




Chapter 9

So war sein Weg denn im Kreise gegangen,
oder in einer Ellipse oder Spirale, oder wie
immer, nur nicht geradeaus, denn das Geradli-
nige gehörte offenbar nur der Geometrie, nicht
der Natur und dem Leben an.

(Hermann Hesse, Das Glasperlenspiel)
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Chapter 9

Blowing down and the Grauert - Mumford
criterion

After having shown that normal surface singularities can be resolved, it is a natural question to ask which
manifolds M are resolutions of such singularities. The leading idea for an answer is the observation that
isolated singularities (embedded in Cn ) have arbitrarily small neighborhoods with “good” boundaries
such that M must as well contain such good open sets as neighborhoods of the exceptional set E ⊂M .
The resulting concept is that of strictly pseudoconvex open sets. The existence of such neighborhoods
for one–dimensional compact analytic subsets E in a two–dimensional manifold M can be deduced
from purely numerical invariants.

9.1 Strictly plurisubharmonic functions

A real–valued function φ on a complex analytic manifold M is called (strictly) plurisubharmonic, if
φ is of class C2 and if for each point x(0) ∈M and any coordinate system x1, . . . , xn near x(0) = 0
the Levi form

L (φ, x(0), ξ) =
∑
j,k

∂2φ

∂xj∂xk
(x(0)) ξj ξk , ξ ∈ Cn ,

is positive definite. It is easily checked that this property does not depend on the analytic coordinate
system.

A relatively compact open subset V ⊂⊂ M is called strictly pseudoconvex , if there exists a neigh-
borhood U of the boundary ∂V in M and a strictly plurisubharmonic function φ : U → R such
that V ∩ U = {x ∈ U : φ (x) < 0 } . φ is then called a defining function for V .

It is not difficult to prove that strict pseudoconvexity is a local property of the boundary ; i.e. V ⊂⊂M
is strictly pseudoconvex, if and only if for all x(0) ∈ ∂V there exists a neighborhood U = U (x(0)) ⊂M
and a strictly plurisubharmonic function φ : U → R such that V ∩ U = {x ∈ U : φ (x) < 0 } .
Moreover, if the boundary of V is smooth, i.e. if locally ∂V ∩ U = {φ = 0 } , where φ ∈ C2(U)
and dφ ̸= 0 on U , then strict pseudoconvexity is just a property of the holomorphic tangent spaces
of ∂V , that is: it is sufficient to prove

L (φ, x(0), ξ) > 0

for all x(0) ∈ ∂V ∩ U and all vectors ξ = (ξ1, . . . , ξn) ̸= 0 with

m∑
j=1

∂φ

∂xj
(x(0)) · ξj = 0 .

For the convenience of the reader, we reproduce here the essential trick for the second statement: Replace
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φ by ψ = φ (eAφ) , A sufficiently large. Then the claim follows from the formula

L (ψ, x(0), ξ) = (1 + A) eAφ(x(0))

{
L (φ, x(0), ξ) + A

∣∣∣ ∑ ∂φ

∂xj
(x(0)) ξj

∣∣∣2}
for ξ = (ξ1, . . . , ξn) ∈ Cn .

The simplest Example of such a strictly plurisubharmonic function is given by φ (x) = ∥x ∥2 on
Cn , since

L (φ, x(0), ξ) =

n∑
j,k=1

δjk ξjξk = ∥ ξ ∥2 .

9.2 Grauert’s criterion for exceptional sets

Restrictions of strictly plurisubharmonic functions on a complex manifold M to an analytic submanifold
N ⊂ M are again strictly plurisubharmonic. Hence, if an isolated singularity (X, x(0)) is embedded
in (U, 0) , U open in Cn , then φ|X\{0} is strictly plurisubharmonic, where φ (x) = ∥x ∥2 . Lifting
φ to a resolution π : M → X and taking into account that, by the properness of π , the open sets
π−1(X ∩Bε) , Bε = {x ∈ Cn : φ (x) < ε } , form a basis of neighborhoods of E = π−1(0) in M , we
get the following necessary condition for resolutions.

Lemma 9.1 Let π : X̃ → X be a resolution of the isolated singularity (X, x(0)) . Then there exists a

C2–function φ on a neighborhood V of E = π−1(x(0)) in X̃ , such that :

i) φ|V \E is strictly plurisubharmonic,

ii) φ|E ≡ 0 ,

iii) the strictly pseudoconvex sets X̃ε = { y ∈ V : φ (y) < ε } , ε > 0 small, form a neighborhood
basis of E .

It is a deep theorem of Grauert that the converse to Lemma 1 is true.

*Theorem 9.2 Let V ⊂⊂M be a strictly pseudoconvex open set. Then there exists a maximal compact
nowhere discrete analytic subset E of V . If E = ∪Eτ is the (finite) decomposition of E into connected
components, then each Eτ can analytically be contracted to a point. More precisely: there exists a normal
complex analytic space X with finitely many points x(1), . . . , x(t) and a proper modification

π : M −→ X

such that
π(Eτ ) = {x(τ) }

and the restriction
π : M \ E −→ X \ {x(1), . . . , x(t) }

is biholomorphic.

A compact nowhere discrete analytic subset E in a normal complex space X̃ which can be con-
tracted analytically to finitely many isolated normal singularities is called an exceptional analytic set.
By Theorem 2 and the preceding Lemma, a compact analytic set in a manifold is exceptional, if and only
if it possesses a strictly pseudoconvex neighborhood V such that it is the maximal compact nowhere
discrete analytic subset in V . This is equivalent to the following statement which we will use frequently
on several occasions:

A compact complex analytic subset E in a complex manifold M is exceptional, if and only if it has a
neighborhood basis consisting of strictly pseudoconvex open sets.
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Since, in this text, X is always supposed to be normal, π∗OM = OX for any resolution M →
X . Hence, the ring of holomorphic functions on M near a (connected) exceptional set E must be
isomorphic to a normal analytic algebra. Therefore, in order to be able to contract E (or - as one also
says - to blow down E ) to a point, one has to know the structure of this ring.

Before we go on, we sketch the proof for Theorem 2. Let U ⊂M be an open neighborhood of ∂V
and φ : U → R be given such that V ∩ U = {φ < 0 } , φ strictly plurisubharmonic. Then take
U1 ⊂⊂ U and ε > 0 so small that

U2 = { y ∈ U : −ε < φ (y) < 0 } ∩ U1 ⊂⊂ U1 .

U1 U2

V
A

K

∂V

Figure 9.1

Then K := V \ U2 ⊂⊂ V , and we claim that any compact nowhere discrete analytic subset A of V
must be contained in K . Otherwise, there would exist a connected component of A ∩U2 , say B , and
φ would admit a maximum on B . But restrictions of plurisubharmonic functions to subvarieties fulfill
the maximum principle, hence φ|B = const . which is a contradiction to the strict plurisubharmonicity
of φ , since B has regular points of dimension ≥ 1 .

The main point of the proof, which we omit, is to show that V is a holomorphically convex manifold
(see the Supplement). We are then in a position to apply Remmert’s Reduction Theorem:

*Theorem 9.3 For any holomorphically convex manifold V , there exists a uniquely determined Stein
space X0 and a proper holomorphic map

π : V −→ X0

such that
π∗OV = OX0

.

We shall call X0 the Remmert quotient of V . It has the additional property that all fibers
π−1(x) , x ∈ X0 , are connected. Moreover, X0 is a normal space, the manifold V being normal.
(Notice that the Remmert reduction exists for all holomorphically convex reduced spaces V ; then X0

is normal, if V is a normal space).
Returning to Theorem 2, denote by E the set of points y ∈ V which are not discrete in π−1 ◦π (y) .

It is not difficult to prove that E is an analytic subset of V . Since

Ex = E ∩ π−1(x) , x ∈ X0 ,

is compact and nowhere discrete, Ex ⊂ K and hence

E =
⋃

x∈X0

Ex ⊂ K ;

in particular, E is a compact nowhere discrete analytic subset of V .
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Denote the connected components of E by E1, . . . , Et . By Remmert’s Proper Mapping Theorem,
π (Eτ ) is a (connected, compact) analytic subset of X0 . Since X0 is a Stein space, π (Eτ ) must be a
point x(τ) for all τ = 1, . . . , t . Now, π|V \E → X0 \ {x(1), . . . , x(t) } has discrete (connected) fibers;
hence π is bijective. As a map between normal spaces, π is biholomorphic. Patching M \ E and
X0 \ {x(1), . . . , x(t) } together along V \ E yields X and π .

If A is an arbitrary (connected) compact analytic subset of V which is nowhere discrete, then
necessarily π (A) ⊂ {x(1), . . . , x(t) } , and A ⊂ Eτ for a suitable τ . □

9.3 Negative line bundles

In Chapter 4 we have seen that the zero–section of a line bundle L on a projective algebraic manifold
can be analytically contracted to a point, if the dual bundle L∗ is very ample. We are now going to
characterize all line bundles with this property analytically.

Theorem 9.4 Let L be a holomorphic line bundle on a (connected) compact complex manifold M .
Then the zero–section of L is exceptional in (the total space of) L , if and only if there exist, to some
trivializing covering U = {Uj }j∈I of M with coordinate charts Uj , positive real–valued C2–functions
hj on Uj such that

(1) hk(x) = | fjk(x) |2 hj(x) , x ∈ Uj ∩ Uk ,

and the hermitean form

(2)
∑
ν,µ

∂2log hj
∂xν∂xµ

ξν ξµ

is positive definite on Uj for all j . (Here, of course, (fjk) denotes the cocyle defining L with respect
to U and x1, . . . , xn are local coordinates in Uj ).

Proof . 1. We assume first the existence of the functions hj . Denote by Vj the set of points

{ (x, v) ∈ Uj × C : hj(x) | vj |2 < 1 } ⊂ Uj × C ∼= L|Uj
=: Lj .

Because of (1) , V = ∪j∈I Vj is a neighborhood of the zero–section M ⊂ L , satisfying V ∩π−1(Uj) =
Vj and V ⊂⊂ L . Obviously, the boundary of V in Lj is described by ∂V ∩ Lj = {φj(x, vj) :=
log | vj |2 + log hj(x) < 0 } .

Let now (ξ0, ξ1, . . . , ξn) = ξ ∈ Cn+1 be a nontrivial holomorphic tangent vector on V , i.e.

∂ log |vj |2

∂vj
ξ0 +

n∑
ν=1

∂ log hj(x)

∂xν
ξν = 0 .

Since
∂ log | vj |2

∂vj
=

∂ log vjvj
∂vj

=
vj
vjvj

=
1

vj
,

∂2 log | vj |2

∂vj ∂vj
= 0 ,

the vector (ξ1, . . . , ξn) does not vanish, and we can deduce from the assumptions that

L (φj , (x
(0), vj), ξ) =

∑
ν,µ

∂2 log hj(x
(0))

∂xν∂xµ
ξνξµ > 0 .

The second remark after the definition in Section 1 implies that V is indeed a strictly pseudoconvex
neighborhood of M in L . By Theorem 2, the zero–section M is then contained in the exceptional set
E of V .

Assume that E ̸= M . Then there exists a point (x(0), v
(0)
j ) ∈ Lj ∩E with v

(0)
j ̸= 0 . Since L is a line

bundle, one has a natural holomorphic action of C∗ on L , where the map corresponding to c ∈ C∗
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is just multiplication of the fiber coordinate by c . So, cE is a compact analytic subset of L for all
c ∈ C∗ , and, by the definition of V ,

cE ⊂ V for all | c | ≤ 1 , c ̸= 0 .

Hence, ⋃
0<|c|≤1

cE ⊂ E

and
{ (x(0), vj) : | vj | ≤ | v(0)j | } ⊂ Lj ∩ E .

But then the whole fiber Lx(0) is contained in E and E cannot be compact. Contradiction!

2. Assume that M is exceptional in L . Then there exists a neighborhood V of M and a strictly
plurisubharmonic C2–function ψ ≥ 0 on V which is zero on M and positive outside M . Without
loss of generality, we may assume that V is invariant under the circle group

S1 = { c = eiϑ : ϑ ∈ [ 0, 2π ] }

with respect to the C∗–action described under 1. Then we define

φ (y) =
1

2π

∫ 2π

0

ψ (eiϑy) dϑ , y ∈ V .

It is easy to check that φ has the same properties as ψ , and that

dφx ̸= 0 for φx = φ|Lx∩V .

Hence, for ε sufficiently small, Ṽ = {φ (y) < ε } ⊂ V is a strictly pseudoconvex neighborhood of M
with smooth boundary which, locally on Uj , can be described by a positive C2–function gj(x) in the
sense that

∂Ṽ ∩ Lj = { | vj | = gj(x) } = {φj(x, vj) = log | vj | − log gj(x) = 0 }

and
Ṽ ∩ Lj = {φj(x, vj) < 0 } .

Since ∂Ṽ is globally well–defined, (1) in the statement of the Theorem is satisfied for the functions

hj(x) := g−2
j (x) . Since ∂Ṽ is strictly pseudoconvex,

0 < L (φj , (x, vj), ξ) = −
n∑

ν,µ=1

∂2 log gj(x)

∂xν∂xµ
ξνξµ =

1

2

n∑
ν,µ=1

∂2 log hj(x)

∂xν∂xµ
ξνξµ

for all ξ = (ξ0, ξ1, . . . , ξn) ̸= 0 with

1

2vj
ξ0 −

n∑
ν=1

∂ log gj(x)

∂xν
ξν = 0 ,

i.e. for all (ξ1, . . . , ξn) ̸= 0 , since ξ1 = · · · = ξn = 0 implies ξ0 = 0 . □

Remarks. 1. The correct interpretation of the system {hj } with (1) in Theorem 4 is that of a hermitean
metric on the fibers of L which varies differentially with x ∈ M . Just set hx(vj , wj) = hj(x) vjwj

for (x, vj) , (x, wj) ∈ Lj = L|Uj
. This is well defined on the whole total space of L : Recall from

Section 6 of Chapter 4 that the transformation of the linear coordinates on the fibers of L is given by
vj = fjkvk such that

hjvjwj = hjfjkvkfjkwk = | fjk |2 hjvkwk = hkvkwk .
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2. Condition (2) can be interpreted as a sign condition for the curvature of this metric. The last is
related to the (global) (1, 1)–form

∂

(
1

h
∂h

)
= ∂∂ log h = −

n∑
ν,µ=1

∂2 log hj(x)

∂xν∂xµ
dxν ∧ dxµ .

