, then

[T

W |\47T | sin |
-7

(4.1)

Proof of (4.1). The estimate is trivial if the right-hand of (4.1)is infinite. Therefore, we
shall assume that it is finite. For two integers s < m by formula of inversion (3.1) we get

m—1 m—1 1 n

_ L —itkTr7 _
S Wik} = E:Qﬁ/e W) dt =
k=s k=s “r

—1tm —its

1 r ol —e
o / Ze—ltkdt o / W(t)————dt. (4.2)

=S

The Riemann-Lebesgue theorem states that, for absolutely integrable function g(t),

o

lim eWg(t)dt = 0.

y—=Foo [ o

Therefore, the limit of (4.2) when s — —oco gives the following formula of inversion

™

W{ (=00, m)} = %/W(t) ¢ " 4t (4.3)

-7

Consequently,
|W(®)|

WH{(— S 5o
Wiom} <5 [ TT

The Tsaregradskii inequality is obtained by taking supremum over all m € Z.
Note that, in the literature, a slightly more rough version of (4.1) is used. It is obtained
from (4.1) replacing | sin % | by its estimate |¢|/m:

1 ™ o~
W<y / |V[|/t(r)|dt. (4.4)

Version (4.4) is more convenient when using expansions in moments. Meanwhile (4.1)
is more convenient when using expansions in factorial moments.
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4.1 Integral Poisson approximation to the Binomial law

Taking into account estimates (3.4)—(3.7) we can write
. . t t
(1= p) +pe)" — exp{np(e” — 1)} | < Cnp®sin” J exp{—2np(1 — p)sin® 5}.  (4.5)
Therefore, by (4.1) and (1.8) we get

| (1 =p)E +pE1)" — exp{np(E1 — E)}| < C(1 =p)"'p. (4.6)

Note that from Le Cam’s estimate (2.8) we already know that the accuracy of Poisson
approximation is less than 2np?. The same order np? can be easily obtained from the
Tsaregradkii inequality with, however, larger constant. As can be seen from (4.6) Poisson
approximation is accurate only for small p.

4.2 Integral Franken type estimate

Without any difficulty we can get the integral estimate for the difference of two distributions,
satisfying Frankens condition. Let us assume that F,G € F are concentrated on non-
negative integers and have s finite moments (s > 1 some fixed integer) and let

V(F)=v(@), (k=12...,s—1) (4.7)
A = min{v| (F) — v2(F) — p(F),v1(G) — v3(G) — 15(G)} > 0. (4.8)
Then, as proved in section for local estimates
| F(6) — G"(1) | < On(ws(F) + 15 (G)4° sim . I
Consequently, applying (1.8) and (4.1) we get
|F" — G| < OX~/2n= (=272, (4.9)

4.3 Asymptotic expansion for the Poisson approximation

For the sake of brevity, we shall use notation z = el — 1. Formally, we can write the
following series:

(p2)* | (p2)° } npz( (p2)®

— Ve (1 ).
9 +n 3 e n 2 +
Consequently, it is natural to construct short asymptotic expansion for the Poisson

approximation to the Binomial law in the following way:

(1+p2)" = exp{npz -n

D = exp{np(E; — E)}(E - ”TPQ(E1 - E)Z). (4.10)

Let us assume that 0 < p < 1/2. We seek to apply the Tsaregradkii inequality. Therefore, we
need an estimate for the difference of Fourier-Stieltjes transforms of corresponding measures.
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The following technical trick might be quite effective, especially when minimizing constants
(which we will not do). We introduce an auxiliary 7 in the following way:

(p2)*

gy o120 -

((1 + prz)e "PTE — (1 3 n%)) 1

0

/01 a% ((1 +pra)ne™ e — (1 - n(pT;)Q)) dr ‘ =

1
/ (n(l + p12)" Lpze ™™ — npz(1 4 pzT)ne P + np2z2'r)> dr
0

[ (@=p) +pe)" = D) | =

| &%

npz |

|e

|| <

1
| e"P* | / np?| z |27‘ (14 pr2)" tpze ™7 — 1 ‘ dr. (4.11)
0
Similarly to (3.5) we obtain
4
|1+ pz7| < exp{—2p7'(1 — pr) sin? 5}
and
|e™P*T | = exp{—pT1(cost —1)} = exp{ZpT sin? %}
Consequently,
t
|14 pzr||e P | < exp{2p2z7 sin’ 5}
Note that 0 < 7 < 1. Therefore,

‘ (1 4+ pr2)" 'pze ™% — 1 ‘ <

(1 —I—pTz)”_lpze_”pTz — (1 + pzr)"e "P7F

+ ‘ (14 p72)"pze™"P7* — 1 ‘ <
|14 pz7 |""H e ™47 || 2 |pT + nmax{1,| 1 + pz7 ||e TP [}| (1 + pzT)e P*T — 1| <
C(| z |pr + np*7?| 2 %) e>cp{27L])27'2 sin’ %} < C(| z |pr + np*r?| 2 |?) exp{2np2 sin’ %}
Combining the last estimate with (4.11) we get

; N t t
‘ (1 =p)+pe®)" = D(t) ‘ < C(|z Pnp?® + n2pt 2 |h) exp{2np2 sin? 5} exp{—2npsin2 5} =.

t
C(| z|Pnp® + n?p*| 2 |*) exp{—2np(1 — p) sin? 5}. (4.12)
From (4.12) and Tsaregradskii inequality we finally get, for 0 < p < 1/2,

‘ (1 = p)E + pBy)" — exp{np(E, — E)} (E - "TZDQ(E1 - E)?) ‘ < Cmin{np®,p?}. (4.13)

Remark 4.1 There other methods for estimation of the difference of Fourier-Stieltjes trans-

forms. For example, one can use (1.5) obtaining:

. ~ L1 -7)2 93
0
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4.4 Taking into account symmetry
Let F = poE + p1Ey + p2E_1, G = exp{F — E}. For approximation of | F" — G™| we use
the Tsaregradskii inequality. Note that by Lemma 3.1
max{| F(¢) |, G(¢) [} < exp{po((Re F(t) 1))} = exp{ ~2po(1 — po)sin® _ }.
Moreover,
|F(t) = G(t)| < CIF() — 11 = Clpa(e” = 1) +pa(e™ — 1) 2.

