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Introduction

In the following, let a and b always denote positive real numbers, i.e. a, b € R% . As stated in the
title, we ask when a® > b®. In fact an old question, since it was already attacked by Leonhard Euler,
at least in the form a® = b®, and later by many others. In this elementary note, we attempt to give a
survey on some geometric visualizations and a few applications of nonelementary analysis.

In the text we will frequently replace the condition a® > b® by one of the following equivalent
conditions (we denote by log the natural logarithm which usually is called In):

bloga > alogd

1 1
—loga > —logb ,
a b

Ya > Vb
M(a,b) :==a® —b* > 0

Clearly, M (b, a) = — M (a, b), such that the inequalities above remain equivalent if one replaces
everywhere the >-sign by the <-sign, and the same holds true for equality. In pictures, we attach to
any point (a, b) a -+-sign, if a® > b® or equivalently M (a, b) > 0, and similarly with the opposite
signature — . Since M is a continuous function, the sign is constant by the intermediate value theorem
in any domain G C R} x R} in which M has no zeros.

1 Some nice geometric proofs without words

In [3], Chakraborty gave a nice visual proof for ¢ < €™ such that - in our notation - the point (e, )
lies in the +-region. Although the appearance of the circle number 7« looks spectacular, it is in fact
completely artificial, i.e. the same figure shows that b° < e’ for all b > e. This follows just by
integrating the monotone decreasing function 1/x over the interval [e, b]:

b
1
1ogb—1:/ d—x<f(b—e):§—1, ie. elogb < bloge.
. T e e

Similarly, integrating from b to e for b < e gives

°d 1 b
l—logb:/—x>f(e—b):1—f7 i.e.again elogb < bloge.
b T e e

In particular, we always have log b < /b for all b > 1. For example, log 20 = 2,99573227... and
v20 = 3,0103860252... .
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Figure 1.1

It is well known that one can derive the same result(s) from the (also visually evident) inequality
e* > x + 1, x#0, by setting x = b/e — 1. Or, take the equivalent inequality

loge <xz—1, x#1,

and set © = b/e # 1 which leads again to elogb < b = bloge.!

Figure 1.2

The role of Eulers number e, on the other hand, is by no means artificial. If a is a positive real
number such that a® > b® for all positive real numbers b # a, then a = e. This follows, e. g., from a
simple analysis of the function @ — (log z)/x (see, for more details, the next section). This analysis
leads moreover to the insight that the equation a® = b® has nontrivial solutions a # b only inside

{l<a<e,b>efU{l <b<e,a>ce}.

INote added July 2019. See also: Ananda Mukherjee and Bikash Chakraborty: Yet Another Visual Proof that m¢ < e™.
The Mathematical Intelligencer, Volume 41, Number 2, Summer 2019, p. 60.
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The complement in the octant b > a decomposes into a convex wedge By := {(a,b): e < a < b}
and a starshaped part By . Since (1, 2) € By and 12 < 2! we have a® < b* for all (a, b) € By .

Figure 1.3

On the other hand, we have (3, 4) € Bf and 3* = 81 > 64 = 4% and consequently, without further
calculations, a® > b® for each (a, b) in Bj .- Hence, we have the following situation:

Figure 1.4

There is a nice visualization of a® > b® for e < a < b by comparing the slopes of the lines through

the origin in R? and (a, log a) resp. (b, log b) (see [7]).
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Figure 1.5

As a consequence, we must have nontrivial solutions of a® = b* on each line b = ta, t # 1. This
“Ansatz” is exactly what Euler was doing (see Section 3).

2 The function (log x)/x and some consequences
The function f (z) := (log z)/x, > 0, has the derivative
@) = (1 - log a)/a?,
which is positive on 0 < = < e and negative on « > e. Hence, f is strictly increasing in the first

interval and strictly decreasing in the second interval and thus attains an absolute maximum at e with
value 1/e. A rough sketch of its graph looks as follows:

Figure 2.1

Clearly, by L’Hospitals rule,
1
lim f(z) = lim # =0.

T—r 00 T—r 00

Therefore, we can state the following Theorem which finally justifies Figures 1.3 and 1.4.
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Proposition 2.1 The equation

) no solution, if ¢ > 1/e;
) exactly one solution, if ¢ = 1/e, namely = = e;
iii) ezactly one solution, if ¢ < 0, namely in x < 1;
) exactly two solutions a and b, when 0 < ¢ < 1/e, with 1 < a < e and b > e. In that case
lima =e¢ ifandonlyif limb = e

and
lima =1 ifandonlyif limb = oco.

3 The “mutuabola”, and how Euler did it

Of course, since the function f possesses in the interval (0, 1/e] a strongly decreasing inverse coming
from +o0o and going down to e, the closure of the set of nontrivial solutions of the equation a® = b®
is the graph of a monotonically decreasing continuous function p: (1, co) — (1, 0o0) with

gl\mlu(a) =00, lim pfa) =1, ule)=e.
We call it the mutuabola in accordance with [9].
A nice parametric description goes back already to Euler [5]. He puts (in principle) b = ta, 0 <
t < oo, t# 1, expecting exactly one solution for any given t. In fact, this works quite well, since from
the condition a® = b* we conclude

taloga =bloga = alogb = a(loga + log t)

and therefore |
t
log a = tOil and log b = (log t) {1 +

1 _tlogt
t—1)  t-1

or
a=t/D and b= /D ,

which we also write in the form

log t tlogt
a(t) = exp (t—gl) , b(t) = exp (t—g1> )

The reflection (a, b) — (b, a) is explicitly given by the transformation ¢ — 1/t since clearly

a(1/t) = b(t).