Due to the minus sign on the right hand side and our assumption of positive definiteness, the pair
(L, h) - or L for short - is under the condition (2) in Theorem 4 called a negative bundle. L is called
positive, if its dual L∗ is negative.

3. In this terminology, Theorem 4 can be phrased by saying that the zero–section in a holomorphic line
bundle L over a manifold is exceptional if and only if the bundle is negative.

The following are obvious consequences from Theorem 4.

Corollary 9.5 A holomorphic line bundle L is positive/negative, if and only if one of its powers
L⊗k , k > 0 , is positive/negative.

Corollary 9.6 Let L be a positive/negative line bundle on the complex manifold M , and let N ⊂M
be a submanifold. Then L|N is positive/negative.

Corollary 9.7 Let L be a positive/negative line bundle on M . Then M is a Kähler manifold; i.e.
there exists a hermitean metric on M such that its imaginary part Ω (which is a real alternating
differential form of type (1, 1) ) is d–closed.

Proof of last Corollary. Let, without loss of generality, the line bundle L be negative. Take the functions
hj as in Theorem 4 which can be chosen of class C∞ , and define on Uj the form

gj =
∑
ν,µ

gνµ dxν ⊗ dxµ

with

gνµ =
∂2 log hj
∂xν∂xµ

.

gj can be considered at each point x ∈ Uj (independently of the coordinates) as a positive definite
hermitean bilinear form on the tangent space Tx = TM,x :

gj,x : Tx × Tx −→ C ,

which varies differentially with x ∈ Uj . Since, on Uj ∩ Uk , we have

log hj = 2 log | fkj | + log hk

and
∂2 log | f |
∂xν∂xµ

= 0

for holomorphic functions f , the gj patch together to a globally defined hermitean metric g on TM .
Let Ω be the imaginary part of g . Since

g (ξ, µ) = g (µ, ξ) , ξ , µ ∈ TM,x ,

it follows that
Ω (ξ, µ) = −Ω (µ, ξ) .

Hence, Ω is an alternating real form. It is easy to check that

Ω =
i

2

∑
ν,µ

gνµ dzν ∧ dzµ =
i

2
∂∂ log hj .

By the last representation of Ω , it follows that

(−2i) dΩ = (∂ + ∂) ∂∂ log hj = 0 . □
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9.4 The Embedding Theorem of Kodaira

There are strong topological restrictions for compact complex analytic manifolds being Kähler manifolds.
In fact, the class of exceptional zero–sections of holomorphic line bundles on compact manifolds is even
more restricted. The following theorem was proved by Kodaira; we present it in a version due to Grauert.

Theorem 9.8 Let L → M be a holomorphic line bundle on a compact complex manifold such that
the zero–section is exceptional, i. e. assume that L is a negative line bundle. Then M is projective
algebraic. More precisely, there exists a sufficiently high power L−k := (L∗)⊗k of the dual bundle L∗

which is very ample.

The proof of Grauert proceeds along the following lines:

Step 1. We first formulate the conditions for a holomorphic line bundle F on M to be very ample in
terms that can be verified cohomologically . By reinterpretation of some results in Chapter 4 we conclude
that the sections of a line bundle F on a complex manifold M of dimension n imbed M into some
PN , if the following holds true:

(i) for each point x(0) ∈M , there exists a section s ∈ H0(M, O (F )) not vanishing at x(0) ;

(ii) for each pair of points x(1), x(2) ∈ M , x(1) ̸= x(2) , there exists a section s with s (x(1)) ̸=
0 , s (x(2)) = 0 ;

(iii) for each point x(0) ∈ M , there exist n + 1 sections s0, s1, . . . , sn ∈ H0(M, O (F )) such that
s0(x

(0)) ̸= 0 , s1(x
(0)) = · · · = sn(x

(0)) = 0 , and

df1(x) ∧ . . . ∧ dfn(x) ̸= 0 , fj =
sj
s0

, j = 1, . . . , n ,

for all x close to x(0) .

Denote now by I (x(1), x(2)) the coherent ideal sheaf in OM of germs of holomorphic functions vanishing
at x(1) and x(2) (for x(1) ̸= x(2)) , resp. vanishing at x(1) = x(2) at least to second order. Then the
quotients O (F )/ I (x(1), x(2))O (F ) are skyscraper sheaves with

H0(M, O (F )/ I (x(1), x(2))O (F )) ∼=

{
C⊕ C , x(1) ̸= x(2)

Cn+1 , x(1) = x(2) .

By tensoring the exact sequence 0 → I (x(1), x(2)) → OM → OM/ I (x
(1), x(2)) → 0 with O (F ) , we

get the long exact sequence of cohomology:

· · · −→ H0(M, O (F ))
r−→ H0(M, O (F )/ I (x(1), x(2))O (F ))

−→ H1(M, I (x(1), x(2))O (F )) −→ · · · ,

and the assertions (i), (ii) and (iii) are just equivalent to the surjectivity of r for all x(1), x(2) .

Therefore, a holomorphic line bundle F on a compact complex manifold M is very ample, if

H1(M, I (x(1), x(2))O (F )) = 0 for all x(1), x(2) ∈M .

Step 2. For any coherent sheaf S on M , there exists a number k0 such that

Hℓ(M, S ⊗O (L−k)) = 0

for all ℓ ≥ 1 and all k ≥ k0 .
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If π : L → M denotes the projection and if V is a strictly pseudoconvex neighborhood of the
zero–section M in L , then one can construct an inclusion

∞⊕
k=0

Hℓ(M, S ⊗O (L−k)) ↪−→ Hℓ(V, S̃) , ℓ ≥ 1 ,

where S̃ is the analytic preimage of S under π|V . Denote by σ : V → Y the Remmert quotient
of V (see the proof of Theorem 2, where we used other notations). By Grauert’s Coherence Theorem
(remember that Y is a Stein space),

Hℓ(V, S̃) = H0(Y, Rℓσ∗S̃) ,

and the vector space on the right hand side is finite dimensional, since Rℓσ∗S̃ is coherent and concen-
trated in finitely many points. Hence,

dimCH
ℓ(V, S̃) < ∞ , ℓ ≥ 1 ,

(a special case of the Finiteness Theorem of Andreotti and Grauert). From Hℓ(V, S̃) = 0 for ℓ ≫ 0 ,
the assertion follows.

Step 3. Denoting by I (x(1), x(2)) again the ideal sheaf introduced in Step 1, Grauert deduces by a
continuity argument from Step 2:

It exists a number k0 , such that for all k ≥ k0 and all x(1), x(2) ∈M we have

H1(M, I (x(1), x(2))⊗O (L−k)) = 0 ,

which completes the proof. □

We would like to remark here that Grauert’s proof works also for exceptional spaces and holomorphic
vector bundles.

Definition. A line bundle L is usually called ample, if some positive power L⊗k is very ample. By
Corollary 5 and Theorem 4, a line bundle L is ample, if it is positive.

To show the converse it is, by Corollary 6, sufficient to prove the following

Theorem 9.9 The hyperplane bundle H on Pn is positive.

Proof . Let u0, . . . , un be homogeneous coordinates on Pn . According to Chapter 4, the hyperplane
bundle H is determined by the cocycle

fkj :=
uj
uk

with respect to the standard open covering U0, . . . , Un , Uj = {uj ̸= 0 } . So, any metric on H is a
system of positive C∞–functions hj on Uj such that

hk = | fjk |2hj =

∣∣∣∣ ukuj
∣∣∣∣2 hj .

A good choice is obviously

hj :=
|uj |2

|u0 |2 + · · ·+ |un |2
.

(Notice that these are indeed well-defines functions on Uj ). In order to check positivity, we may and
do restrict to the coordinate system xj = uj/ u0 on U0 such that

h0 =
1

1 + |x1 |2 + · · ·+ |xn |2
.
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A straightforward but tedious calculation ends up with the following formula:

∂∂ log h0 = ∂∂ log (1 + |x1 |2 + · · ·+ |xn |2)

=
∑
j,k

(1 + |x1 |2 + · · ·+ |xn |2)δjk − xjxk
(1 + |x1 |2 + · · ·+ |xn |2)

dxj ∧ dxk .

Introducing the standard hermitean bilinear form ⟨ ·, · ⟩ on x = (x1, . . . , xn) ∈ Cn , the corresponding
hermitean bilinear form can be written (up to the positive factor (1 + ⟨x, x ⟩)−1 ) as

(1 + ⟨x, x ⟩) ⟨ ξ, ξ ⟩ − | ⟨x, ξ ⟩ |2

which by the Cauchy-Schwarz inequality | ⟨x, ξ ⟩ |2 ≤ |x |2 | ξ |2 is always greater or equal to | ξ |2 and
hence positive definite. □

Remark . It is interesting to note that the standard hermitean metric h on H induces by its positive
definite curvature form the Fubini–Study metric on Pn (which is automatically a Kähler metric).

9.5 Positivity of holomorphic line bundles and Chern classes

There is still another description of positive and negative line bundles using Chern classes. Denote by
e the function

e (w) = exp (2πiw) , w ∈ C ,

and look at the associated exact sequence of sheaves of abelian groups

0 −→ Z −→ OM
e−→ O∗

M −→ 1 ,

where Z denotes the constant Z–sheaf and 1 the multiplicatively written trivial sheaf (see the Supple-
ment). Taking cohomology, we get from the long exact cohomology sequence a connecting homomor-
phism

c : H1(M, O∗
M ) −→ H2(M, Z) .

Of course, denoting by AM the sheaf of germs of (complex–valued) C∞–functions on M , we have
a similar map c : H1(M, A∗

M ) → H2(M, Z) which is always bijective, since it fits into the exact
sequence

H1(M, AM ) −→ H1(M, A∗
M )

c−→ H2(M, Z) −→ H2(M, AM )

where both groups at the ends vanish (AM is a fine sheaf).
The relevance of the homomorphism c for a holomorphic (or differentiable) line bundle L rests on

the following construction: One associates to L and a suitable trivializing covering U of M a defining
cocycle

(fjk) ∈ Z1(U, O∗
M ) (resp. ∈ Z1(U, A∗

M ))

which generates a cohomology class in the Čech cohomology group H1(U, O∗
M ) and therefore also a

class ξL in H1(M, O∗
M ) (resp. in H1(M, A∗

M )) . The following is well–known (and moreover easy to
prove):

*Theorem 9.10 The map L 7→ ξL establishes a one–to–one correspondence between isomorphism
classes of holomorphic (resp. differentiable) line bundles on M and the cohomology group

H1(M, O∗
M ) (resp. H1(M, A∗

M ) ) .

Thus, defining the (first) Chern class c (L) of a line bundle L by c (L) = c (ξL) ∈ H2(M, Z) , we
have the following properties:

a) c (L) does only depend on the differentiable isomorphism class of L , because of the commutativity
of the diagram
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H1(M, A∗
M ) H2(M, Z)-

H1(M, O∗
M ) H2(M, Z)-

? ?

id

b) H2(M, Z) classifies all differentiable isomorphism classes of line bundles;

c) if the map H2(M, Z) → H2(M, OM ) is zero (which, e.g., is true for Riemann surfaces C because
of H2(C, OC) = 0) , then

H1(M, O∗
M ) −→ H1(M, A∗

M )

is surjective. Hence, in this case, each differentiable (even each topological) line bundle carries a
complex analytic structure.

Using Čech cohomology, we can explicitly describe the Chern homomorphism c . It is always possible
to find arbitrarily small open coverings U = {Uj }j∈J of the compact manifold M (f.i. by triangulation)
such that

Uj0 ∩ . . . ∩ Ujk

is simply connected for all j0, . . . , jk . Taking such a covering which trivializes L with respect to
the transition functions fjk , there exists always a holomorphic branch of the logarithm of fjk ∈
H0(Uj ∩ Uk, O∗

M ) on Ujk = Uj ∩ Uk , i.e. a holomorphic function gjk with

e (gjk) = fjk .

Since fjkfkℓ = fjℓ on Ujkℓ = Uj ∩ Uk ∩ Uℓ , we can conclude that

cjkℓ := gjk + gkℓ + gℓj = Re gjk + Re gkℓ + Re gℓj

is a constant function on the triple intersection Ujkℓ , hence cjkℓ ∈ H0(Ujkℓ, Z) . Obviously, the system
(cjkℓ) is a cocycle in Z2(U, Z) and, by definition, c (L) is equal to the cohomology class

[ (cjkℓ) ] ∈ H2(U, Z) ∼= H2(M, Z)

(the last isomorphism following from the fact that the covering U is acyclic with respect to the sheaf
Z ).

There is also a differential–geometric approach for defining Chern classes, since we have a canonical
map

H2(M, Z) −→ H2(M, R)

and (by the Poincaré Lemma) a fine resolution of the constant sheaf R :

0 −→ R −→ A0 d0

−→ A1 −→ · · · d2n−1

−→ A2n −→ 0 ,

where A0 = AM and Aν = Aν
M = sheaf of germs of real differentiable ν–forms on M , n = dimCM .

This resolution establishes the de Rham isomorphism

Hν
dRh(M, R) := ker dν/ im dν−1 ∼= Hν(M, R) , ν = 0, 1, . . . , 2n .

We may therefore describe the image of c (L) in H2(M, R) by a d–closed 2–form γ . The way to define
γ is precisely the same as in the proof of Corollary 7: Choose a metric of L , i.e. a system of positive
C∞–functions {hj } on U with

hj = | fkj |2hk on Ujk .