Of course, we can use the estimate
) . . . t
|pr(e® —1) +pa(e ™ —1)| < pi|e® — 1| +pale ™ — 1| = 2(1 — po) sin? 5

However, such an estimate might be too rough, because we do not take into account possible
symmetry of distribution F'. It is possible to take into account the effects of symmetry
expanding e’ and e~ in the powers of (it). We shall choose another route. From the
relation between (e'* — 1) and (e™"* — 1) given at the beginning of the course we obtain

[pi(e® = 1) +pa(e = 1) | = pi(e — 1) = pa(e” —1) —pa(e” —1)(e " ~1)| <

.t .ot
|p1—p2| ‘ s 5 ‘ + p2 sin® % (4.14)

We can see that, in (4.14), the smallness of the difference between p; and po is taken into
account. Applying Tsaregradkii inequality, we now get the estimate

| (PoE + p1E1 + poE 1)" —exp{np1(E1 — E) +np2(E_ 1 — E)}| <

Cpyt(1 —po) Y p1 — 2| +pg2(1 — po) 2p3n L. (4.15)

If p1 = po and py = const then the accuracy is of the order n~!.

Exercises

1. Let F be the Binomial distribution with parameters n and p. To prove that

J O S P oy
| | n(l —p)

2. Using expansion in moment to get the estimate for | F™ — G" |, when F € F; and
G € Fz, both satisfy (4.7) and (4.8) and, for some s > 1 have finite absolute moments
of order s and coinciding moments of lesser order.

3. To get an estimate for | F™ — exp{n(F — E)} |, when F € Fj.
4. Let 0 < p < 1. To prove that

np2

(L= p)E+pEy)" — exp{np(B: - B) - "0 (B, - B)*} | < Cpy /.

Bibliographical notes

Tsaregradkii inequality is used in so numerous papers that it become a standard technique. We note only
Tsaregradkii (1958), Franken (1964) and Kruopis (1986a,b).
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5 Estimating total variation

We recall that, for W € M, |W | < ||[W]|. In this section, we continue investigation of
measures concentrated on non-negative integers. One of our aims is showing that many
estimates, obtained for the uniform distance, have the same order of accuracy when the
total variation norm is used.

5.1 The characteristic function method

As in previous section we need a formula of inversion. Once again, it can be obtained quite
easily.

Lemma 5.1 Let W € Mz, >, .| k||W{k}| < co. Then, for any a € R, b > 0 the

following inequality holds

™ 1/2
1 — 2 1 o~ N2
< 12 & - —ita . i
|W [l < (1 +bm) <2W/<‘W(t)‘ + 5| (W) | >dt> (5.1)
Proof. We begin from the following identity

> 1 7 .~

> =Wk P = o [ I W) P (5.2

k=—00 7'('7”

Indeed, due to Lemma’s assumptions we can take the derivative of W(t):

(We ) = S wikp(eE-0) =i S Wik} (k - a)eit=.
kEZ

kEZ

Consequently, defining V{k} = (k — a)W{k}, we have
~ . — . !
V() = —ie" (W(t)e ™)

and can apply (3.21).
Applying (1.10) and (3.21) — (5.2) we obtain

W = (é\W{kH(l (5 (s (’“;))/> <

swe( () 50+ (5))

k€eZ
2
)at.

(1+ bﬂ)% /7E (‘ W(t) ‘2 + le‘ (e_itaW(t))l

-
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What role in (5.1) play a and b7 We shall give some heuristic answers. The characteristic
function method for lattice measures means that, estimating the Fourier-Stieltjes transform
of the measure, we get rough impression about the uniform estimate. Moreover, in quite a lot
of cases, we encounter the following principal scheme: if | W () | & AX™", then |W | =~ AX™"
and

7T s
/|W(t) |dt ~ AX=""1/2 and /|W(t) /14| dt ~ AN,

The estimate in total variation can not be better than the uniform estimate. Now let
us study (5.1). We see, that estimate contains two parts: integral of the Fourier-Stieltjes
transform and integral of its derivative. In both integrals b acts differently. Taking b = \!/2
we will preserve the order A™" for the first integral and improve the order of the second
integral.

The role of a can be explained heuristically in the following way. Any additional factor
|sin(t/2)| improves the accuracy of approximation by A~'/2. As can be seen from the fol-
lowing example, suitable centering, can radically improve the accuracy. Indeed, multiplying

|W(t)] by
)

we get no additional improvement. On the other hand, multiplying | W(t) | by

_ in2 £
2psin” 3

:pe

_ ‘ep(eit—l)ipeit

‘(e—itpep(eit—1)>l‘ _ ‘ep(eit—l—it)ip(eit _ 1)‘ .

sin? %‘e_zl’ sin 5 (5.3)

1/2

we get improvement of the order A~"/“. As a rule, a equals to the mean of approximated

distribution.
We demonstrate how to obtain the total variation estimates on a couple of examples.

