

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 3

Problem 1. Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras over a field K. Recall that the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} was constructed in the lecture as the quotient of the tensor algebra $T(\mathfrak{g})$ by the two-sided ideal $I \subset T(\mathfrak{g})$ generated by the vectors $x \otimes y - y \otimes x - [x, y]$ with $x, y \in \mathfrak{g}$. The canonical embedding $\iota_{\mathfrak{g}} : \mathfrak{g} \to U(\mathfrak{g})$ was given by the map $x \mapsto x + I$.

- 1. Show that for every Lie algebra homomorphism $\varphi : \mathfrak{g} \to \mathfrak{h}$ there is a unique morphism $U(\varphi) : U(\mathfrak{g}) \to U(\mathfrak{h})$ of associative algebras, such that $\iota_{\mathfrak{h}} \circ \varphi = U(\varphi) \circ \iota_{\mathfrak{g}}$.
- 2. Let $\varphi : \mathfrak{g} \to \mathfrak{g}'$ and $\psi : \mathfrak{g}' \to \mathfrak{g}''$ be Lie algebra homomorphisms. Show that the equalities $U(\mathrm{id}_{\mathfrak{g}}) = \mathrm{id}_{U(\mathfrak{g})}$ and $U(\psi \circ \varphi) = U(\psi) \circ U(\varphi)$ hold. (Hint: Use the universal property of the enveloping algebra)
- 3. Show the existence of an isomorphism $U(\mathfrak{g}^{\text{opp}}) \to U(\mathfrak{g})^{\text{opp}}$ of associative algebras. (Hint: Show that $U(\mathfrak{g})^{\text{opp}}$ together with the linear map $\iota : \mathfrak{g}^{\text{opp}} \to U(\mathfrak{g})^{\text{opp}}, x \mapsto x + I$ fulfills the universal property of the enveloping algebra of $\mathfrak{g}^{\text{opp}}$.)

Problem 2. Let G be a finite group, $\mathbb{C}[G]$ its associated \mathbb{C} -algebra. A $\mathbb{C}[G]$ -module is also called a representation of G (:= Darstellung von G).

- 1. Let M be a finite dimensional $\mathbb{C}[G]$ -module. Prove that the $\mathbb{C}[G]$ -module structure of M induces a group homomorphism $\rho_M : G \to \operatorname{End}(M)$. Prove the reciprocal statement: if V is a vector space and $\rho : G \to \operatorname{End}(V)$ a group homomorphism, prove that we can endow V with a structure of $\mathbb{C}[G]$ -module.
- 2. Let M be a finite dimensional $\mathbb{C}[G]$ -module and N a sub-module of N. Let us consider N' a supplement of M as a vector space (in general N' is NOT a $\mathbb{C}[G]$ -module), and denote $p: M \to N'$ the projection on N'. By using the map

$$\pi := \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g)^{-1},$$

prove¹ that we can find a submodule N'' of M such that $M = N \oplus N''$.

- 3. Let M_1 and M_2 be two simple $\mathbb{C}[G]$ -module and $f : M_1 \to M_2$ a morphism of $\mathbb{C}[G]$ -modules. Suppose that f is different from 0. Prove that M_1 and M_2 are isomorphic.
- 4. With the same notations and the same hypothesis as the previous question, and by considering the eigenvalues of f, prove that f is an homothety (that is a multiple of the identity)².

Problem 3 (Burau representations of the braid group). We consider B_n the braid group on n strands and with its standard generators $(\sigma_i)_{1 \le i \le n-1}$. Let t be a non-zero complex number.

¹If A is an algebra, we say that a A-module N is *simple* if N does not contain non-trivial sub-modules. And that an object is *indecomposable* if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

²This is Schur's lemma. Schur (1875 - 1945) was a German mathematician.

1. Prove that the following data yields a well-defined complex *n*-dimensional representation of B_n :

$$\sigma_i \mapsto \begin{pmatrix} I_{i-1} & & & \\ & 1-t & t & \\ & 1 & 0 & \\ & & & I_{n-i-1} \end{pmatrix}$$

It is called the $Burau^3$ representation of the braid group.

- 2. Prove that this representation is not irreducible (look for a common eigenvector).
- 3. Let us denote by $b_0, b_2, \ldots b_{n-1}$ the standard basis of \mathbb{C}^n . Prove that the (n-1)-dimensional space spanned by $(t^i b_i t^{i+1} b_{i+1})_{0 \le i \le n-2})$ is invariant by the action of B_n . This is a new representation of the braid group called *reduced Burau representation* of the braid group.
- 4. Compute the matrix associated to σ_i by the reduced Burau representation in the given base.

 $^{^3\}mathrm{Werner}$ Burau (1906 – 1994) was a german mathematician and was professor in Hamburg.