(Such a metric always exists, since it exists locally and can be constructed globally by patching the
local metrics with the help of a C∞–partition of unity). Then

γ =
i

2π
∂∂ log hj
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is a globally defined d–closed real (1, 1)–form. To show that γ defines the same class in H2
dRh(M, R)

as the cocycle (cijk) does, regarded as an element of Z2(U, R) , we have to describe the isomorphism

H2
dRh(M, R) −→ H2(M, R)

explicitly: If α is a d–closed real 2–form, then locally with respect to a covering U = {Uj } , we find
real 1–forms βj on Uj satisfying

α|Uj
= dβj .

On Ujk = Uj ∩Uk , we have d (βj − βk) = 0 , and therefore, there exist real–valued functions cjk on
Ujk with dcjk = βj − βk . The image of (the class of) α is then the class of the cocycle of constants

cjkℓ = cjk + ckℓ + cℓj .

In the case α = γ , we may take

βj =
i

4π
(∂ − ∂) log hj ,

since

dβj =
i

4π
(∂ + ∂)(∂ − ∂) log hj =

i

2π
∂∂ log hj = γ|Uj

and βj = βj , i.e. β is a real form. Now, on Uj ∩ Uk , we have, because of hj = | fkj |2hk :

βj − βk =
i

4π
(∂ − ∂) log | fkj |2 =

i

4π
(∂ − ∂)(log fjk + log fjk) =

i

4π
(∂ log fjk − ∂ log fjk)

=
1

4πi
(d log fjk − d log fjk) .

If gjk are C∞–functions with e (gjk) = e2πigjk = fjk , then

d log fjk = 2πi dgjk ,

and consequently,

βj − βk = d

(
1

2
(gjk + gjk)

)
= d(Re gjk) ,

i.e. cjk = Re gjk and

cjkℓ = Re (gjk + gkℓ + gℓj) .

Putting everything together, we have proved the “only if” part of

Theorem 9.11 A holomorphic line bundle L on M is positive (negative), if and only if there exists
a d–closed (1, 1)–form

γ =
i

2

∑
ν,µ

gνµ dxν ∧ dxµ

on M whose class in H2
dRh(M, R) is the image of c (L) in H2(M, R) such that the hermitean form∑

ν,µ

gνµ ξνξµ

is positive (negative) definite.

The “if”–part was proved by Kodaira using Hodge theory on the Kähler manifold M . We will not
need it in the sequel.
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9.6 Chern numbers and the degree of line bundles on Riemann
surfaces

We first want to illustrate the results obtained so far in this Chapter by the bundles O (−k) on
P1 , k = 1, 2, . . . . Recall the transition functions u0 = 1/ u1 , v0 = f01v1 , f01 = uk1 , and define for
arbitrary positive constants a0 , a1 :

h0 = a0 + a1 |u0 |2k , h1 = a1 + a0 |u1 |2k .

(Notice that for k = 1 and a1 = a2 = 1 , this is the “inverse” of the standard metric we introduced
in Section 4 on the dual bundle O (1) ; see the proof of Theorem 9). Then, on U0 ∩ U1 ,

h0 = |u0 |2kh1 = | f10 |2h1 ,

and therefore,

γ =
i

2π
∂∂ log (a0 + a1 |u0 |2k) ,

which can easily by computed to be equal to

γ =
−i
2π

k2
a0 a1 |u0 |2k−2

(a0 + a1 |u0 |2k)2
du0 ∧ du0 on U0

(and correspondingly on U1 ). Hence,

γ =
i

2

{
− k2

π
· a0 a1 |u0 |2k−2

(a0 + a1 |u0 |2k)2

}
du0 ∧ du0 ,

such that the associated hermitean form is negative definite, forcing the line bundle O (−k) to be
negative, as we already know.

The 2–form γ can be integrated over P1 (the projective line being oriented by its complex analytic
structure). With u0 = x + iy , we get du0 ∧ du0 = −2i dx ∧ dy and∫

P1

γ = − k2

π

∫
C

a0 a1 (x
2 + y2)k−1

(a0 + a1 (x2 + y2)k)2
dxdy

= − k2

π

∫ 2π

0

∫ ∞

0

a0 a1 r
2k−2

(a0 + a1 r2k)2
rdrdϑ = − k2 · 2π

π

∫ ∞

0

a0 a1 r
2k−1

(a0 + a1 r2k)2
dr .

Substituting s = a1 a
−1
0 r2k , ds = a1 a

−1
0 2k r2k−1dr , this finally yields∫

P1

γ = −k
∫ ∞

0

ds

(1 + s)2
= k

1

1 + s

∣∣∣∣∞
0

= −k .

The number we get by “integration of the Chern class” has different interpretations in the general
situation: Since compact Riemann surfaces C are real 2–dimensional, there is by Poincaré duality an
isomorphism

H2(C, Z) ∼−→ Z

which can be normalized by associating to the fundamental class [C ] ∈ H2(C, Z) the number +1 .
This map is then induced by the lower row map in the following diagram

H2(C, R) R

H2(C, Z) Z-∼

? ?
-∼
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which can be described with the help of the de Rham isomorphism

H2
dRh(C, R) ∼= H2(C, R)

via

H2
dRh(C, R) ∋ [α ] 7−→

∫
C

α ∈ R .

Note that this map is well–defined: If [α1 ] = [α2 ] , then α1 − α2 = dβ , and by Stokes’ Theorem:∫
C

dβ =

∫
∂C

β = 0 , since ∂C = ∅ .

Consequently, we have the following result:

Theorem 9.12 Let γ ∈ ker(d : A2 → A3) be a representative of the Chern class c (L) ∈ H2(C, Z) , L
a holomorphic line bundle on the compact Riemann surface C . Then, under the natural isomorphism
H2(C, Z) ∼= Z :

c (L) =

∫
C

γ .

We call the image of c (L) in Z the Chern number of L . By integration of the form γ in Theorem 11,
we get the following necessary condition for positivity of a line bundle:

If a line bundle L on a Riemann surface is positive (negative), then its Chern number c (L) is positive
(negative).

Remark . We will see later, using the Theorem of Riemann–Roch, that the converse is also true.

The reader may have noticed that the number k for the bundle O (k) , k ∈ Z , can also be detected
in the following way: Put s0 = uk0 , s1 = 1 , such that

s0 = uk0 = u−k
1 = f−1

01 s1 ,

where f01 = uk1 defines O (k) . Therefore, s = (s0, s1) is a meromorphic section in H⊗k (which
is holomorphic for k ≥ 0 ), whose total number of zeros counted with multiplicity (and negatively
for poles) is precisely the number k (since s has a zero or a pole of order | k | at u0 = 0 and is
holomorphic and nonvanishing everywhere else).

This again is a general fact: One can prove that for each holomorphic line bundle L on a compact
Riemann surface there exists a nontrivial (i.e. not identically vanishing) meromorphic section s . Then
the zeros and poles of s form a finite set, and we may count the number of zeros and poles as above.
We call this number d (L) , the degree of L . The next theorem tells us in particular that d (L) is in
fact an invariant of L not depending on the section s . One can prove this also by remarking that the
quotient s1/ s2 of two nontrivial meromorphic sections of L is a nontrivial meromorphic function f
on C . The Residue Theorem for compact Riemann surfaces then says that the total number of zeros of
f equals the total number of poles of f . This, in turn, follows from the next theorem (by application
to the trivial bundle).

Theorem 9.13 Let L → C be a holomorphic line bundle on the compact Riemann surface C . Then
the Chern number of L equals the degree of L .

Proof . Let s be a nontrivial meromorphic section of L : s = (sj)j∈J , sj = fjksk , with respect to a
covering U = {Uj }j∈J . We may assume that the Uj are disks, that sj has only a zero or a pole at
the center of Uj , and that Uk does not contain the center of Uj for all k ̸= j .
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Uj
Uk

Figure 9.2

Then, by shrinking U to a covering V = {Vj } of C with somewhat smaller disks Vj centered at the
same points as the Uj , and by using a partition of unity, we find positive real functions hj and Uj

with

hj = | fkj |2hk on Uj ∩ Uk

and

hj = | sj |−2 in a neighborhood of ∂Vj .

Let J0 be the set of elements j ∈ J such that sj has a zero or a pole at the center of Uj . Then, of
course, we can use hj = | sj |−2 for all j ∈ J \ J0 . Denote by γ the form associated to the metric
h = (hj) ; then

γj = γ|Uj
=

i

2π
∂∂ log hj = 0

for all j ∈ J \ J0 , and therefore,

c (L) =

∫
C

γ =

∫
C0

γ , C0 =
⋃
j∈J0

Vj .

Since, without loss of generality, Vj ∩ Vk = ∅ for all j ̸= k in J0 , we have

c (L) =
∑
j∈J0

∫
Vj

γ .

It remains to prove that the integral ∫
Vj

γ

is equal to the number of zeros or to the negative of the number of poles of sj at the origin of Vj . Let
nj ∈ Z denote this number; then we may assume that Vj is so small that, without loss of generality,

sj = znj

(where z is a coordinate on Vj vanishing at the origin), and we conclude easily from Stokes’ Theorem
and the classical Residue Theorem that∫

Vj

γ =
i

2π

∫
Vj

d∂ log hj =
i

2π

∫
∂Vj

∂ log | z |−2nj

= −nj
i

2π

∫
∂Vj

∂ log | z |2 = −nj
i

2π

∫
∂Vj

dz

z
= −nj

i

2π
2πi = nj .
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9.7 Point bundles on Riemann surfaces

For the compact Riemann surfaces C , we know - as we mentioned before - that the cohomology group
H2(C, OC) vanishes. Consequently, the Chern map

c : H1(C, O∗
C) −→ H2(C, Z) ∼= Z

is surjective. The purpose of the present Section is the construction of some line bundles on C with
prescribed Chern number. For this, it is sufficient to find holomorphic line bundles L → C with
c (L) = 1 , since, from Theorem 13, one can easily deduce that the Chern map is a group homomorphism
with respect to the tensor product of line bundles:

c (L1 ⊗ L2) = c (L1) + c (L2) .

(Of course, this follows from the very definition for compact complex manifolds M of arbitrary dimen-
sion).

The construction is a special example of assigning a holomorphic line bundle to a divisor on a man-
ifold (see Chapter 5.10). In the case of a Riemann surface C , such a divisor consists of (finitely many)
points counted with multiplicity. Now, for all x(0) ∈ C , there exists a distinguished sheaf on C , namely
the maximal ideal sheaf I{x(0)} associated to {x0 } (i.e. the sheaf of germs of holomorphic functions

on C which vanish at x(0) ). In the sequel, we will also use the symbol I (x(0)) when referring to the
maximal ideal sheaf. Notice that the ideal sheaf I (x(1), x(2)) in the proof of Theorem 8 is the product
I (x(1)) I (x(2)) . Clearly, I (x(0)) is a (locally) principal ideal in OC , generated in a neighborhood U0 of
x(0) by a coordinate function z - a special feature of dimension one. Moreover, there exists a canonical
isomorphism

I (x(0))|U1
∼= OU1 ,

where U1 = C \ {x(0) } .
The reader may amuse himself by checking that the cocycle { f01, f10 } given by

f10 = z|U0∩U1

with respect to the covering U = {U0, U1 } defines a line bundle L = L (x(0)) such that the sheaf
of holomorphic sections OC(L

∗) in the dual bundle L∗ is canonically isomorphic to I (x(0)) . Since
s = (s0, s1) , s0 = z , s1 = 1 , is a global holomorphic section in L , the so–called point bundle
L (x(0)) has Chern class

c (L (x(0))) = 1 .

Notice that in the language of Chapter 5.10 the bundle L (x(0)) is exactly the line bundle associated
to the divisor 1 · x(0) on C and I (x(0)) ∼= OC([−1 · x(0)]).

In particular, on every compact Riemann surface C there exist negative line bundles (if we take the
characterization of negative line bundles as those with negative Chern number for granted). By blowing
down the zero–section, we get a normal two–dimensional singularity which is regular, as we will see,
only if C ∼= P1 and L → P1 is the tautological bundle (i.e. the dual of the point bundle L (x(0)) for
an arbitrarily chosen point x(0) ∈ P1) . - So, we may state:

Each compact Riemann surface may be realized as the exceptional set in a resolution of a (nontrivial)
normal surface singularity .

We shall call a singularity that is obtained by blowing down the zero–section in a holomorphic
line bundle L with ample dual L∗ a generalized cone (since very ample bundles L∗ lead to cones as
explained in Chapter 5). We will have to say more about such cones in Chapter 10, since they represent
examples and, in fact, fundamental building objects for quasihomogeneous singularities such that we
also refer to them as quasi–cones.
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9.8 Statement of the Grauert - Mumford criterion

It is time to formulate the numerical criterion of Grauert and Mumford. We start with a fixed connected
reduced compact curve A in M . Regarded as a divisor, one can associate an intersection matrix to A
(see Chapter 5). The result whose proof we are going to attack is the famous

Theorem 9.14 (Grauert - Mumford) A is exceptional in M if and only if the intersection matrix
of A is negative–definite.

Since the intersection theory of smooth embedded curves is much easier to handle than that of
singular ones, we will use the fact that we have embedded resolutions of singularities of the curve A at
our disposal.

So, after an appropriate sequence of blow ups with center in A we find modifications σ : M̃ →M
such that the total transform E = σ−1(A) is a normal crossing divisor, i.e. the components Ej of E
are smooth and intersect transversally. Fix such a modification. After blowing up all intersection points,
we find another modification M → M̃ →M with total transform E of E .

Then, we have the following more precise statement.

Theorem 9.15 The following are equivalent :

i) A is exceptional in M ;

ii) the intersection matrix of A is negative definite ;

iii) E is exceptional in M̃ ;

iv) the intersection matrix of E is negative definite ;

v) there exist positive integers mj such that all restrictions Lj = L|Ej
of L := [

r∑
k=1

mkEk ] are

negative ;

vi) denoting any line bundle on E satisfying the properties in v) by L , then L carries a metric in a
neighborhood of E such that each restriction of L to a component of E is negative with respect
to this metric ;

vii) E is exceptional in M .