Poisson approximation to the Binomial law

Let np > 1, p < 1/4. and let
W =((1—-p)E+pE)" — exp{np(E1 — E)}.
We already established (see (4.5)) that
W ()| = | (1-p)+pe)" —exp{np(e' —1)} | < Cnp? sin® %exp{—%p(l—p) sin? %}- (5.4)
Let a = mp, i.e. a equals to the mean of Binomial distribution. Now we can estimate the

derivative part.
4, . . .
(W W) = —iae W (D) + W (1) =
e—ita( — inpW (t) + inpe (1 — p + pe'*)"~" — inpe™ exp{np(e™* — 1)}) =

—e_iminp<((1 —p) +peit)"_1eit -(1-p +peit)" + exp{np(eit -1} - elt exp{np(eit — 1)}) =
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—e inp(((1 = p) + pel)* (e — 14 p — pel) + (1 = ) exp{np(e — 1)}) =
—e "inp(e — 1)(((1 —p) +pe)" (1 —p) — exp{np(e” ~ 1)} ) =
—e inp(el — 1) (((1 —p) +pe)"H (L —p) — (L —p+pe)" + W(t)) -
—e ipp(elt — 1) (((1 —p) +pe")"H (—pe'’) + /W(t))-
Consequently,

‘ d (e_it”/W(t)) < Cnp?

. .ot
g” sin 5‘ exp{—2np(1 — p)sin 5} (5.5)

From the elementary inequality z exp{—z} < 1 we get

‘ %(eit“W(t))‘ < C/np*? eXp{—2np(1 — p)sin’ %},

—~ . t
|W(t)] < Cpexp{—2np(1 — p) sin? 5}

Let b = ,/np. Taking into account that b > 1 we can rewrite (5.1) in the following way

Iw|2<cC /7r (b‘ W (t) ‘2 n %\ (e_imW(t)>l 2) dt. (5.6)

Substituting estimates (5.4)-(5.5) into (5.6) we get
Ko
t
| W |2 < Cp? / \/npexp{—2np(1 — p) sin? 5} dt < Cp?.
-7

Consequently,
(1 = p)E + pE1)" — exp{np(E1 — E)} || < Cp. (5.7)

Note, that (5.7) is trivial, for p > 1/4. Moreover, the estimate is also true, for np < 1,
because in this case the left-hand side of (5.7) is less than 2np?.

The estimate (5.7) can be similarly proved for non-identically distributed Bernoulli
random variables. We have not tried to get small absolute constant. For more than 50
years improvement of constant in (5.7) attracts attention of many mathematicians. Note
that combined with the general property of the total variation norm (see Example 2.1) and
estimate (2.8) the estimate (5.7) can be written in the following general form

sup || (1 — p)E + pB)" — exp{np(B — E)} || < Cmin{np*, p}. (5.8)
BeF

Of course, the estimate (5.8) also holds for the uniform distance.
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Franken type approximations

Let F and G be concentrated on non-negative integers, s > 1, k = vs(F) + v(G)s < oo and
v(F), =v(G)g, for k=1,2,...,s and let

A = min{vy (F) — v2(F) — 1p(F),v1(G) — v3(G) — 15(G)} > 0. (5.9)
Then, as proved in Section for local estimates
| F™(t) — G™(t) | < C(s)nk]| sin% 5. (5.10)

Moreover, from (1.22) and (1.23) we have

s s—1

t

by | F'(t) — (1) | < C(s)] sim 5

|F(t) - G| < C(s)ﬁ‘ sin 3 (5.11)

Further on we assume that nA > 1. Let a = v1(F) = v1(G). In the proof below, for the
sake of brevity we shall write F instead of F(t (t). We have

eﬂt(m( Gn) _ ( fitaﬁ)n B (efitaé\)n

and .
(e—itan(ﬁ _ a)> _ n(e—ita,ﬁ)n—l(e—itaﬁ)l _ n(e—itaé\)n—l(e—itaé\)l _
n{(e—itaﬁ)n—l _ (e—ita@)n—l}(e—itaﬁ)l + n(e—itaa)n—l{(e—itaﬁ)l _ (e—itaé\)l} _
Ji+ Jo + Js.
Here

J = n(e—ital’;-\)n—l N (e—ita@)n—l( —itaﬁ)l
Jo = n(e—itaé)n—l{ﬁ/ _ é\l}e—ita’ Jy = n( —1taG) —1ta(G _ ]/3’\)
We shall estimate each J; separately. We have

~ ~ o~ t s t
| J3| <na|F -G||G|" ! < C’(s)ncm‘ sini ‘ exp{—2)\sin2 5} <

K ot
C(S)n(5*3)/2)\(571)/2 eXP{ Asin 2}_

Similarly,

A1y 5 At K vz b
[ 2| <l GI" M F' = G| < O() sy exp{ —Asin” 5 .
For the estimate of J; we must note that

|(e—itaﬁ)l| _ |e—itaﬁ1_iae—itaﬁ| < |1/7\'—ia| +a|ﬁ_ 1| <

(a(F) + v2(F))| el — 1| = 2(us(F) + v2(F ‘ sin - ‘
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Consequently, N N ~
| Ji| < nf(e ™ F) || F*t=G" | <

t s t PN
C(s)nQ‘ Sinﬁ exp{—Qn)\sin2 §}| (e F)| <

K ) B ot
C(s)n(s—3)/2)\(s+1)/2 (V2(F)+V1(F))6Xp{ 2n A sin 2}_
Combining all obtained estimates with (5.6), for b = VA, we get the following final
estimate " i
-G __m (g ) i)
17 = G < Oy (1 i A ) (5.12)

For the Poisson approximation to the Binomial distribution we get the same order of accu-
racy as in (5.7).

Approximation of symmetric distributions

Let F € Fz, for all ¢, have nonnegative characteristic function ﬁ(t) > 0, do not depend on
n, F{0} > 0 and let F' have the finite second moment. Then

| F" — exp{n(F — E)}| < Cn"’. (5.13)
For the proof of (5.13) note that

F(t) <exp{F(t) — 1},

and
| F™(t) — exp{n(F(t) = 1)} | < nexp{(n — )(F(t) — 1)} F(t) — exp{F(t) — 1}|
Crnexp{(n — 1)(F(t) — 1)} F(t) — 12 < Cnexp{n(F(t) — 1)/2}. (5.14)
Set
pr = 2F{k}.