Therefore, it is sufficient to study the behaviour of the mutuabola analytically only, e.g., in the interval
0<t<1.
By L’Hospitals rule,

log ¢ tlogt
%' _ lim1 /t =1 and therefore lim o8 _
t—1 =1t — 1

im
t—1 t —

such that
lim a(t) = lim b(¢) = e,

t—1 t—1



as we already know. Further,

such that

lim
N0

(tlog t) = }{r(l)

log t
1/t

1/t
im —— =
N0 1/t2

limb(t) =1 and lim a(t) = 1.

0

Finally, by similar arguments,

t—o00

lim a(t) = oo and lim b(t) = oo .

N0

t—o00
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Since each line b = ta, t # 1, cuts the mutuabola in exactly one point, it is divided into two
parts with definite sign. Because it hits for small resp. large a regions with a known sign, we find the
following distribution of signs on exactly four regions.

For more details, see also [8] and the literature cited therein.

We note two elementary characterizations of Euler’s e.

Proposition 3.1

i) If a is a positive real number such that a

b#a, then a = e;

ii) e = min{a > 0: a

b

{aeRY :

a

b

b

> b for all b > a}, more precisely:
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Figure 3.1

> b% for all positive real numbers

> b forall b > a} = [e, 00) .
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4 Another geometric interpretation

Starting with the obvious identity

1 1 1 log b — 1
floga—flogb:(l—g) (loga_ogoga)
a b b a

b—a

we get another geometric visualization of the results obtained so far. Assuming without loss of generality
that a < b, we obtain the correct signature also by looking at

log b — log a

110
- a —
a & b—a

If for @ > 1 we draw a halfline from the origin through (a, log a) it will cut the graph of the logarithm
function in another point (bg, log by) where by > a if a < e, by < aif a > e and by = a if a = €.
Of course, if a # e, by is the uniquely determined real number different from @ such that a® = by“.

7/
7
/
4
7
/,
V.

Figure 4.1

Moreover, if a < b < by, one can directly see that

1 log b — 1
Zloga < B2 84
a b—a

and for b > by we have the opposite inequality
1 logb — 1
Zloga > B2 084
a b—a

5 The smoothness of the mutuabola

It is easy to check that the mutuabola is a smooth curve at each point different from (e, e): An

elementary calculation gives

t—1) —tlogt
t(t — 1)

(t—1) —logt
wb(t).

a'(t) = ( a(t) and b'(t) =
Since a(t)/t and b(t) never vanish, we must have at any point with a'(¢) = b'(t) (= 0) that
(t—1) —tlogt = (t — 1) — logt, hence (t — 1)logt = 0 and consequently ¢ = 1 which is
excluded.
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By invoking L’Hospitals rule again, we can establish the smoothness also for the exceptional point.
We leave it as an exercise to the reader to prove

. ’ _ . ’ _
lim a'(t) = —e/2, th_rgb(t) e/2.

t—1

Figure 5.1

There is, however, a conceptual argument in [8] which we want to repeat here. Put

log x log y
F(z,y) = —
T Yy
such that oF L | )
— log ogy —
F, = T and F, = Y2 ‘
So, there is, as we expect, exactly one critical point (at (x, y) = (e, e)). This exceptional point,

however, is non-degenerate: Since F,, = F,, = 0, the 2-jet of F' at this point is of the form
Az — Ay? = Az —y)(z + ),

where
A= wa(ev 6) = _Fyy(e’ 6) ’

and it is easily checked that A # 0. Hence, by the famous “Morse Lemma”, the zero set of F' is near
(e, e) after a local coordinate transformation given by (x — y) (x + y) = 0 such that the mutuabola
is given in this local coordinates by y = —x.

6 Rational points on the mutuabola

If we put

1
t(1+), 0<u< oo,
u

we get another parametrization of the left branch of the mutuabola, namely:

a(u) = (1 + i)u , b(u) = (1 + i)u“ .
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In particular, by setting u := n € N* | we come up with the well known rational sequences

1 n 1 n+1
Gp = (1 + ) and b, = (1 + )
n n

converging to e monotonically from below resp. from above. They were (partly) known to Euler and
to Daniel Bernoulli [2] and are in fact, as the pairs (an, by), the unique rational points on this branch.
(For more historical information, see [4], [11] and [1]. The last paper presents a demonstration for this
claim and gives some evidence that the first complete proof can be found in Flechsenhaar [6]).

Taking this fact for granted, we may conclude the following well known:

Lemma 6.1 There are exactly two integer points on the mutuabola, namely (4, 2) and (2, 4).

This, of course, is also evident from our considerations culminating in Figure 3.1. We give here
another argument (see [10]). Since the given equation is equivalent to {/a = v/b and the function /z
is strictly decreasing for z > e and tends to 1 as z — oo, it follows that

V3>Va=v2>V5>V6> > V1.
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