In each case, the exceptional sets A resp. E resp. E contract to the same singularity.

The prize we have to pay is the need for a deeper understanding of the theory of compact Riemann
surfaces and their holomorphic line bundles (see Sections 3, 5, 6, 7, 9, 10, 11 and 12).

The proof of Theorem 15 which will occupy the greater part of this Chapter goes along the scheme:

i) ⇐⇒ iii) ⇐⇒ vii)

⇓
ii) ⇐⇒ iv) ⇑

⇓
v) =⇒ vi)

Remark that we already discussed ii) ⇔ iv) in Chapter 5 (Theorem 9). The equivalences i) ⇔ iii) ⇔ vii)
and the final statement will be a consequence of Theorem 31, and iii) ⇒ iv) can be found in Section 19.
Finally, we prove the implications iv) ⇒ v) ⇒ vi) ⇒ vii) ⇒ iii) in Sections 21, 22 and 23.
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9.9 The Picard group of Riemann surfaces

By the previous considerations it is clear that we should be interested in knowing the complete structure
of H1(C, O∗

C) for a compact Riemann surface C . Under the operation of the tensor product, this is
an abelian group which is usually called the Picard group of C , denoted by Pic C . The subgroup

Pic0 C = { ξ ∈ Pic C : c (ξ) = 0 }

of holomorphic line bundles which are topologically trivial contains already all information about the
variety of holomorphic line bundles on C , since for every point bundle ξ0 there exists an isomorphism{

Pic0 C × Z −→ PicC

(ξ, ν) 7−→ ξ ⊗ ξν0 .

By definition, Pic0 C is the kernel of the Chern morphism c : H1(C, O∗
C) → H2(C, Z) , such that we

may deduce from the long exact cohomology sequence associated to the exponential sequence that

Pic0 C ∼= H1(C, OC)/ j (H
1(C, Z)) ,

where j denotes the canonical map

H1(C, Z) −→ H1(C, OC) .

It is well–known that compact Riemann surfaces are topologically classified by an integer g ≥ 0 ,
called its genus: As a topological space, it looks like a sphere S2 with g handles attached:

Figure 9.3

Clearly, in the case g = 0 we have the sphere itself:

Figure 9.4

There should be no problem to the reader realizing that a genus 1 Riemann surface is topologically a
torus:
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Figure 9.5

Here are pictures of surfaces of genus 2 and 3 :

Figure 9.6

the last one also in an incarnation created by Max Bill (standing near the “Außenalster” in Hamburg).

Figure 9.7
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On such a handle–body (of genus g ) there are obviously 2g mutually nonhomologous cycles:

Figure 9.8

One can show, in fact, that H1(C, Z) is free of rank 2g . Hence (by duality)

H1(C, Z) ∼= Z2g ,

H1(C, R) ∼= H1(C, Z)⊗Z R ∼= R2g ,

H1(C, C) ∼= C2g .

Since the map C ∼= H0(C, OC)
e−→ H0(C, O∗

C)
∼= C∗ is surjective, the map j above is necessarily

injective. Moreover, j (H1(C, Z)) is a lattice of rank 2g in the complex vector space H1(C, OC) ,
which is of dimension g (see Section 10). This implies:

The group Pic0 C is isomorphic to a g–dimensional torus Cg/Z2g .

Conceptually, this torus is the Jacobi variety JacC of C . - For more details, we refer to Chapter 15.8
and 9, where we will have a closer look at Pic0 C in order to understand the Picard group of surface
singularities.

For Example, if g = g (C) = 0 , i.e. if C ∼= P1 , then Pic0 C = 0 and Pic C ∼= Z : The
holomorphic line bundles on P1 are precisely the (positive and negative) tensor powers of the hyperplane
bundle H ∼= L (x(0)) , x(0) ∈ P1 arbitrary.

For genus one, i.e. for C ∼= C/Γ , Γ a lattice of rank 2 in C , Pic0 C is isomorphic to the group
C itself. This isomorphism is constructed in the following manner: Choose a fixed point x(0) ∈ C as
the neutral element in C , then the map

C −→ Pic0 C

is given by

x 7−→ L (x)⊗ L (x(0))∗ .

9.10 The Theorem of Riemann and Roch

The precise answer to the question: “How many sections does a holomorphic line bundle L on a compact
Riemann surface C have?” is given by the classical Riemann–Roch Theorem:

*Theorem 9.16 For all holomorphic line bundles L on a given compact Riemann surface C , the
number

dim H0(C, OC(L)) − dim H1(C, OC(L)) − d (L)

is equal to 1 − g , where g = g (C) denotes the genus of C .
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In fact, one has much more information: the pairs (d, γ) for which there exists a line bundle L on
a Riemann surface of genus g with d = d (L) and γ = dimCH

0(X, OC(L)) lie in the Riemann–Roch
diamond

γ(L)

g

−1 0 g − 1 g 2g − 1 d (L)

Figure 9.9

“Most” bundles lie on the lower border of the diamond. The others are called special . There exists
an intensive study of these special line bundles (or equivalently: of special divisors). E.g., for g ≥ 1 ,
the trivial bundle (d = 0 , γ = 1) is always special. In case of a torus C/Γ , all bundles L (x) ⊗
(L (x(0)))∗ , x ̸= x(0) , are nonspecial of degree 0 .

The classical contribution of Roch interprets the defect dim H1(C, OC(L)) (Riemann’s Theorem
was the inequality

dim H0(C, OC(L)) − d (L) ≤ 1 − g )

in terms of sections in another line bundle as

dim H0(C, OC(L
∗ ⊗KC)) ,

where KC denotes the canonical line bundle on C (i.e. the cotangent bundle whose sections are the
holomorphic 1–forms on C ). The equality

dim H1(C, OC(L)) = dim H0(C, OC(L
∗ ⊗KC))

is a consequence of Serre duality (see Section 12).
Modern proofs of Theorem 16 proceed by induction on d (L) , showing that the expression

dim H0(C, OC(L)) − dim H1(C, OC(L)) − d (L)

is constant on a given compact Riemann surface. Now, for the trivial bundle OC , one has H0(C, OC) ∼=
C , d (OC) = 0 . Thus, it remains to prove that

dim H1(C, OC) = g = g (C) .

Again, by Serre duality, this equality is equivalent to

dim H0(C, OC(KC)) = g ,

or in other words:

On a compact Riemann surface of genus g , there exist precisely g linearly independent holomorphic
1–forms.

To prove this classical result, we start with the standard resolution of the constant C–sheaf

0 −→ C −→ OC
d−→ Ω1

C −→ 0 ,
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Ω1
C denoting the sheaf of germs of holomorphic 1–forms on C , i.e. Ω1

C = O (KC) . Taking the long
exact cohomology sequence, we get the exact sequence (writing Hj(·) instead of Hj(C, ·) ):

0 −→ H0(C) −→ H0(OC) −→ H0(Ω1
C)

−→ H1(C) −→ H1(OC) −→ H1(Ω1
C)

−→ H2(C) −→ H2(OC) .

Now, H0(C) ∼= C ∼= H0(OC) , such that H0(C) ↪→ H0(OC) is an isomorphism. Further, H2(OC) =
0 and, by Poincaré duality, H2(C) = H0(C) ∼= C . Applying Serre duality once more, we have

dim H1(Ω1
C) = dim H0(OC(TC)⊗ Ω1

C) = dim H0(OC) = 1 ,

since the tangent bundle TC is dual to the canonical bundle KC . Therefore, the epimorphism
H1(Ω1

C) → H2(C) must be invertible, and we deduce the exactness of the sequence

0 −→ H0(Ω1
C) −→ H1(C) −→ H1(OC) −→ 0 .

Finally, dim H0(Ω1
C) = dim H1(OC) , and dim H1(C) = 2g .

9.11 Characterizations of positivity for line bundles on com-
pact Riemann surfaces

We are now ready for a more detailed analysis of positivity (and negativity).

Theorem 9.17 Let L be a holomorphic line bundle on a (smooth) compact Riemann surface C . Then,
the following are equivalent (L1 denotes any other holomorphic line bundle):

i) L is positive ;

ii) the degree d (L) (and, equivalently, the Chern number c (L) ) is positive ;

iii) dim H1(C, OC(L
⊗k ⊗ L1)) = 0 for all k ≥ k1(L1) > 0 ;

iv) dim H0(C, OC(L
⊗k ⊗ L1)) = k d (L) + d (L1) − 1 + g for all k ≥ k1(L1) > 0 ;

v) L⊗k is very ample for all k ≥ k0(L) ;

vi) L is ample.

Proof . i) =⇒ ii) has been seen already in Section 6. The equivalence of iii) and iv) is a direct consequence
of the Riemann–Roch Theorem. v) and vi) are equivalent by definition. If v) is satisfied, the holomorphic
sections of L⊗k embed C into some PN , and L⊗k is the pullback of the positive hyperplane bundle
on PN which gives i). So, it remains to show that ii) =⇒ iii) =⇒ v).

ii) =⇒ iii). By Serre duality, dim H1(C, OC(L
⊗k ⊗ L1)) is the same as the dimension of

H0(C, OC((L
⊗k ⊗ L1)

∗ ⊗KC)) . The degree of this line bundle is

−k d (L) − d (L1) + d (KC)

and hence negative, if k ≥ k1 where k1 depends on L1 (and C ). Therefore, this bundle has no
nontrivial holomorphic sections.

iii) =⇒ v). Following Grauert’s arguments (see Section 4) we have to show that for large k the bundle
L⊗k satisfies H1(C, I (x(1), x(2))O (L⊗k)) = 0 for all x(1), x(2) ∈ C which is clear from iii) since
I (x(1), x(2)) is the sheaf of holomorphic sections in a product of two point bundles. □

Remark . The constants k0 and k1 can be made more precise by the remark that d (KC) = 2g − 2
which follows from the information the Riemann–Roch formula produces for L = KC .
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9.12 Serre duality

At several other occasions, we will be led to use Serre duality which we therefore explain here in a more
general set–up for a compact complex manifold M and a holomorphic vector bundle F on M . Recall
that, by Dolbeault’s Lemma, we have an exact sequence

(∗) 0 −→ OM −→ A0,0
M

∂−→ A0,1
M

∂−→ · · · ∂−→ A0,n
M −→ 0 , n = dimCM ,

where Ap,q
M denotes the (fine) sheaf of differential forms of type (p, q) on M and the differential

operator ∂ is defined on functions by

∂f :=

n∑
ν=1

∂f

∂zν
dzν

and on forms by
∂
(∑

aν1...νpµ1...µq
dzν1

∧ . . . ∧ dzνp
∧ dzµ1

∧ . . . ∧ dzµq

)
:=

∑
∂aν1...νpµ1...µq

∧ dzν1
∧ . . . ∧ dzµ1

∧ . . . .

If F is a holomorphic vector bundle on M , we denote by AM (F ) the sheaf of germs of C∞–sections
in F , and by

Ap,q
M (F ) = Ap,q

M ⊗AM
AM (F )

the sheaf of germs of differential forms of type (p, q) on M with values in F . In the following, we
drop the index M .

The Dolbeault complex (∗) gives rise to a fine resolution of the sheaf O(F ) of holomorphic sections
in F :

0 −→ O (F ) −→ A0,0(F )
∂−→ . . .

∂−→ A0,n(F ) −→ 0 .

Hence,
Hj(M, O (F )) ∼= Hj

Dolb(M, O (F )) ,

where

Hj
Dolb(M, O (F )) =

ker(∂ : H0(M, A0,j(F )) −→ H0(M, A0,j+1(F )))

im (∂ : H0(M, A0,j−1(F )) −→ H0(M, A0,j(F )))
.

Thus, each pair
(ζ, µ) ∈ Hj(M, O (F ))×Hn−j(M, O (F ∗ ⊗KM ))

(KM the canonical bundle of M , i.e. the n–th exterior power of the cotangent bundle) can be repre-
sented by a pair of ∂–closed forms

α ∈ H0(M, A0,j(F )) , β ∈ H0(M, A0,n−j(F ∗ ⊗KM )) .

Since forms in K = KM are of type (n, 0) , the exterior product α∧ β is a global (n, n)–form in the
usual sense:

α ∧ β ∈ H0(M, An,n)

which, therefore, can be integrated over M . To show that this integral is independent of the choice of
α and β , assume, for instance, that α = ∂γ with a form γ of type (0, j − 1) . Since ∂β = 0 , we
have

∂(γ ∧ β) = ∂γ ∧ β = α ∧ β .
Moreover,

∂(γ ∧ β) = 0 ,

γ ∧ β being of type (n, n − 1) . By Stokes’ Theorem, it follows that∫
M

α ∧ β =

∫
M

d(γ ∧ β) =

∫
∂M

γ ∧ β = 0 .

Serre duality can now be phrased as follows:
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*Theorem 9.18 The bilinear pairing

Hj(M, O (F ))×Hn−j (M, O(F ∗ ⊗KM )) −→ C ,

defined by

([α ], [β ]) 7−→
∫
M

α ∧ β ,

is perfect, i.e. it realizes Hn−j(M, O (F ∗ ⊗KM )) as the dual space of Hj(M, O (F )) , j = 0, . . . , n .

If M is not compact, we can study cohomology with compact support (denoted by Hj
c ) which can

be realized by ∂–closed forms with compact support. As above, one constructs a bilinear pairing

Hj(M, O (F ))×Hn−j
c (M, O (F ∗ ⊗K)) −→ C

which is still perfect, if one of the cohomology groups involved is finite dimensional. Moreover, O (F )
may be replaced by any coherent analytic sheaf (and O (F ∗) by its dual).

9.13 The adjunction formula

For a smooth curve C in a two–dimensional manifold M there is a canonical isomorphism

Ω2
M |C

∼= Ω1
C ⊗N∗

C|M .

This adjunction formula relates the canonical bundle of C to the canonical bundle of M via the normal
bundle of C in M . Taking into account that O (NC|M ) ∼= OM (C)|C (see Section 15, Theorem 22, for
more details) we can rewrite this in the form

Ω1
C

∼= Ω2
M |C ⊗OC(C) .