Then F(t) = > pjcos(tj) and

N 00 00 1/2 , o0 1/2
P = | S gy sin(ts) | < (ijj) (Zpk sin2<tk)) <
j=0 j=0 k=0

00 1/2 , o© tk 1/2 N
2 iD; sin? — | =C(1—F(@t))"/2
(jgojpg) (kz:%pk ; )
Therefore,
| (F"(t) — exp{n(F(t) = 1)})'| < |nF""' (@) F'(t) — nF'(t) exp{n(F(t) — 1)} | <

n| F'(t) | | "1 (8)(1 — F(8) + F™(t) — exp{n(F(t) — 1)} | <
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Cn(1 = F(0) 2 exp{(n — D(F(2) - D}((1 - F@) + (1 - F1)?) <

Cn~ 2 exp{n(F(t) — 1)/2}.
Taking b = y/n from Lemma 5.1 we get

|F" ~ expln(F - E)} | < On Vi [ exp{n(F(t) - 1) at.

To end the proof of (5.13) one should note that by Lemma 3.2 we have

™

/ exp{n(F(t) — 1)} dt < Cn2/2.

—T

5.2 Total variation and the Barbour-Xia inequality

So far we encountered two situations: the general case when we must impose very stringent
conditions on the behavior of distributions (obtaining estimates such as np?), or assuming
the Franken type condition. The main idea of this subsection is to show that F™* and G™
can be close even if Franken’s condition fails. In doing so we utilize one result of Barbour
and Xia (1999) about the difference in total variation between consequent convolutions of
lattice distributions. Let S = & + &3 + - -- 4+ &, be independent integer valued random
variables,

K= Z’U,-, v; =min{1/2;1 — || £(& + 1) — L(&) ||/2}, ©* = maxwv;.

i=1
Then
I L(S)(BL = B) || = [| L(S +1) — L(S) || < 2K~ (5.15)
Moreover, set S* = S — §;, then
sup || L(SY)(E, — E)?|| < 8(K —v*)~L. (5.16)
i

We shall formulate Barbour-Xia estimate for identically distributed summands in terms
of convolutions. Let F € Fy, G € Fy. Set

w=1-|F(E1-E)|/2, u=1-|GE —-E)|/2 (5.17)
The Barbour-Xia estimate can be formulated in the following way. For any natural k,
| F*(By — E) || < 2(kuy) /2. (5.18)

The proof of (5.18) employs special facts from the random walks and is beyond the
scopes of our course. Note that similarly

| GF(Ey — B) || < 2(kug) ™Y/, (5.19)

We assume that the right-hand-sides in (5.18) and (5.19) are infinite, if u; or us equals
zero. The estimate (5.18) is quite sharp. However, it does not take into account possible
symmetry of distributions. Combining Le Cam’s approach with (5.18) we get the following
general result.
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Lemma 5.2 Let, F and G be distributions concentrated on non-negative integers; for some

fized s 2 2, vp(F) = ve(GQ), k=1,...,s =1, v5(F) + vs(G) < 0o and n > 6(s + 1). Then

| F™ — G™ || < (vs(F) + vs(G))n~ 7272 (ur ™/ /%) (125)*/2 /s (5.20)

Proof. Let [-] denote the integral part of the indicated expression. Set v(n,s) = [[n/2]/s].
From the equality of factorial moments we get the following expansion in distributions

F—-G=W(E, - E)*(vs(F) +vs(Q))/s!,

where W is a finite measure satisfying || W || < 1, see (2.6). Taking into account the
properties of total variation norm we get:

17— = nf FrGem(F - 6)|| <
m=0

n—1
S I EmG T IE - 6) || < (| FUAF - 6) ||+ GMAF - G) ) <

m=0

n(vs(F)/s! + v,(G)/s) (| 2By — B)* || + | GI2(By - B)* ) <
n(vs(F)/s! + vo(F)[st) (Il 709 |[(By = B)* + | G"9)(By - B)|I*) <

2 n(vs(F) /8! + v5(G)/8) ((v(n, )ur) " + (v(n, s)ug) =) <
(vs(F) + v5(G))n=6=2/2 (47 5/2 +uy 5/2)(128)5/2/3|

In the last inequality we used the following estimate

v(n,s) > [n/2/s — 1 > n/(2s) ~ 1/s — 1 > n/(3),

which follows from n > 6(s + 1). The proof of (5.20) is completed.

Remark 5.1 Note that for unimodal distribution F', we can use the following estimate:

up =>1— m,?XF{k}.
Indeed, let F{k} < F{k + 1}, for k < m; and let F{k} > F{k + 1}, for k > m. Then

|F(E, - E)| = Z | F{k} = F{k - 1}| < 2F{m} < 2max F{k}.

k=—o

We shall exemplify (5.20) assuming G to have the geometric (G™ to have the negative
binomial) distribution, i.e. let G have the characteristic function:

G™M(t) = (p/(1 — ge")", ¢<1/2, pt+g=1
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Then

G"(t) = exp{n f: %(e“m - 1)}. (5.21)

m=1

Expanding G(t) and In G(t) in the powers of (e — 1) we establish that factorial moments
and factorial cumulants of G equal, respectively,

k k
k!(2> and (k—1)!(€> L k=1,2,...
b b

It is easy to check that Franken’s condition (3.18) means that ¢/p < 1/3. Let £ be concen-
trated at 4 points and have the following distribution:

