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Introduction

In the following, let a and b always denote positive real numbers, i.e. a, b ∈ R∗+ . As stated in the
title, we ask when ab > ba . In fact an old question, since it was already attacked by Leonhard Euler,
at least in the form ab = ba , and later by many others. In this elementary note, we attempt to give a
survey on some geometric visualizations and a few applications of nonelementary analysis.

In the text we will frequently replace the condition ab > ba by one of the following equivalent
conditions (we denote by log the natural logarithm which usually is called ln ):

b log a > a log b ,

1

a
log a >

1

b
log b ,

a
√
a >

b
√
b ,

M (a, b) := ab − ba > 0 .

Clearly, M (b, a) = −M (a, b) , such that the inequalities above remain equivalent if one replaces
everywhere the >–sign by the <–sign, and the same holds true for equality. In pictures, we attach to
any point (a, b) a +-sign, if ab > ba or equivalently M (a, b) > 0 , and similarly with the opposite
signature − . Since M is a continuous function, the sign is constant by the intermediate value theorem
in any domain G ⊂ R∗+ × R∗+ in which M has no zeros.

1 Some nice geometric proofs without words

In [3], Chakraborty gave a nice visual proof for πe < eπ such that - in our notation - the point (e, π)
lies in the +-region. Although the appearance of the circle number π looks spectacular, it is in fact
completely artificial , i.e. the same figure shows that be < eb for all b > e . This follows just by
integrating the monotone decreasing function 1/x over the interval [ e, b ] :

log b − 1 =

∫ b

e

dx

x
<

1

e
(b − e) =

b

e
− 1 , i.e. e log b < b log e .

Similarly, integrating from b to e for b < e gives

1 − log b =

∫ e

b

dx

x
>

1

e
(e − b) = 1 − b

e
, i.e. again e log b < b log e .

In particular, we always have log b < e
√
b for all b ≥ 1 . For example, log 20 = 2, 99573227... and

e
√

20 = 3, 0103860252... .
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Figure 1.1

It is well known that one can derive the same result(s) from the (also visually evident) inequality
ex > x + 1 , x 6= 0 , by setting x = b/e − 1 . Or, take the equivalent inequality

log x < x − 1 , x 6= 1 ,

and set x = b/e 6= 1 which leads again to e log b < b = b log e .1

Figure 1.2

The rôle of Eulers number e , on the other hand, is by no means artificial. If a is a positive real
number such that ab > ba for all positive real numbers b 6= a , then a = e . This follows, e. g., from a
simple analysis of the function x 7−→ (log x)/ x (see, for more details, the next section). This analysis
leads moreover to the insight that the equation ab = ba has nontrivial solutions a 6= b only inside

{1 < a < e , b > e} ∪ {1 < b < e , a > e} .
1Note added July 2019. See also: Ananda Mukherjee and Bikash Chakraborty: Yet Another Visual Proof that πe < eπ .
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The complement in the octant b > a decomposes into a convex wedge B+
1 := {(a, b) : e ≤ a < b}

and a starshaped part B+
0 . Since (1, 2) ∈ B+

0 and 12 < 21 , we have ab < ba for all (a, b) ∈ B+
0 .

Figure 1.3

On the other hand, we have (3, 4) ∈ B+
1 and 34 = 81 > 64 = 43 and consequently, without further

calculations, ab > ba for each (a, b) in B+
1 . - Hence, we have the following situation:

+

+

-

-

Figure 1.4

There is a nice visualization of ab > ba for e < a < b by comparing the slopes of the lines through
the origin in R2 and (a, log a) resp. (b, log b) (see [7]).
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Figure 1.5

As a consequence, we must have nontrivial solutions of ab = ba on each line b = t a , t 6= 1 . This
“Ansatz” is exactly what Euler was doing (see Section 3).

2 The function (log x)/x and some consequences

The function f (x) := (log x)/x , x > 0 , has the derivative

f ′(x) := (1 − log x)/ x2 ,

which is positive on 0 < x < e and negative on x > e . Hence, f is strictly increasing in the first
interval and strictly decreasing in the second interval and thus attains an absolute maximum at e with
value 1/e . A rough sketch of its graph looks as follows:

Figure 2.1

Clearly, by L’Hospitals rule,

lim
x→∞

f (x) = lim
x→∞

1/x

1
= 0 .

Therefore, we can state the following Theorem which finally justifies Figures 1.3 and 1.4.
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Proposition 2.1 The equation
f (x) = c , x > 0 ,

has

i) no solution, if c > 1/e ;

ii) exactly one solution, if c = 1/e , namely x = e ;

iii) exactly one solution, if c < 0 , namely in x < 1 ;

iv) exactly two solutions a and b , when 0 ≤ c < 1/e , with 1 < a < e and b > e . In that case

lim a = e if and only if lim b = e

and
lim a = 1 if and only if lim b = ∞ .

3 The “mutuabola”, and how Euler did it

Of course, since the function f possesses in the interval ( 0, 1/e ] a strongly decreasing inverse coming
from +∞ and going down to e , the closure of the set of nontrivial solutions of the equation ab = ba

is the graph of a monotonically decreasing continuous function µ : (1, ∞) −→ (1, ∞) with

lim
a↘1

µ (a) = ∞ , lim
a→∞

µ (a) = 1 , µ (e) = e .

We call it the mutuabola in accordance with [9].
A nice parametric description goes back already to Euler [5]. He puts (in principle) b = t a , 0 <

t < ∞ , t 6= 1 , expecting exactly one solution for any given t . In fact, this works quite well, since from
the condition ab = ba we conclude

t a log a = b log a = a log b = a (log a + log t)

and therefore

log a =
log t

t − 1
and log b = (log t)

{
1 +

1

t − 1

}
=

t log t

t − 1

or
a = t1/(t−1) and b = tt/(t−1) ,

which we also write in the form

a (t) = exp

(
log t

t − 1

)
, b (t) = exp

(
t log t

t − 1

)
.