It is the aim of the present Section to prove this result as a very special case of elementary multilinear
algebra. First of all, we generalize the situation by regarding a smooth hypersurface H in an n–
dimensional complex analytic manifold M . For the holomorphic tangent bundles we have a natural
inclusion

TH ↪−→ TM |H

which gives rise to an exact sequence of vector bundles

0 −→ TH −→ TM |H −→ N −→ 0 ,

in which the line bundle N = TM |H/ TH on H is called the normal bundle of H in M and denoted
by NH|M . Dualizing the sequence gives a new exact sequence

0 −→ N∗ −→ T ∗
M |H −→ T ∗

H −→ 0 ,

and what we finally claim is that there is a natural isomorphism(
(∧nT ∗

M )|H ∼=
)
∧nT ∗

M |H
∼= N∗ ⊗ ∧n−1T ∗

H .

Generalizing further, we may expect the following.

Theorem 9.19 Let
0 −→ F1 −→ F −→ F2 −→ 0

be an exact sequence of vector bundles. Then, there exists a natural isomorphism

∧nF ∗ ∼= ∧n1F ∗
1 ⊗ ∧n2F ∗

2

where n = rangF , n1 = rangF1 , n2 = rangF2 .
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Proof . As a general principle, any canonical isomorphism of vector spaces leads to such isomorphisms of
vector bundles. So, e.g., the natural isomorphism V ∼= V ∗∗ of finite dimensional vector spaces induces
a natural isomorphism F ∼= F ∗∗ of vector bundles. Therefore, we can replace the vector bundles in the
theorem by finite dimensional vector spaces and claim: For every exact sequence

0 −→ U −→ V −→ V −→ 0

of vector spaces of dimension m, n, s = n − m , resp., there exists a canonical isomorphism

∧nV ∗ ∼= ∧mU∗ ⊗ ∧sV
∗
.

But the vector spaces on both sides are canonical isomorphic to the spaces

AltnV and Altm(U, AltsV ) , resp.,

where Alt denotes vector spaces of alternating multilinear forms, and there is a canonical mapping

AltnV −→ Altm(U, AltsV )

by associating to an alternating multilinear form µ = µ (v1, . . . , vn) the alternating form which asso-
ciates to each m–tupel (u1, . . . , um) of vectors in U the alternating form µu on V defined by

µu(vm+1, . . . , vn) := µ (u1, . . . , um, vm+1, . . . , vn) .

Since m = dim U , we have automatically

µu(vm+1 + um+1, . . . , vn + un) = µu(vm+1, . . . , vn)

for all um+1, . . . , un ∈ U , such that the given map has its image in Altm(U, AltsV ) . Since the map is
not zero and each space on both sides is of dimension one, it is an isomorphism. □

9.14 Rudiments of intersection theory

Before we embark into the proof of the Grauert–Mumford criterion, we would like to investigate the
notion of self–intersection numbers more intensively. In particular, we have to explain why these numbers
can be negative. For that, we need a rudimentary form of general intersection theory .

If M is any oriented differentiable manifold of real dimension 2n , one has a bilinear pairing

⟨ . , . ⟩ : Hn(M, Z)×Hn(M, Z) −→ Z

which counts the number of intersection points in the following sense: Denote by A and B two oriented
differentiable submanifolds of M of dimension n . Then the fundamental classes [A ] and [B ] of A
resp. B are elements in Hn(A, Z) resp. in Hn(B, Z) . The inclusions A ↪→ M and B ↪→ M generate
canonical maps

Hn(A, Z) −→ Hn(M, Z) , Hn(B, Z) −→ Hn(M, Z) ,

such that the product
⟨ [A ], [B ] ⟩ ∈ Z

is defined. Now, if A ∩B is a finite set {x(1), . . . , x(t) } such that, at each point x(τ) , the sets A and
B intersect transversely , i.e. if for the differentiable tangent spaces

TA,x(τ) ⊕ TB,x(τ) = TM,x(τ) ,

then

⟨ [A ], [B ] ⟩ =

t∑
τ=1

ετ
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where ετ = +1 , if the orientations of A and B at x(τ) induce the orientation of M at x(τ) , or
ετ = −1 , if the opposite orientation is induced.

Recall that we defined an intersection number between complex analytic curves in smooth surfaces
and holomorphic line bundles and obtained a good notion of intersection numbers for curves and divisors
by associating a line bundle to the divisor in Chapter 5. Thus, we restrict ourselves from now on to the
case of a two–dimensional complex analytic manifold M (endowed with its canonical orientation) and a
(connected) compact one–dimensional submanifold C ⊂M . We first want to interpret the intersection
number of C with a holomorphic line bundle L on M as an appropriate integral on C . The Chern
class of L is, as an element of

H2
dRh(M, R) ,

given by a real d–closed 2–form γ on M . Then we define for the moment

[C, L ] := [C, [ γ ] ] =

∫
C

γ .

(Note that this definition depends only on the isomorphism class of L in H1(M, O∗
M ) ). Of course, γ

restricted to C is a closed real 2–form on C whose class in

H2
dRh(C, R)

is the Chern class of the restriction L|C . Hence, by Theorem 12 and 13,

(∗) [C, L ] = c (L|C) = d (L|C) ∈ Z ,

and therefore, our definition of the intersection number (C, L) in Chapter 5 coincides in this case with
the number [C, L ] . Recall that we defined the intersection number of C with an arbitrary divisor D
on M via the correspondence between divisors and line bundles by

(C ·D) := (C, [D ]) .

Notice finally that we have [D1 +D2 ] ∼= [D1 ]⊗[D2 ] for all divisors D1 , D2 such that the intersection
map

(C ·D) : DivM −→ Z , C ⊂ M fixed ,

is a group homomorphism.

9.15 Self - intersection numbers

In the present Section, we want to give an interpretation of the self–intersection numbers

(Ej · Ej)

by invoking the adjunction formula. Without loss of generality, we write C = Ej . In order to compute
the line bundle [C ]|C , we first investigate the case where C is the zero–section in a holomorphic line
bundle L : If vι is a local fiber coordinate, then

vι = fικvκ

and (locally) C = { vι = 0 } . Therefore, [C ]|C is given by the cocycle

gικ =
vι
vκ

= fικ , i.e. [C ]|C ∼= L .

This implies

Theorem 9.20 For the zero–section C of a line bundle L one has the identity

(C · C) = d (L) .
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And, if we use again the fact that the negative line bundles are those with negative Chern number:

Corollary 9.21 The zero–section C of a line bundle L is exceptional in L , if and only if

(C · C) < 0 .

Remark . One can easily interpret Theorem 20 geometrically via general intersection theory as explained
in the preceding Section. If there exists a holomorphic section s in L then C ′ := s (C) is a holomorphic
curve in L which is homologous (and even homotopic) to C and C ′ intersects C in exactly d (L) ≥ 0
points (counted with multiplicities). In the general case one has to modify a meromorphic section s
near the poles by a differentiable one s̃ such that the differentiable submanifold s̃ (C) intersects C
in the poles negatively with the correct pole order. To be more precise: Let the meromorphic section
locally in suitable local coordinates (x, v) be described by v = v (x) = x−k, |x | < 2ε . Then define

s̃ (x) =


1

xk
=

xk

|x |2k
, |x | ≥ ε ,

xk

ε2k
, |x | ≤ ε .

After some smoothing along the circle |x | = ε we end up with a differentiable section s̃ such that
s̃(C) intersects C negatively of order k at the given pole.

Coming back to the general case of a smooth curve C ⊂ M , we can find a covering U = {Uι } of
C in M with coordinates (uι, vι) in Uι such that

C ∩ Uι = { (uι, vι) : vι = 0 } .

The bundle [C ]|C is then defined by the cocycle

gικ = gικ(uκ) =
vι(uκ, vκ)

vκ

∣∣∣∣
vκ=0

.

In the local expansion

vι = vι(uκ, vκ) =
∑
ν,µ

aνµu
ν
κv

µ
κ ,

all coefficients aν0 are 0 , since vκ = 0 . Hence,

gικ =
∑
ν

aν1u
ν
κ =

∂vι
∂vκ

∣∣∣∣
vκ=0

.

By the same reasoning, we get
∂vι
∂uκ

∣∣∣∣
vκ=0

= 0 .

The tangent bundle TM of M is (locally near C ) given by the cocycle

Θικ =


∂uι
∂uκ

∂uι
∂vκ

∂vι
∂uκ

∂vι
∂vκ

 .

Its restriction to C (denoted as usual by TM |C ) is then defined by

Θικ|C = Θικ |vκ=0 =

 ∂uι
∂uκ

∣∣∣∣
vκ=0

∗

0 gικ
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where (∗) stands for an arbitrary entry. Due to the zeros in the left lower corner, the tangent bundle
TC of C defined by

∂uι
∂uκ

∣∣∣∣
vκ=0

is in a canonical way a subbundle of TM |C , and the quotient bundle N = NC|M will be given by the
cocycle (gικ) . Thus, we have

Theorem 9.22 If C is a smooth compact Riemann surface embedded in a two–dimensional complex
analytic manifold M , then

[C ]|C ∼= NC|M .

In particular, the self–intersection number (C ·C) equals the Chern number of the normal bundle NC|M
of C in M .

Remark . Since topologically the differentiable manifold M looks near C like a neighborhood of the
zero–section in the normal bundle NC|M , the self–intersection number of C in M coincides with the
sum of the intersections (counted with multiplicity and the correct sign according to orientation) of
C with any differentiable submanifold C ′ ⊂ M which is homologous to C in M and intersects C
transversally (in the differentiable sense) in finitely many points.

We still need another description of [C ]|C , or - to be more precise - of its dual bundle [−C ]|C .
To this end, we give another description for [−C ] : Let, for the moment, D be any divisor on M .
Assume, moreover, that

D =
∑

njEj

is positive (also called effective), i.e. that all nj ≥ 0 , or - what amounts to the same - that D is locally
(on Uι ) the divisor of a holomorphic function hι . Then, if f is a holomorphic function which vanishes
on each Ej at least to order nj , i.e. if div f − D is positive, we have locally

f = sι · hι , sι ∈ H0(Uι, OM ) ,

such that the system { sι } defines a holomorphic section in [−D ] . If, on the other hand, we have a
holomorphic section { sι } in [−D ] , then

sι =
hκ
hι

sκ ,

and f = sιhι defines a global holomorphic function with div f − D positive. Since all these consid-
erations are also true locally, we proved:

Theorem 9.23 If D =
∑

njEj is a positive divisor, then the sheaf OM (−D) of germs of holomor-
phic sections in the line bundle [−D ] can be identified with the ideal sheaf ID ⊂ OM of germs of
holomorphic functions f with div f ≥ D .

In the case D = C ⊂ M , which we studied before, IC is nothing else but the ideal sheaf of C in
M , and analytic restriction to C gives

OC([−C ]|C) ∼= IC ⊗OM
OC

∼= IC ⊗OM
(OM/ IC) ∼= IC/ I

2
C .

Therefore, we have proved:

Corollary 9.24 Under the assumption of Theorem 22, the sheaf O (N∗
C) is isomorphic to IC/ I

2
C .
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9.16 Divisors supported on E

In the following sections, we restrict our considerations to divisors D =
∑r

j=1 njEj supported on
a fixed compact 1–dimensional complex analytic set E ⊂ M whose irreducible components Ej are
always assumed to be smooth. We denote the abelian group of such divisors by

DivE M .

By linear extension of the intersection pairing, we get a bilinear map

( . , . ) : DivE M ×DivE M −→ Z .

Of course, this map is completely determined by the matrix of the intersection numbers (Ej , Ek) which
we also denote by

(Ej · Ek) .

We first deal with the case j ̸= k and claim that for components intersecting transversely our
definition is correct. (For the notion of normal crossing divisors, see Chapter 5.9).

Theorem 9.25 For a normal crossing divisor E , the number (Ej ·Ek) , j ̸= k , equals the number of
points of Ej ∩ Ek . In particular, the intersection matrix

((Ej · Ek))j,k

is symmetric and has nonnegative entries outside the main diagonal.

Proof . In a small neighborhood of Ej (which only counts for the computation of (Ej ·Ek)) , the divisor
Ek decomposes into ℓ small disks Dλ , all intersecting Ej transversely, where ℓ is the cardinality of
the finite set Ej ∩ Ek .

D1 ⊂ Ek
D2 ⊂ Ek

Ej

Figure 9.10

So, near Ej , the line bundle [Ek ] has a holomorphic section which vanishes exactly on the Dλ

(precisely to first order). Hence,

[Ek ]|Ej

has a holomorphic section with precisely ℓ zeros such that

(Ej · Ek) = d ([Ek ]|Ej
) = ℓ . □

9.17 Intersection numbers and blowing up

The present Section is devoted to the question what happens to intersection numbers under σ–processes
(recovering and generalizing the results of Chapter 5.12). We consider our standard situation of a smooth
Riemann surface C ⊂M and blow up a point x(0) ∈ C :
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C M-

M̃

?

σ

Let C be the strict transform of C under σ . Using suitable coordinates on C near x(0) , it is very

easy to show that the injection C ↪→ M̃ , followed by σ , defines a biholomorphic map τ : C
∼→ C .

Hence, if L is any holomorphic line bundle on M , and if L̃ denotes the lifted bundle σ∗L , then by
the commutativity of the diagram

C M-

C M̃
-

?

τ

?

σ

L̃|C = τ∗(L|C) which implies the important formula

(C, L) = (C, σ∗L) .

If L = [D ] , with D =

r∑
j=1

njEj a divisor with smooth components Ej , it is easily checked that

L̃ = σ∗L = [σ∗D ]

with

σ∗D = n0E0 +

r∑
j=1

njEj ,

where E0 = σ−1(x(0)) ∼= P1 , Ej = strict transform of Ej in M̃ , and n0 =
∑
j∈J0

nj , where J0 =

{ j = 1, . . . , r : x(0) ∈ Ej , nj ̸= 0 } .