P(¢=0)=20/45, P((¢=1)=18/45 P(¢=3)=5/45, P(£=6)=2/45.
Consequently,
Ft) =1+ (" — 1) + (e — 1)> + (e" — 1)> + g " — 1[*/3. (5.22)

It is easy to check that v; = 1. Consequently, Franken’s condition is not satisfied. However,
it is easy to check that

u; = 1— (20/45+|20/45 — 18/45| + 18/45 +5/45 4+ 5/45+2/45 + 2/45) /2 = 18/45. (5.23)

Let 1 have the geometric distribution defined by (5.21) with p = ¢ = 1/2. Once again,
we see that Franken’s conditions (5.9) is not satisfied. Moreover,

Gt) =14 (e —1)+ (e —1)? + (e —1)3 + 9| — 1|~ (5.24)

The quantity us can be easily computed for any geometric distribution, because || GE; — D ||
equals to

p+p(l—q) +pal —q) +pg’(1 —q) +pg*(L—q) +-- =p+p*(1+ g+ ¢ +...) = 2p.
Consequently, for our example,
up=1-p=1-1/2=1/2. (5.25)

Combining (5.22) - (5.25) with the statement of Lemma we get the following corollary.
Corollary 5.1 Let F and G be defined as in above. Then

|F" —G"|| < Cn L.

In our example, s = 4. Consequently, Lemma can be applied when n > 6(4 + 1) = 30 only.
However, if n < 30, corollary follows from the fact that the difference of two distributions
is less then 1.
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Exercises

1. Let A >0, k € {1,2...}. To prove that

|| (El - E)kexp{)\(El — E)} || < C(k))\—k/Q.

2. Let p < 1/5. To get the estimate for

(1 = 2p)E + pEy + pE_1)"(Ey — E) ||

3. Let F' be concentrated on non-negative integers. Let F' have finite v, and let F' do
not depend on n in any way. To get the estimate for || F” — exp{n(F — E)}||. When
the obtained estimate is trivial? To give sufficient condition for the estimate to be of
the order Cn~1/2.

Bibliographical notes

Another version of (5.1) can be found in Presman (1983). Inequality (5.1) was extended to the case of [,
metrics in Siaulys and CekanaviGius (1988). Prohorov (1953) was the first to prove the estimate (5.7). He
used direct asymptotic expansion of the binomial probability. Improvement of constant in (5.7) is among
the most comprehensively studied subjects in Probability theory, see Kerstan (1964), Deheuvels and Pfeifer
(1986), Barbour et al. (1992), and references therein. The inequality was proved in Barbour and Xia (1999).
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6 Nonuniform estimates

In many aspects nonuniform estimates for W € Mz can be obtained very similarly to the
estimates in total variation.

6.1 Local estimates
Let W € My and let 3., k?| W{k} | < oo. Note that
= Z W{k}eh™ = Z W{k} cos(km) Z W{k} cos(—km) = W (—m).
kEZ kEZ kEZ

Therefore integrating by parts the formula of inversion (3.1), for a # k, we get

™

1 [ . 1 _ N
Wik} = o / W(te ™ dt = — / (W(tyeite)eitla) at =

-7

™

#i T e —ita ’it(afk) __#i/ AL it(ak)
o 27r/(W(t)e ) etk at = P (W(te *) e R ar.  (6.1)

- -7

Consequently, for any a € R,

k—a||W{k}| < /‘ o)) a, (6.2)

(k—a)? | Wi{k}| < / [(Wge )" a. (6.3)

In general, the process can be continued establishing estimates of the higher order.
However, we must emphasize, that additional derivative usually means the reducing of the
accuracy.

Nonuniform local Poisson approximation to the Binomial law
We already know that
‘ d

= (7 {((1 = p) +pe")" — exp{np(c" — 1)} } ) ‘ <

t t
Cnp?|sin 5‘ exp{—2np(1 — p) sin® 5}, (6.4)

see (5.5). Consequently, from (6.2) we obtain the estimate

|k —np[| (1 - p)E +p1E1)"{k} — exp{np(E1 — E){k}}| < Cp. (6.5)
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Usually nonuniform estimates are given in a more convenient form. Combining local esti-
mate with (3.8), for 0 < p < 1/2, we obtain

(1+ %) (@ =P+ 9B ) - explmplE — B < 0y 2 69

Similarly, we can get estimate for (k — np)?. Note that, if the second-order nonuniform
local estimates exist, then summing them it is always possible to get the estimate in total
variation. However, such indirect approach means much larger absolute constant.

Nonuniform local Franken type estimates

As in previous sections, we assume that F' and G are concentrated on non-negative integers,
s>1, k=vs(F)+v(GQ)s < oo and v(F) = v(G)g, for k = 1,2,...,s and let

A = min{v (F) — v3(F) — u(F), 1 (G) — V¥ (G) — 1e(G)} > 0. (6.7)

Then, as proved in Section for estimates in total variation,

| F(6) — @™(1) | < C(s)nx| sin% L (6.8)
and , . 2 p
(e F)-0) ) | < co) s (1+ 205 EE). 69)

Therefore, for any k € Z, a € R,

k= (F) N, e o
(”T)'F (k) — G™{k}| <

K (1 L () + V%(F)>_ (6.10)

C(s) n—1)/2\(5+1)/2 by

Estimate (6.10) is of the right order for the Binomial distribution. In principle, the
second order estimates can be obtained as well.

6.2 Integral estimates

The idea of inversion formula for the nonuniform integral estimates is the same as for the
local ones. Let W € M,

Ut) = ———— (6.11)

We shall assume that U(t) has two continuous derivatives. Then by the formula of inversion
(4.3) we get



Note that U(w) = U(—=). Therefore, applying the same reasoning as in the local case, for
any a € R and k € Z, we get

k= a||W{(—oc0,k 27T/‘ )| at, (6.12)

(k = a)2 | W{(=o0, k) %/‘ e )| at. (6.13)

Now the estimates can be obtained in the same way as for the local case.