The reflection (a, b) 7−→ (b, a) is explicitly given by the transformation t 7−→ 1/t since clearly

a (1/t) = b (t) .

Therefore, it is sufficient to study the behaviour of the mutuabola analytically only, e.g., in the interval
0 < t ≤ 1 .

By L’Hospitals rule,

lim
t→1

log t

t − 1
= lim

t→1
1/t = 1 and therefore lim

t→1

t log t

t − 1
= 1

such that
lim
t→1

a (t) = lim
t→1

b (t) = e ,
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as we already know. Further,

lim
t↘0

(t log t) = lim
t↘0

log t

1/t
= − lim

t↘0

1/t

1/t2
= 0

such that

lim
t↘0

b (t) = 1 and lim
t→∞

a (t) = 1 .

Finally, by similar arguments,

lim
t↘0

a (t) = ∞ and lim
t→∞

b (t) = ∞ .

Since each line b = ta , t 6= 1 , cuts the mutuabola in exactly one point, it is divided into two
parts with definite sign. Because it hits for small resp. large a regions with a known sign, we find the
following distribution of signs on exactly four regions.

+

+
-

-

Figure 3.1

For more details, see also [8] and the literature cited therein.

We note two elementary characterizations of Euler’s e .

Proposition 3.1 i) If a is a positive real number such that ab > ba for all positive real numbers
b 6= a , then a = e ;

ii) e = min {a > 0 : ab > ba for all b > a} , more precisely:

{ a ∈ R∗+ : ab > ba for all b > a } = [ e, ∞) .
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4 Another geometric interpretation

Starting with the obvious identity

1

a
log a − 1

b
log b =

(
1 − a

b

) (1

a
log a − log b − log a

b − a

)
we get another geometric visualization of the results obtained so far. Assuming without loss of generality
that a < b , we obtain the correct signature also by looking at

1

a
log a − log b − log a

b − a
.

If for a > 1 we draw a halfline from the origin through (a, log a) it will cut the graph of the logarithm
function in another point (b0, log b0) where b0 > a if a < e , b0 < a if a > e and b0 = a if a = e .
Of course, if a 6= e , b0 is the uniquely determined real number different from a such that ab0 = b0

a .

Figure 4.1

Moreover, if a < b < b0 , one can directly see that

1

a
log a <

log b − log a

b − a
,

and for b > b0 we have the opposite inequality

1

a
log a >

log b − log a

b − a
.

5 The smoothness of the mutuabola

It is easy to check that the mutuabola is a smooth curve at each point different from (e, e) : An
elementary calculation gives

a′(t) =
(t − 1) − t log t

t (t − 1)2
a (t) and b′(t) =

(t − 1) − log t

(t − 1)2
b (t) .

Since a (t)/ t and b (t) never vanish, we must have at any point with a′(t) = b′(t) (= 0) that
(t − 1) − t log t = (t − 1) − log t , hence (t − 1) log t = 0 and consequently t = 1 which is
excluded.



8 When do we have ab > ba?

By invoking L’Hospitals rule again, we can establish the smoothness also for the exceptional point.
We leave it as an exercise to the reader to prove

lim
t→1

a′(t) = −e/2 , lim
t→1

b′(t) = e/2 .

Figure 5.1

There is, however, a conceptual argument in [8] which we want to repeat here. Put

F (x, y) =
log x

x
− log y

y

such that

Fx =
∂F

∂x
=

1 − log x

x2
and Fy =

log y − 1

y2
.

So, there is, as we expect, exactly one critical point (at (x, y) = (e, e) ). This exceptional point,
however, is non-degenerate: Since Fxy = Fyx = 0 , the 2–jet of F at this point is of the form

Ax2 − Ay2 = A (x − y) (x + y) ,

where

A = Fxx(e, e) = −Fyy(e, e) ,

and it is easily checked that A 6= 0 . Hence, by the famous “Morse Lemma”, the zero set of F is near
(e, e) after a local coordinate transformation given by (x − y) (x + y) = 0 such that the mutuabola
is given in this local coordinates by y = −x .

6 Rational points on the mutuabola

If we put

t =

(
1 +

1

u

)
, 0 < u < ∞ ,

we get another parametrization of the left branch of the mutuabola, namely:

a (u) =

(
1 +

1

u

)u
, b (u) =

(
1 +

1

u

)u+1

.
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In particular, by setting u := n ∈ N∗ , we come up with the well known rational sequences

an :=

(
1 +

1

n

)n
and bn :=

(
1 +

1

n

)n+1

converging to e monotonically from below resp. from above. They were (partly) known to Euler and
to Daniel Bernoulli [2] and are in fact, as the pairs (an, bn) , the unique rational points on this branch.
(For more historical information, see [4], [11] and [1]. The last paper presents a demonstration for this
claim and gives some evidence that the first complete proof can be found in Flechsenhaar [6]).

Taking this fact for granted, we may conclude the following well known:

Lemma 6.1 There are exactly two integer points on the mutuabola, namely (4, 2) and (2, 4) .

This, of course, is also evident from our considerations culminating in Figure 3.1. We give here
another argument (see [10]). Since the given equation is equivalent to a

√
a = b

√
b and the function x

√
x

is strictly decreasing for x > e and tends to 1 as x → ∞ , it follows that

3
√

3 >
4
√

4 =
2
√

2 >
5
√

5 >
6
√

6 > · · · > 1
√

1 .
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