Theorem 9.26 Let E1 , E2 ⊂M be (eventually identical) smooth compact Riemann surfaces, and let
E1 , E2 be their strict transforms under a σ–process with center x(0) ∈ E1 ∩ E2 . Then

(E1 · E2) = (E1 · E2) − 1 .

Proof . We have

(E1 · E2) = (E1, [E2 ]) = (E1, [σ
∗E2 ]) = (E1, E0 + E2) = 1 + (E1 · E2) ,

since (E1, E0) = 1 . □

From Theorem 26, we can immediately conclude that the statement of Theorem 25 remains true for
divisors E with not necessarily normal crossings:

Corollary 9.27 Let E =
∑r

j=1 Ej be a divisor with smooth components Ej . Then the intersection
matrix ((Ej · Ek)) is symmetric and has nonnegative entries outside the main diagonal.

Proof . Let Ej ∩ Ek = {x(1), . . . , x(t) } , j ̸= k , and denote by cτ the order of contact between Ej

and Ek at x(τ) (see Chapter 5.9). As we have seen there, this number drops by one after performing
a σ–process at x(τ) . Therefore,

(Ej · Ek) =

t∑
τ=1

(cτ + 1) . □
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9.18 Principal divisors

The preceding considerations may also be used to show that there is always a large subgroup of Div M
in the kernel of the intersection map (for a fixed curve C ⊂M ).

Two divisors D1 and D2 are called linearly equivalent , if their difference is a principal divisor , i.e.
the divisor of a global meromorphic function on M ; we denote this fact by D1 ∼ D2 . Thus,

D1 ∼ D2 ⇐⇒

{
∃ a meromorphic function h on M

such that D1 − D2 = div h .

Since for two meromorphic functions h1, h2 it is true that

div (h1 · h2) = div h1 + div h2 ,

the set DivHM of principal divisors (Hauptdivisoren in German) is a subgroup of Div M . The line
bundle associated to a principal divisor is obviously trivial (and vice versa: if the line bundle attached
to a divisor D is trivial, then D is principal). Therefore, we have:

Theorem 9.28 For every principal divisor D , the intersection number (C, [D ]) is zero. Hence, the
intersection map may be thought of as being a group homomorphism

Div M/DivHM −→ Z .

We give another proof . It is to show that

(C, div h) = 0

for all meromorphic functions h on M . If we blow up a point x(0) ∈M , then

σ∗ div h = div (h ◦ σ)

and

(C, div h) = (C, div (h ◦ σ)) ,

C the strict transform of C . Hence, we may assume that

div h = nC +
∑

njEj ,

where the Ej are pairwise disjoint and intersect C transversely (at precisely one point). Near such an
intersection point, h can be written in the form

h = eju
nj

j vn ,

where ej is a unit and uj and v are local coordinates such that

C = { v = 0 } , Ej = {uj = 0 } .

Hence, the system e−1
j (uj , 0)u

−nj

j defines a meromorphic section in the n–th power of [C ]|C ∼= NC

such that

n (C · C) = d (N⊗n
C ) = −

∑
nj = −

∑
nj(C · Ej) ,

i.e.

(C, div h) = (C, nC +
∑

njEj) = n (C · C) +
∑

nj(C · Ej) = 0 . □
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9.19 Necessity of the Grauert - Mumford criterion

The next Sections are devoted to the proof of the Grauert–Mumford criterion in the precise form of
Theorem 15. (See also Corollary 21 for the special case of the zero–section in a holomorphic line bundle).

The following result due to Mumford is exactly the implication iii) =⇒ iv) in Theorem 15. (Notice
that we already proved ii) ⇐⇒ iv), see Theorem 5.9).

Theorem 9.29 Let E ⊂ M be a connected normal crossing divisor with smooth components Ej . If
E is exceptional in M , then the intersection matrix

((Ej · Ek))1≤j,k≤r

is negative definite.

Proof . Blow E down to an isolated singular point and take any nontrivial holomorphic function g
which vanishes at this point. Then g must have zeros arbitrarily close to the singular point. Let f be
the pull–back of g to M ; then we have

div f =

r∑
j=1

mjEj + D0

with mj > 0 for all j , and D0 is not empty, positive and intersects the connected set E = ∪Ej in a
nonempty set of isolated points. For a fixed index k , we may assume (after possibly blowing up some
more points and applying Theorem 5.9 once more) that all components of D0 intersect Ek transversely
(see also the proof and statement of Theorem 28) such that

(+) 0 = (Ek, div f) = (Ek,
∑
j

mjEj) + (Ek, D0) ≥
∑
j

mj(Ej · Ek) ,

and this inequality is strict for at least one index k .

The inequalities (+) are already sufficient for the negative–definiteness of the real symmetric matrix
S = (cjk) where cjk = (Ej · Ek) and, in particular, cjk ≥ 0 for j ̸= k : A matrix S is evidently
(negative) definite, if and only if it exists an invertible matrix Q such that QS tQ is (negative) definite.
Taking Q = (qjk) to be the diagonal matrix with the entries qjj = mj , we see that the problem is
reduced to the statement that

S̃ = QS tQ = (c̃jk) , c̃jk = mjmk(Ej · Ek)

is negative definite. The real symmetric matrix S̃ has now the following properties:

I) c̃jk ≥ 0 , j ̸= k ;

II)

r∑
j=1

c̃jk ≤ 0 , k = 1, . . . , r ,

and this inequality is strict for some k (say k = 1 );

III) it is not possible to split the index set { 1, . . . , r } into two nonempty disjoint subsets J1 and J2
such that c̃jk = 0 for all j ∈ J1 , k ∈ J2 . (This, of course, follows from the connectedness of
E = ∪Ej) .

Lemma 9.30 A real symmetric matrix S̃ = (c̃jk) , satisfying the conditions I), II) and III) as before,
is negative definite.

Proof . We first show that S̃ is negative semi–definite: Let x = (x1, . . . , xr) ∈ Rr ; then∑
j,k

c̃jkxjxk =
∑
j

c̃jjx
2
j + 2

∑
j<k

c̃jkxjxk =
∑
k

(
∑
j

c̃jk)x
2
k −

∑
j<k

c̃jk(xj − xk)
2 ≤ 0 .

Moreover, if the left hand side vanishes for x , then
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a) (
∑
j

c̃jk)x
2
k = 0 for all k ;

b) c̃jk(xj − xk)
2 = 0 for all j ̸= k .

From a) and II) we then conclude that x1 = 0 ; hence

J1 = { j ∈ { 1, . . . , r } : xj = 0 } ̸= ∅ .

Suppose now that also

J2 = { 1, . . . , r } \ J1 = { k ∈ { 1, . . . , r } : xk ̸= 0 }

is not empty. Then, by b), c̃jk = 0 for all j ∈ J1 , k ∈ J2 , which is a contradiction to III). □

9.20 Sufficiency of the criterion: Reduction to A = E

A partial completion of the proof of Theorem 15 will be provided by showing the equivalences i) ⇐⇒
ii) ⇐⇒ vii). This reduction step follows from the next Theorem which is obviously more generally valid

for iterated σ–processes (and therefore for any point modification σ : M̃ → M with center in A ; see
Section 29). It also implies the last statement in Theorem 15.

Theorem 9.31 Let σ : M̃ → M be the σ–process at a point x(0) ∈ A ⊂M , A a compact connected
one–dimensional complex analytic subset, and let Ã := σ−1(A) be its total transform. Then Ã is

exceptional in M̃ , if and only if A is exceptional in M , and if so, they blow down to the same
singularity.

Proof . Since σ is a proper mapping, the preimages of all open neighborhoods of A form a neighborhood
basis for the connected compact set Ã , and vice versa for the images. Clearly, A and Ã have the “same”
boundary, σ being biholomorphic outside Ã . This shows the first statement. Moreover, by Riemann’s
Extension Theorem, σ∗OM̃

∼= OM such that

H0(σ−1(U), O
M̃
) ∼= H0(U, OM )

for all open sets U ⊂M . Therefore,

lim−→
Ã⊂V

H0(V, O
M̃
) ∼= lim−→

Ã⊂σ−1(U)

H0(σ−1(U), O
M̃
) ∼= lim−→

A⊂U

H0(U, OM )

are isomorphic analytic algebras. □

9.21 An equivalent criterion

For the next step, we need the converse to a result which we used implicitly in the proof of Theorem 29
(cf. Lemma 30).

Lemma 9.32 Let S = (cjk) be a real symmetric matrix with cjk ≥ 0 for all j ̸= k , satisfying
condition III): There is no decomposition { 1, . . . , r } = J1 ∪ J2 with cjk = 0 for all j ∈ J1 , k ∈ J2 .

a) Assume that there are positive numbers m1, . . . ,mr such that

(∗)
r∑

j=1

mjcjk ≤ 0 , k = 1, . . . , r .

Then S is negative semi–definite. If, moreover, in (∗) strict inequality holds for some k , then
S is negative definite.
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b) If S is negative definite, then there exist positive integers m1, . . . ,mr such that the strict inequal-
ities in (∗) are satisfied.

The converse b) will be a consequence of the next Theorem which is the key lemma in the classifi-
cation of irreducible root systems, too.

Theorem 9.33 Let S = (cjk) be a real symmetric negative semi–definite r× r–matrix with cjk ≥ 0
for all j ̸= k satisfying condition III). Then there exists an invertible matrix Q such that QS tQ is a
diagonal matrix of type

D = diag (−1, . . . ,−1)

or of type
D = diag (−1, . . . ,−1, 0)

with eigenvalue 0 of multiplicity 1 .

In the first case, S is negative definite. In the second case, it exists a positive vector x = (x1, . . . , xr) ∈
Rr

>0 such that xS = 0 (which, of course, spans the annihilator of S ).

Proof . For r = 1 , all the statements are trivially correct. So, assume that the Theorem is verified for
(r − 1)× (r − 1)–matrices, and take an r × r–matrix S = (cjk) with associated quadratic form

q (x) := xS tx .

Substituting x = (0, . . . , 0, 1, 0, . . . , 0) and x = (1, . . . , 1) , resp., yields

cjj ≤ 0 for all j

and
r∑

j=1

( r∑
k=1

cjk

)
≤ 0 ,

hence
r∑

k=1

cjk ≤ 0 for at least one value of j

which (after application of a suitable permutation matrix Q ) we may assume to be j = 1 . Since
c1k = 0 for all k > 1 is impossible, we get

c11 < 0 ,

and we assume without loss of generality that

c11 = −1 , c12 > 0 .

Take now the matrix

tQ =


1 c12 · · · c1r

0 1 0
...

. . .

0 0 1


and check that

QS tQ =


−1 0 · · · 0

0
... S′

0
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where S′ = (c′jk)2≤j,k≤r with

c′jk = cjk + c1jc1k , 2 ≤ j , k ≤ r .

Obviously, S′ ≤ 0 and c′jk ≥ 0 for all j ̸= k . If there would exist a decomposition

{ 2, . . . , r } = J ′
1 ∪ J ′

2 , J ′
1 ∩ J ′

2 = ∅ ,

with c′jk = 0 for all j ∈ J ′
1 , k ∈ J ′

2 , then we could assume without loss of generality that J ′
1 =

{ 2, . . . , s } , J ′
2 = { s + 1, . . . , r } , and we would get out of

0 = c′jk = cjk + c1jc1k ≥ 0

that cjk = 0 for all j ∈ J ′
1 , k ∈ J ′

2 . Taking j = 2 yields also c1k = 0 for all k ∈ J ′
2 , which is a

contradiction to the properties of S . - This implies the first statements.

The last statement shall be shown by induction, too. If S is not definite, then also S′ . Therefore, we
find a vector

y′ = (y2, . . . , yr) , yj > 0 , j = 2, . . . , r ,

with y′S′ = 0 . By the definition of Q , the vector

x = yQ , y = (0, y2, . . . , yr)

is positive, and xS = 0 . □

Proof of Lemma 32, part b). S has r negative eigenvalues. Let λ be the eigenvalue of smallest

absolute value. Then S̃ = S − λE satisfies the assumptions of Theorem 33. Since S̃ is degenerate,
it exists a vector x > 0 with xS̃ = 0 . Thus, xS = λx < 0 . By continuity, we may choose x with
positive rational coordinates, and hence, there exist positive integers m1, . . . ,mr such that

r∑
k=1

cjkmk < 0

for all j = 1, . . . , r . □

We are now in the position to perform the next important step in proving the sufficiency of the
Grauert–Mumford criterion in Theorem 15 by showing the implication iv) =⇒ v).

Theorem 9.34 Let E = ∪Ej be a one–dimensional connected compact complex analytic subset of
the smooth surface M with smooth components Ej and negative definite intersection matrix S =
(cjk) , cjk = (Ej ·Ek) . Then there exist positive integers mk such that the line bundle L = [

∑
mkEk ]

has the property that L|Ej
has negative degree for all j = 1, . . . , r .

Proof . Choose positive integers m1, . . . ,mr according to Lemma 32, part b), put

E(m) :=

r∑
k=1

mkEk ∈ DivE M

and

L := [E(m) ] =

r⊗
k=1

[Ek ]
⊗mk .

Then the degree of the restriction

Lj = L|Ej
=

r⊗
k=1

([Ek ]|Ej
)⊗mk

is equal to

d (Lj) =

r∑
k=1

mk · d ([Ek ]|Ej
) =

r∑
k=1

mk(Ek · Ej) =

r∑
k=1

mkcjk < 0 . □
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9.22 The equivalent criterion under blowing up

In this Section, we shall prove that the existence of a bundle L satisfying the assumptions of Theorem 34
is preserved under σ–processes. This is even a little bit more than we need for the implication v) =⇒
vi) in Theorem 15.

Theorem 9.35 Let E ⊂ M be a compact divisor with smooth components Ej in a two–dimensional
complex analytic manifold M such that, for some positive integers mk , the degree

d ([

r∑
k=1

mkEk ]|Ej
)

is negative for all j = 1, . . . , r . Let σ : M̃ → M be a σ–process at a point x(0) ∈ E ; denote by Ẽj the

strict transform of Ej in M̃ and by Ẽ0 the subvariety σ−1(x(0)) ∼= P1 such that σ−1(E) = ∪r
j=0Ẽj .