Nonuniform integral Poisson approximation to the Binomial law

Let W = ((1 —p)E 4+ pE1)" —exp{np(E1 — E)}, 0 < p < 1/2. We already proved estimates

o .ol .ot
|W(t) | < Cnp?sin? 3 exp{—2np(1 — p) sin® 5},

— . t t
| (W (t)e™P) | C’an‘ sin 5‘ exp{—2np(1 — p) sin? 5}

Taking into account that

| (W (t)e )| [ W(t)|
|e7it_1| ‘efit_l‘Z’

[(U@e™P)'| <

we easily obtain the corresponding nonuniform estimate. Once again we shall write it in a
more standard form combining with the uniform result:

(1 + %) ‘ (1 =p)E + pE1)"{(—00,k)} — exp{np(E1 — E)}{(—00,k)}| <
Cmin{an,p}. (6.14)

In above, we assumed that p < 1/2. It is not difficult to get the estimate for 1/2 < p < 1,
however, the usefulness of it will be doubtful.

Symmetric distributions

In this section we begin investigating of one special subset of all symmetric distributions. We
shall consider distributions having nonnegative characteristic functions, i.e. distributions
from the set Fy. It is easy to understand that distribution of two independent random
variables ¢ — £ with the same distribution F has the characteristic function | F(t) |2 and
belongs to Fy. Let F € F. N Fz,

00 00
. o tk
Pr = 2F{k}a o’ = ZkQPka G = eXP{F - E}7 ’f‘(t) = kzlpk sin’ 9
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Using Holder’s inequality we obtain

o

F(t) =1+ prlcostk — 1) < G(t) = exp{—2r(1)},
k=1

o o
|ﬁ'(t)| = ‘ kak sintk‘ < Zk\/P_k\/PM sintk | < Co+/r(t),
k=1 k=1

|F"(t)| = ‘ ik2pk costk‘ <o?
k=1
\é'<>|<|@()||F' < Cov/r(t),
G"(t
F(t

)| < Co?, |<>|02t21 e ),

) - G@)| <CIF@) -1 < Cri(y),
|F'(t) - G'(t) | < | F'(1) || F(t) — 1| < Cor®(3),
|F'() - "W < C{F" @ 11 F) — 11+ | F'@) P} < Co™r(t).
Using these estimates we prove that
| Fn(t) — G"(t)| < Cn| F(t) — G(t) [e7® < Cnr?(t)e™ ") < Co®y/n| t[Pe ™
|(FM(t) — G"(t))'| < Co®y/nt?e ™
|(FM(t) — G"(1))"| < Co®/n| t]e ™
Let W = F" — exp{n(F — E)}. By using (1.2) (or expansion of F(t) — 1 in powers of ¢)

we can prove that U(t) and its first and second derivatives are continuous. We have

o <o AL, P01, W01,

Then by (3.15)we get

/ e W dt < On V2 (1 — F{o}) V2

Combining all estimates with (6.13) and (4.1) we get the following nonuniform integral
estimate. For any k € Z,

(14 o )| Fi(-cesm)} = expn(F — B)}(-oc,m} | <

max{1,no?}

Co(1 — F{0})"/?n ", (6.15)

Note that, for obtaining (6.15) we have not used centring. Indeed, the mean of F is
already equal to zero.
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6.3 Fortet - Mourier distance

Let W € My and let W{R} = 0. We recall that then the analogue of the Fortet-Mourier
distance for W is

o o0

(W len = Y [W{(-o0,k)}[= Y [W{lk,00)}].

k=—00 k=—00

It is obvious, that the simplest way to obtain estimates for | W | is to sum nonuniform
integral estimates of the second order. Let F € F, N Fz, 0 = Y 50 k*F{k} and let
no > 1. Then from (6.15) and (1.10) we get that

| F™ — exp{n(F — E)} |rm < Co?(1 — F{0})"Y/2n71/2,

We must bear in mind that to use nonuniform estimates for the Fortet-Mourier distance
means quite large constants.

Exercises

1. Let F € Fz N Fy as in (6.15). To get nonuniform local estimate of the second order
for | F™ — exp{n(F — E}|.

2. Let F € FzNF4 as in (6.15). To get nonuniform local estimate of the second order
for | F*tl — Fm|.

3. Let F € Fz. What conditions are sufficient for the nonuniform local estimate of
F™ —exp{n(F — E)}.

4. Let 0 < p < 1/2. To get nonuniform integral estimate for

np2

(1-p)E +pE1)" - exp{np(E1 - B) = = -(B1 - E)2}-

5. To prove that

| (1 = p)E + pE1)" — exp{np(E1 — E)} |rm < Cpy/np.

Bibliographical notes

The section reproduces somewhat simplified version of Cekanavicius (1993). Other appli-
cations can be found in Cekanavi¢ius and Kruopis (2000).
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7 Lower bounds

7.1 Estimating total variation through Fourier-Stieltjes transform

In general, one usually uses the following relation
W< W]

and obtains lower bound estimates for the uniform metric. However, the following very
simple relation between total variation norm and the Fourier-Stieltjes transform allows
direct estimates:

(W) <[[W]. (7.1)
Though (7.1) holds in the general situation, we shall prove it for W € Mz only. We have

W)= | Sowikre™ | < 31wk =Wl

kEZ kEZ

This inequality holds for all t. Therefore, we can estimate |W(t)\ suitably choosing .
We shall demonstrate the above technique on one special case. Let F € F. N Fyz, 0 =
S0 k?2F{k}. We shall assume that F does not depend on n in any way, i.e. we assume
that we have the scheme of sequences. Moreover, we assume that F' has the finite fourth
absolute moment and F' # E. Then we shall prove that

| F™ — exp{n(F — E)}|| > Cn~". (7.2)

Let us consider expansion of the characteristic function in powers of ¢t. Taking into
account the symmetry of F' we have

242
~ t
Fty=1- JT +0Ct
Consequently, we can choose t = ¢ in such a way that

-~ 1
]_—F(t()):%.

The quantity a will be determined later. Taking into account (1.1), and (1.6) similarly to
example 1.1 we get the following sequence of estimates (for the sake of brevity we omit #):

| F" — exp{n(F — 1)} — nexp{(n — 1)(F — )}(F —exp{F — 1})| <

n

Z (mgl)‘ﬁh—ml exp{(m—s—1)(131\—1)}”ﬁ_e"p{ﬁ_1}|2 D

m=2
n\1l =~ 1
SIF-1P0 g ——
(2)4| | 8ain?’

nexp{(n — 1)(F — 1)}(1 F(F-1)- %(ﬁ— 1)? — exp{F — 1})‘ <

41



|F—1[3 1
n <

6 = 6adn?’
o5 (exptn =1 -1y - 1) <t -0l TG < L
g|n(ﬁ— DI = 2a%n
Collecting all estimates we see that, for ¢ = tg,
P —exp{n(F -1} > 55 (1- - = o — o).

To finish the proof of (7.2) we should choose a sufficiently large. Foe example, we can take
a=2.

7.2 Local lower bound estimates

Let W € Mz. The general idea of the lower bounds estimates are can be expressed in the

following way
|WH |oo < [W |oo [ H |-

Here H € M. Dividing both sides of the estimate by || H || we get the lower bound estimate.
Consequently, we need H having good properties. Usually convolution with some ’good’
measure is called smoothing. There are various possible choices for H. We shall choose H
to be quite close to the normal distribution.

Lemma 7.1 Let W e Mz, b>1,a €R, s=1,2,

Pi(t) =e P2 fo(t) = e/, (7.3)
Vi(b) = / B30T (£/5) exp{—ita/b} dt. (7.4)
Then
| W |00 > Co| V;(b) [b7". (7.5)
Here Cy > 0.1.
Proof. It is known that
/ P (D™ dt = Vomip;(y), Yi(y) = eV, Poly) = iye /2.
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Moreover,

Z¢1(k “) <1+bve2r, Z%(k “) < 2(e Y2 +b). (7.6)
kEZ kEZ
Now we get the following estimate:
o0
Vi(b) = / exp{—ita/b}P; () S W {k} exp{ikt/b} dt =
e kEZ

S Wik / exp{it(k — )b} (1) dt = var 3 W {kpyy (27

kEZ kEZ
W > 10 (s (55
kEZ

)
and we can apply (7.6). O.
Why do we need two possible V;(b)? The answer is determined by the method of proof.

Consequently,

Just like in the previous section, we shall expand W(t) in powers of t. The result will be of
the form:

|V;(t/b)| > C Wb‘/tsqu dt‘ CQWb‘/ts“ dt‘

Now the first integral turns zero if the function is odd. Consequently, we should choose
¢1( ) if s is even and ¢ t) if s is odd.

We demonstrate the method on the Poisson approximation to the Binomial law. Let
0 < p < 1/2. In principle, we repeat the same scheme as in previous section. However we
need to center distributions properly. Let, W = ((1 — p)E + pE1)" — exp{np(E1 — E)}.
Then by (1.3)

W (t)e ' =

n

(L—p+pe’ —exp{p(e”’ —1)}) Y e e "=V (1—p 4 pe)* " exp{(n— k)p(e —1)}. (7.8)

k=1
We have
. . w j
1 —p+pe —exp{p(e’ —1)} =1+ p(el’ — 1) Z (et — 1)
2 2it2
—%(elt — 1)2 —|—R1(t) = —p ( ) +R1(t) + Rg(t).
Here

|Ri(t)| < Csp®le — 1P <C®|t°, | Ra(t)| < Osp?|t .
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The next step is to submit these inequalities into (7.8). However, we shall also replace e

by unity and take into account that |e " — 1| < p|t¢|. Consequently,

W (t)e P =

242 " . . .
B D e em (1 — p 4 pe ) exp{(n — k)p(e" — 1)} + On(| Ba(t) + Ra(t)| =
k=1

242 " . . .
pT > e Hn=P(1 — p 4 pe'®)F T exp{(n — k)p(e” — 1)} + R (t). (7.9)
k=1

Here
| R3(t) | < Conp?|t|>.

For the centered characteristic function with two finite moments G(t), from (1.19) we

get that
2

~ t
180 ~11< 5 0%(@),
where 0%(G) is the variance of G. Let us consider
G= E_(n_l)p((l —-pE —|—pE1)k_1 exp{(n — k)p(Ey — E)}.

Note that G corresponds to the sum of independent Binomial and Poisson random variables.
Hence, it has the variance equal to (k — 1)p(1 — p) + (n — k)p < np and

—it(n—1)p it\k—1 it npt*
e (1= p+pe)*Lexp{(n — k)p(e" 1)} - 1| < =

Therefore from the last estimate and (7.9) we get

P it np2t2
W (t)e % = “— 4+ Ry(t) + Ra(t). (7.10)
Here 0.0 )
np“t® npt
< L

The second step is application of Lemma, 7.1:

t t
v | [oternal [ (g kera- Ja(p) s
—0o0 —0oQ —0oQ

2 2 2,3 2
np np nép np 1 np
C7F—Csb—3_09b—4ZClob—Q(l_Cllg_Cmb_Q)- (7-11)

Let np < 1. Then taking sufficiently large b > 1 from (7.11) we obtain

| Vi(b) | > Cnp®. (7.12)
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Let np > 1. Then taking b = npC with sufficiently large C' from (7.11) we obtain
|Vi(b) | > Cp. (7.13)

Now from Lemma, 7.1 we get that

(W e 2 Cmin{an,\/g}.