Then the restrictions of the line bundle

L̃ = [mẼ0 + 2

r∑
k=1

mkẼk ]

to the curves Ẽj , j = 0, . . . , r , have negative degree, when m = 1+2
∑′

mj ,
∑′

denoting summation
over all j with x(0) ∈ Ej .

Proof . Let J0 be the set of indices j such that x(0) ∈ Ej . Then

(Ẽj · Ẽk) = (Ej · Ek) − 1 , j, k ∈ J0 ,

(Ẽj · Ẽk) = (Ej · Ek) , k ∈ J1 = { 1, . . . , r } \ J0 ,

(Ẽj · Ẽ0) =


1 ,

0 ,

−1 ,

j ∈ J0 ,

j ∈ J1 ,

j = 0 .

This implies for ℓ ∈ J0 :

d (L̃|Ẽℓ
) = ((mẼ0 + 2

r∑
k=1

mkẼk) · Ẽℓ)

= m(Ẽ0 · Ẽℓ) + 2
∑
k∈J0

mk(Ẽk · Ẽℓ) + 2
∑
k∈J1

mk(Ẽk · Ẽℓ)

= (1 + 2
∑
k∈J0

mk) + 2
∑
k∈J0

mk((Ek · Eℓ) − 1) + 2
∑
k∈J1

mk(Ek · Eℓ)

= 1 + 2 d ([
∑

mkEk ]|Eℓ
) ≤ 1 − 2 < 0 ;

for ℓ ∈ J1 :
d (L̃|Ẽℓ

) = d (L|Eℓ
) < 0 ;

and for ℓ = 0 :

d (L̃|Ẽ0
) = m(Ẽ0 · Ẽ0) + 2

r∑
k=1

mk(Ẽk · Ẽ0) = −(1 + 2
∑
k∈J0

mk) + 2
∑
k∈J0

mk = −1 < 0 .

This completes the proof of the Theorem. □
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Remark . The effect of a σ–process to an intersection matrix S = (cjk)1≤j,k≤r can be understood
in completely a formal way. Let S be an arbitrary symmetric r × r–matrix with integer entries cjk
such that cjk ≥ 0 , j ̸= k . Suppose that there exists a nonempty subset J ⊂ { 1, . . . , r } such that
cjk ≥ 1 for all j, k ∈ J , j ̸= k . Then the formal σ–process of S with respect to J is the following

(r + 1)× (r + 1)–matrix S̃ = (c̃jk)0≤j,k≤r (assume J = { 1, . . . , s }) :

S̃ =



−1 1 · · · 1 0 · · · 0

1
... cjk − 1 cjk

1

0
... cjk cjk

0


From this concrete form of S̃ one can easily conclude the correctness of our statement in Theorem 35.
Alternatively, one can argue as follows: By addition of the zeroth column to the next s columns
and addition of the zeroth row to the next s rows (which is a transformation of type tQS̃Q) , S̃ is
transformed into the matrix  −1 0

0 S


Hence, as we already know, S̃ is negative definite, if and only if S is negative definite. Thus, Lemma 32
gives at least the existence of positive integers m̃0, . . . , m̃r with the desired properties.

9.23 Sufficiency of the Grauert - Mumford criterion

We are now well–prepared for the proof of the sufficiency of the Grauert–Mumford criterion.

Step 1. We first show the implication v) =⇒ vi) in Theorem 15. We start with a connected compact
normal crossing divisor E and a holomorphic line bundle L in a neighborhood of E such that the
restrictions Lj := L|Ej

are negative. A metric on L|E is nothing else but a collection of metrics hj
on Lj = L|Ej

which coincide at the singular points of E . So, we start with some negative metrics

on Lj according to Theorem 17. If these metrics do not fit together at an intersection point x(0) ∈
∪j ̸=k(Ej ∩ Ek) , we perform a σ–process at such a point:

Figure 9.11

So, we are reduced to the case of a connected compact normal crossing divisor E = ∪r
j=1Ej with the

following property:

(∗) It exists s < r such that no two of the Ej , j ≤ s , and no two of the Ej , j > s , intersect at all.
The latter curves are rational and intersect exactly two curves of the first kind in 0 and ∞ .
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Lemma 9.36 Let E be a connected compact normal crossing divisor satisfying condition (∗) and L a
holomorphic line bundle in a neighborhood of E such that the restrictions Lj are negative. Then there
exists a metric h on L|E that induces negative metrics hj on Lj for all j .

Proof . Choose negative metrics on the Lj , j ≤ s (Theorem 17). Since for given j > s we have
Ej

∼= P1 , the corresponding negative line bundle Lj is isomorphic to some O (−ℓ) such that we can
choose a negative metric on Lj which coincides with the given values at 0 and ∞ according to the
example at the beginning of Section 6. □

Step 2 . The rest of this Section is devoted to the implication vi) =⇒ vii) in Theorem 15. From now
on, we can assume that we are in the following situation: E = ∪Ej has only normal crossings, M is
covered by finitely many bidisks Pι with coordinates uι , vι such that

E ∩ Pι = { vι = 0 } or {uιvι = 0 } ,

and, for suitable positive integers mk , the line bundle L := [
∑

mkEk ] has the property that its
restrictions Lj = L|Ej

are negative with respect to a metric {hjι } attached to Lj with the help
of the trivializing covering Uj = {Ujι = Ej ∩ Pι } . Furthermore, we may suppose that the covering
U = {Pι } has a shrinking V = {Qι } with Qι ⊂⊂ Pι having the same properties as U with respect
to E ; i.e.: E ⊂ ∪Qι and E ∩ Qι = { vι = 0 } or = {uιvι = 0 } , and that the negative metrics
{hjι }ι patch together at the singular points of E . Now, if

E ∩ Pι = Ej ∩ Pι = { vι = 0 } ,

we extend hjι arbitrarily to a positive C∞–function H̃ι on Pι . If

E ∩ Pι = (Ej ∪ Ek) ∩ Pι = {uιvι = 0 } ,

we define

H̃ι =
1

hjι(0)
· hjιhkι

which is positive and restricts to the functions hjι and hkι on Ej ∩ Pι and Ek ∩ Pι , resp. Moreover,

log H̃j = log hjι + log hkι − log hjι(0)

is strictly plurisubharmonic, since the Levi form of log H̃ι is diagonal with positive entries along the
diagonal. Next, we take a partition of unity, say { ρι } , subordinate to the covering U ; that is: the ρι
are C∞–functions on M with 0 ≤ ρι ≤ 1 , supp ρι ⊂⊂ Pι and∑

ρι ≡ 1

in a neighborhood V of E in M . Let {Fικ } denote a cocycle representing L with respect to the
trivializing covering U . Since ρλ is identically zero in a neighborhood of ∂Pλ ∩ Pι for all λ and ι :

Pι

Pλ

ρλ ≡ 0

Figure 9.12
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there is a well–defined C∞–function Hι on Pι given by

Hι =
∑
λ

ρλ|Fλι |2H̃λ ,

and the system {Hι } satisfies the following condition on Uι ∩ Uκ :

Hκ =
∑
λ

ρλ|Fλκ |2H̃λ = |Fικ |2 ·
∑
λ

ρλ|Fλι |2H̃λ = |Fικ |2Hι .

For a fixed curve Ej , denote by { f (j)ικ } the cocycle {Fικ|Ej
} which represents the restriction

L|Ej
. Then

Hι|Ej
=

∑
λ

ρλ| f (j)λι |2hjλ = (
∑
λ

ρλ)hι = hι .

Therefore, after eventually shrinking V , we can deduce that

Hι|Qι∩V

is a positive function, and this implies that the system {Hι } is a metric on L|V with respect to the
covering {Qι ∩ V } which extends the given metric on L|E .

Of course, for E ∩ Pι = {uιvι = 0 } , we see at once that ρι ≡ 1 near 0 ; thus log Hι is strictly
plurisubharmonic around 0 . In the case E ∩ Pι = { vι = 0 } , at least the derivatives

∂2 log Hι

∂uι∂uι

must be positive (by continuity) for all (uι, vι) ∈ Qι with small | vι | .
Hence, we can construct new coverings which we again denote by U = {Pι } , V = {Qι } , with

the following properties:

a) Qι ⊂⊂ Pι , and Pι , Qι are bidisks with respect to coordinates uι, vι ,

b) E ∩ Pι = { vι = 0 } or = {uιvι = 0 } ,

c) there exist positive C∞–functions Hι on Pι with

∂2 log Hι

∂uι∂uι
> 0 on Pι (in the first case),

or log Hι is strictly plurisubharmonic on Pι (in the second case),

d) {Hι } is a metric on the line bundle L = [
∑

mjEj ] , all mj > 0 , such that on Pι ∩ Pκ we
have (we can always assume that at least Pι is of the first kind):

Hι =

∣∣∣∣vκvι
∣∣∣∣2m ·Hκ , m = mj ,

when Pκ is of the first type, or

Hι =
|uκ |2m1 | vκ |2m2

| vι |2m
Hκ ,

m = mj , m1 = mj and m2 = mk (or vice versa), when Pκ is of the second type.

Step 3 . The construction above leads immediately to the following globally defined C∞–function ψ :

ψ|Pι
= ψι =


Hι| vι |2m

Hι|uι |2m1 | vι |2m2
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(according to the different natures of E ∩ Pι) which vanishes on E and has the property that

∂2 log ψ

∂uι∂uι
> 0 on Pι \ E (first case)

and log ψ|Pι\E is strictly plurisubharmonic (in the second case). The system

Vε = {x ∈ V : φ := log ψ < log ε } ,

ε small, is a fundamental system of neighborhoods of E in M , and hence, it suffices to show that
∂Vε has a defining strictly plurisubharmonic function for small ε . To prove this, we first compute the
holomorphic gradient of φι = log ψι (in the first case):

∂φι

∂uι
=

1

Hι
· ∂Hι

∂uι
,

∂φι

∂vι
=

1

Hι
· ∂Hι

∂vι
+

m

vι
.

By continuity of H−1
ι (∂Hι/ ∂vι) , the last derivative must be different from zero on ∂Vε ∩Qι , i.e. ∂Vε

has a smooth boundary there, and the holomorphic tangent vectors are all complex multiples of

ξ = (ξ1, ξ2) =

(
∂φι

∂vι
, − ∂φι

∂uι

)
.

It is then easily checked that

L (φι, ξ) =
∂2 log Hι

∂uι∂uι
∥ ξ1 ∥2 +

∂2 log Hι

∂vι∂vι
∥ ξ2 ∥2 + 2Re

(
∂2 log Hι

∂uι∂vι
ξ1ξ2

)
can be written in the form

L (φι, ξ) =
m2

|vι|2

{
∂2 log Hι

∂uι∂uι
+ R (uι, vι)

}
,

where
|R (uι, vι) | ≤ C0 | vι | on Qι .

Since there is, by construction, a positive constant B such that

∂2 log Hι

∂uι∂uι
≥ B on Qι ,

it follows that
L (φι, ξ) > 0

for all holomorphic tangent vectors ξ ̸= 0 on ∂Vε ∩ Qι , ε small. By the usual trick (see the remark
at the end of Section 1),

φ̃ = (φ − log ε) eA(φ−log ε)

is strictly plurisubharmonic for all sufficiently large values A in a neighborhood of ∂Vε∩Qι , and there,
we have locally Vε = { φ̃ < 0 } . Obviously, φ̃ is strictly plurisubharmonic on Pι with Pι ∩ E =
{uιvι = 0 } for all positive numbers A . Hence, φ̃ is a defining function for Vε . □

9.24 Subsets of exceptional sets

In the last Sections of this Chapter we draw some conclusions from the Grauert–Mumford criterion.
In the present, we are going to show that connected subconfigurations of exceptional sets are again
exceptional.

Let E = ∪r
j=1Ej ⊂M be exceptional (we do not assume the components Ej to be smooth), and

let E′ = ∪s
j=1Ej be a connected subset. After a suitable iterated σ–modification, σ−1(E) has normal
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crossings such that the intersection matrix is defined. Obviously, σ−1(E′) is a connected subconfigu-
ration. Hence, in order to prove that also E′ is exceptional, we can assume that we are already in the
normal crossing case. Since a real symmetric matrix is positive–definite, if and only if all its main mi-
nors (i.e. all quadratic submatrices distributed symmetrically around the main diagonal) have positive
determinant, the negative–definiteness of the matrix ((Ej · Ek))1≤j,k≤r implies the same property for
the intersection matrix of E′ .

Or, to give an alternative proof not using the result on positive definite matrices: E is exceptional,
if and only if there exist positive integers mj such that

r∑
j=1

mj(Ej · Ek) < 0 , k = 1, . . . , r .

But then, for all ℓ = 1, . . . , s :

s∑
j=1

mj(Ej · Eℓ) < −
r∑

j=1+s

mj(Ej · Eℓ) ≤ 0 .

We proved:

Theorem 9.37 Let E be the exceptional set of a resolution of a two–dimensional normal singularity.
Then each connected compact nondiscrete subvariety E′ ⊂ E is exceptional.

In other words: One can blow down exceptional sets partially . In particular, each individual curve
Ej ⊂ E can be contracted (which, of course, is equivalent to the fact that its self–intersection number
is negative, if Ej is smooth).

9.25 Exceptional curves of the first kind and minimal resolu-
tions

The last remark can be applied, for instance, to so–called exceptional curves of the first kind or (−1)–
curves. By definition, these are rational curves E ∼= P1 with self–intersection number −1 . They can
be created at will for resolutions of any singularity by just blowing up a given resolution at some points.
This fact gives oneself the impression that such curves are inessential with respect to resolutions. This
is, indeed, true according to:

Theorem 9.38 Let π : M̃ → M be the contraction of a (−1)–curve E ⊂ M̃ . Then M is smooth
and π is (isomorphic to) the σ–process of M at the point x(0) = π (E) .