Combining with the upper bound estimates, for 0 < p < 1/2 we get the following inequality:

Ci3 min {np2, \/g} < ‘ ((1 —-p)E —I—pEl)n —exp{np(Ey — E)} ~ <

C14 min {an, p } (7.14)

n

Thus, we see that the upper bound estimate was of the correct order.

7.3  Uniform lower bound estimates

Uniform lower bound estimates can be proved exactly in the same way as the local ones.
We use the following Lemma.

Lemma 7.2 Let W e Mz, b>1,a €R, s=1,2,

Pi(t)=e "2 dolt) =te™/?, (7.15)
Vi(b) = / (1) (¢/b) exp{—ita/b} dt. (7.16)

Then
|W [ > Co| V(D). (7.17)

Here Cy > 1/4m.

Proof. Let N > 2 be natural number. By Abel’s partial summation formula (1.7) we

get
S Wik (S0 = (F0) 3w
k=—N k=—N
N
X win / v (Y 4 Stk ("%} o
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The limit when N — oo gives us the following relation

Swiehs (50) = - [ S wim{u(50)} an (7.18)
keZ “o0 k<Y
The quite standard estimation shows that
[ [ (5 o <ovmr
By (7.7) we get
Vi) = Var] Y w ik (R52) | < anlw,

kEZ
The last inequality completes the proof. [
Let W denotes the finite measure with the Fourier-Stieltjes transform W(t /b) exp{—ita}.
Then (7.18) is nothing but integration by parts in the following expression:

|W|/\¢J

It is obvious, that the difference of uniform estimates from the local ones lies in the
additional multiplier b. We already established estimate for V3 (b) for the Poisson approxi-
mation to the Binomial law. Therefore,without additional calculations, for 0 < p < 1/2 we
get

"E,

\ 7 () W {da) | = \ / W {(—o00,2)} do (z

Cy min{np2,p} < ‘ ((1 —p)E+p(Ey — E))n —exp{np(E1 — E)} | <

| (= p)B+ By~ B)" ~ expi{np(By ~ B)} || < Comingnp?,p}.  (7.19)

Thus, our upper bound estimates are of the right order.
As the second example we will consider non-degenerate F' € Fz N F, having four finite
moments and do not depending on n in any way. We shall prove that

| F" —exp{n(F — E)}| > Cn™". (7.20)

In the first subsection we already established the same order of accuracy for the total
variation norm, see (7.2). Collecting the estimates of subsection 1 we get
2,2 o242
|F(t) -1 gUT, F()—I—T+9Ct4
and

n0_4t4 + 6n>t5.

- - F(t) — 1) .
Fr(t) — exp{n(F(t) — 1)} = W +OC| Ft) =1 =
Now it suffices to apply Lemma 7.2 with Vi (b), b = \/nC and sufficiently large C.
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7.4 Exercises

1. Let 0 < p < 1/2. To prove that

np2

(1 -p)E+pE)" - exp{np(E1 —FE) - 5

(B — E)Q} ‘ > C min{np®, p*/?n"1/%}.

2. Let F € Fz, F{0} = py € (0,1) and F does not depend on n in any way. To prove
that

| (F — E)exp{n(F — E)}|s > Cn™L.

3. Let F=(1—-p)E+pE;, 0<p<1/2 np>1. To prove that

|F" — F"t) > c\/ﬁ.
n

Relation between total variation norm and Fourier- Stieltjes transfom was noted by Studnev
(1967). Lower bound estimates of (7.17) type can be found in Siaulys and Cekanavicius

(1988). Note that Kruopis (1986a) uses different from ours smoothing measure when esti-
mating lower bounds.

Bibliographical notes
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8 The Stein method for Poisson approximation

8.1 The Stein equation

Nowadays Chen’s adaptation of the Stein method is among the most popular techniques for
estimation of the lattice approximations. H The Stein method is a very powerful technique.
Summarizing the present stage of development of the method we can state that:

— The method almost without changes fits for the sum of dependent random variables
as well as for the independent ones.

— The method almost without changes fits for total variation, local and Fortet-Mourier
distances.

— Application of the method results in small absolute constants.
— The Stein equation can be satisfactorily solved for certain distributions only.

— So far the method is of limited use if we want to benefit from the symmetry of
distributions.

Comprehensive treatment of the method can be found in Barbour et al. (1992), Chen
(1998), and Barbour and Chryssaphinou (2001). We restrict ourselves to discussion of some
moments only.

The Stein - Chen method does not involves characteristic functions and is based on the
properties of the special difference equation. In this Section, we need additional notation.
For g : Zy — R, set | glloo = sup;>o|9(j) [, Ag(j) = g(s +1) — g(j). Symbol f denotes
function f : Z, — R in all equations, except (8.7).

We begin from the direct observation that Poisson probabilities 7 (k) satisfy the following
recursive relation:

X k1 AL k4]

k) =— kE+1
mk) =7 e TS kD,
or, equivalently,
An(k) — (k+1)m(k+1) =0.

The last relation allows, for any bounded function g, to write

o

> (g(k +1) - kg(k))m(k) =0,

k=0
or

E(Ag(n +1) —ng(n)) =0. (8.1)

Here n has the Poisson distribution with the parameter A. Now if some random variable ¢ is
close to 7, we can expect that the difference (8.1) for £ to be small. Let I 4(j) be indicator
function, i.e.
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L [0, ifj¢A,
HA(J)_{L if j € A.

Let g(j) be solution to the S