Remark . This result implies *Theorem 5.1 in the surface case: Two σ–processes of smooth surfaces are
canonically isomorphic.

Proof of Theorem 38. Let I ⊂ O
M̃

be the ideal sheaf of E . Let further M̃ be strongly pseudoconvex
with exceptional set E . Then, we will show below in Section 27 that

(∗) H1(M̃, Ir) = 0 , r ≥ 0 .

By assumption, E ∼= P1 and the conormal bundle (I/ I2)|E is isomorphic to OP1
(1) . Hence, using

(∗) with r = 2 and the long exact cohomology sequence associated to the sequence

0 −→ I2 −→ I −→ I/ I2 −→ 0 ,

yields the surjectivity of the homomorphism

H0(M̃, I) −→ H0(M̃, I/ I2) ∼= H0(P1, OP1
(1)) ∼= C2 .
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Therefore, we find two sections f1, f2 ∈ H0(M̃, I) projecting down to a basis of H0(M̃, I/ I2) .

Let us show that the map f := (f1, f2) : M̃ → C2 is isomorphic to a σ–process. About a point x ∈ E
choose local coordinates (u, v) such that x = (0, 0) and E = { v = 0 } . Then

f1(u, v) = v f11(u) + v2 f12(u) + · · · = v h1(u, v)

f2(u, v) = v f21(u) + v2 f22(u) + · · · = v h2(u, v) ,

where

hj(u, v) = fj1(u) + v fj2(u) + · · · , j = 1, 2 .

The image of fj in H0(M̃, I/ I2) will be represented by fj1(u) . Now, f11 and f21 have no common
zero because otherwise a certain linear combination would possess a zero of second order which is
impossible for a holomorphic section of OP1

(1) . Therefore, |h1 |2 + |h2 |2 ̸= 0 on E .

Let Uε be the connected component of the set {x ∈ M̃ : | f1 |2 + | f2 |2 < ε } containing E . Then

Uε ⊂⊂ M̃ , f : Uε → Bε = { z ∈ C2 : ∥ z ∥2 < ε } is proper and holomorphic, and E = f−1(0) .

We calculate the Jacobi determinant of f near x = (0, 0) ∈ E . Since (f1, f2) and (f1, f2 + α f1)
have the same Jacobi determinant, we may and will assume that f21(0) = 0 . Since f1, f2 form a basis
of H0(P1, OP1

(1)) , we have f11(0) ̸= 0 and f ′21(0) ̸= 0 . Therefore,

If (u, v) = det

 v f ′11(u) + · · · f11(u) + · · ·

v f ′21(u) + · · · f21(u) + · · ·


= v (f ′11(u) f21(u) − f11(u) f

′
21(u)) + v2 (· · ·) + · · · ,

and f ′11(u) f21(u) − f11(u) f
′
21(u) ̸= 0 close to 0 . Consequently,

Jf (u, v) ̸= 0

for all v ̸= 0 of sufficiently small modulus. Since f : Uε \ E → Bε \ { 0 } is proper and locally a
homeomorphism, and Bε \ { 0 } is simply connected, f must be biholomorphic outside E .

Let now σ : B̃ε → Bε be the σ–modification of Bε at the origin. So, we have in coordinates z =
(z1, z2) = (ξ0η0, η0) = (η1, ξ1 η1) . Let C ∼= P1 be the exceptional curve. Since f1 and f2 have
no common zero, the pair (f1(x)), f2(x)) , x ∈ E , is a well–defined point in E , giving rise to a

biholomorphic map E → C , and thus, we can extend f : Uε \E → Bε \{ 0 } to a map F : Uε → B̃ε

by an obvious definition. Locally about x ∈ E with f2(x) ̸= 0 , F is given by

(η, ξ) = (z1/ z2, z2) = (f1/ f2, f2)

=

(
f11(u) + v f12(u) + · · ·
f21(u) + v f22(u) + · · ·

, v f21(u) + v2 f22(u) + · · ·
)
.

Here, f21(u) ̸= 0 because of f2(x) ̸= 0 . Therefore, F is holomorphic near x . F is necessarily proper,
and hence, the set–theoretical inverse map F−1 is bounded close to C . By the Riemann Removable
Singularity Theorem, F−1 is holomorphic everywhere. □

Remark . It is possible to shorten the proof of Theorem 38 considerably by using the theory of rational
singularities (to be developed in Chapter 12 in full detail): By the definition of the fundamental cycle

Z0 of M̃ , we have Z0 = E ∼= P1 such that the virtual genus p(Z0) is equal to

1 − χ (Z0, OZ0
) = 1 − (dim H0(P1, OP1

) − dim H1(P1, OP1
)) = 1 − (1 − 0) = 0 .
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By Theorem 12.24([??]), M has a rational singularity with embedding dimension (see Theorems 12.13
and 12.15)

e = m + 1 = − (Z0 · Z0) + 1 = 1 + 1 = 2 .

Hence, M is smooth, and π must be equal to a finite sequence of σ–processes (as we will finally prove
in Section 28). Since there is only one irreducible curve in the preimage of x(0) , the claim follows. □

The next result will be (in combination with Theorems 38) one of the two main ingredients for the
existence of minimal resolutions of surface singularities which we are going to establish in the rest of
this Section.

Corollary 9.39 Let E = ∪r
j=1Ej be an exceptional set in a two–dimensional manifold M , and let

τ : M̃ → M be a point modification. If no Ej is exceptional of the first kind, then no strict transform

Ej in M̃ is exceptional of the first kind.

Proof . Let τ be the iterated sequence of σ–processes σ1, . . . , σℓ (see Theorem 48). Denote by τλ the

map σλ ◦ . . . ◦ σ1 . Assume that the strict transform E
(λ)

j of a curve Ej under one of the maps τλ is
exceptional of the first kind, and choose λ minimal with respect to this property. Then, since λ ≥ 1

by assumption, the exceptional set τ−1
λ (E) contains the irreducible component Ej = E

(λ)

j and the

component E0 , the fiber over the center of σλ . Since E0 and Ej must intersect in n ≥ 1 points

(otherwise E
(λ−1)

j
∼= E

(λ)

j would have been of first kind), the intersection matrix of the connected

subconfiguration Ej ∪ E0 ⊂ τ−1
λ (E) is given by −1 n

n −1


which is not negative definite. A contradiction to Theorem 37. □

The second ingredient we need consists in the existence of resolutions dominating resolutions of a
given singularity.

Theorem 9.40 Let π′ : M ′ → X and π′′ : M ′′ → X be two resolutions of a normal surface singu-
larity (X, x(0)) . Then, there is a resolution π : M → X dominating them, i.e. it exists a commutative
diagram

π′
@
@

@
@R

M

M ′

σ′
�

�
�

�	

X
?

π

π′′
�

�
�

�	

M ′′

σ′′
@
@

@
@R

with modifications σ′ and σ′′ .

Proof . The fibre product M ′ ×M M ′′ has a reduced connected component that is biholomorphic to
X \ {x(0)} outside of the fibre over x(0) . Normalizing this component and resolving the singularities
leads to M . □

Definition. A resolution π : M → X is called minimal , if all other resolutions π′ : M ′ → X factorize
over π . In other words: If there exists an iterated σ–modification σ : M ′ →M such that π′ ◦ σ = π .

Thus, a resolution can only be minimal, if it does not contain any exceptional curve of the first kind.
Therefore, it is reasonable to starting with any resolution and blowing down (−1)–curves successively.
This process stops automatically after finitely many steps.
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Theorem 9.41 A resolution M → X of a normal surface singularity is minimal, if its exceptional
divisor E does not contain any exceptional curve of the first kind. Minimal resolutions exist and are
canonically determined by X .

To get the last result, it is sufficient to prove the following.

Theorem 9.42 If under the assumptions of Theorem 40 the exceptional sets E′ ⊂M ′ and E′′ ⊂M ′′

do not contain exceptional curves of the first kind then there exists a uniquely determined biholomorphic
map σ :M ′ →M ′′ making the triangles commutative :

M ′ M ′′-

M

σ′
�

�
�

�	

σ′′
@
@

@
@R

σ

X

π′
@
@

@
@R

π′′
�

�
�

�	

Proof . If σ′ and σ′′ are isomorphisms, there is nothing to prove. If exactly one of the modifications
σ′, σ′′ is an isomorphism, say σ′′ , then M ′′ must contain an exceptional curve of the first kind.
Contradiction! So, we may suppose that σ′ and σ′′ are not isomorphic such that we have in both cases
a first exceptional curve E′

1 resp. E′′
1 that will be contracted by σ′ resp. σ′′ . Due to our considerations

above we have E′
1∩E′′

1 = ∅ or E′
1 = E′′

1 . Blowing these curves resp. this curve down leads to a similar
diagram with less σ–processes on both sides, finally giving an isomorphism at least on one side. □

9.26 Good and minimal good resolutions

Unfortunately, minimal resolutions may not have the property that its exceptional sets are normal
crossing divisors. As an example, we look at the following configuration:

−1 −2

−6

Figure 9.13

which can be realized with any three Riemann surfaces by plumbing (see Section 30 below). Blowing
the intersection matrix formally down yields the the negative–definite intersection matrix −1 2

2 −5


that belongs to the next situation:
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−1

−5

Figure 9.14

This is still a resolution with exceptional normal crossing divisor, but not a minimal resolution. Obvi-
ously, by blowing down the (−1)–curve we end up with just one exceptional curve having an ordinary
node.

Figure 9.15

We now give the following

Definition. A resolution of a normal surface singularity (X, x(0)) with exceptional set E =
⋃
Ej is

called a good resolution, if the following are satisfied:

i) all Ej are smooth;

ii) for all j ̸= k one has (Ej · Ek) = 1 or = 0 ;

iii) no three (different) curves Ej , Ek, Eℓ pass through one point.

In other words: For a good resolution the exceptional divisor E =
⋃
Ej is a normal crossing divisor

such that (Ej · Ek) = 1 if Ej ∩ Ek ̸= ∅, Ej ̸= Ek .

Theorem 9.43 There exist good resolutions.

Proof . Clear by Theorem 5.5. □

Remark . We can simply attach a dual resolution graph Γ̌ = Γ̌M - or a dual graph for short - to a good
resolution M by assigning to each curve Ej a vertex and connecting two vertices belonging to Ej and
Ek , j ̸= k , if and only if (Ej · Ek) = 1 :

• •
Ej Ek

We call Γ̌ a weighted dual graph, if the vertices are decorated with symbols

−bj
•
[gj ]

where −bj = (Ej · Ej) and gj is the genus of the Riemann surface Ej . In particular, it makes sense
to speak of the intersection matrix of a weighted dual graph.

Starting with any good resolution we can perform the process of blowing down (−1)–curves step by
step only in case that the result is again a good resolution. This procedure stops, as one may convince
oneself, at a uniquely determined resolution.
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*Theorem 9.44 To each normal surface singularity there exists a uniquely determined minimal good
resolution.

Example. In the example at the beginning of this Section, the dual resolution graph of the minimal
good resolution is the following:

•
@

@
@

−2

•�
�
�

−1
•

−6

Warning . In general, the resolution method of Jung (see Chapter 7) does not automatically lead to the
minimal resolution of a surface singularity. For example, Jung’s procedure gives for the hypersurface
singularity

z2 = (x + y2)(x2 + y7)

a resolution with the following dual graph (see Chapter 7, Appendix A):

•
−3

•
−4

•
−1

•
−1

•
−2

•
−3

After blowing down the exceptional curves of first kind we find

•
−3

•
−3

•
−1

•
−3

and

•
−3

@
@
@•

−2
�

�
�

•
−2

We close this Section with another Example, the hypersurface singularity z2 = x3 + y7 . With
Jung’s method one finds the following (dual) resolution graph:

•
−2

•
−3

•
−1

•
−7

This represents already the minimal good resolution since, after blowing down the (−1)–curve, we get
a “triple intersection point”:

−2 −1

−6

Figure 9.16

This is exactly the curve configuration we find by blowing up a cusp singularity two times. Hence,
the exceptional divisor of this surface singularity consists in one curve only which possesses a cusp
singularity.



304 Chapter 9 Blowing down and the Grauert–Mumford criterion

9.27 A vanishing result for resolutions of surface singularities

We first state the main result which often may be used to replace Grauert’s Comparison Theorem.

Theorem 9.45 Let π : X̃ → X be a strongly pseudoconvex resolution of an isolated surface singularity
(X, x(0)) with exceptional set E = π−1(x(0)) , and let I = OX̃(−E) by the ideal sheaf of E . Then

there exists an integer k0 such that, for all coherent sheaves S on X̃ , the canonical map

Hj(X̃, IkS) −→ Hj(X̃, S)

is zero for all j ≥ 1 and k ≥ k0 .

We first deduce (∗) in Section 25 from Theorem 45. In other words, we are going to prove

Lemma 9.46 Let M̃ → M and I be as in Theorem 38. Then we have

H1(M̃, Ir) = 0 for all r ≥ 0 .

Proof . We use the exact sequences

0 −→ Ir+1 −→ Ir −→ Ir/ Ir+1 −→ 0

and the isomorphism Ir/ Ir+1 ∼= (I/ I2)⊗r . By assumption,

H1(M̃, Ir/ Ir+1) ∼= H1(P1, OP1
(r)) ,

and it is easy to check by Laurent expansion that H1(P1, OP1(r)) = 0 for r ≥ −1 (use Serre duality

and the remark at the end of Section 4.9). Hence, the homomorphisms H1(M̃, Ir+1) → H1(M̃, Ir)
are surjective for all r ≥ 0 . Iterating, we get epimorphisms

H1(M̃, Is) −→ H1(M̃, It)

for all s ≥ t . Invoking Theorem 45 gives the claim. □

Proof of Theorem 45. We use the simple fact that Hj(X̃, S) = 0 for all j ≥ j0 , independently of
S . (Since π is proper, X can be covered by finitely many Stein open sets). Hence, we may proceed
by descending induction on j . Moreover, by Grauert’s Coherence Theorem (or by the Finiteness

Theorem of Andreotti–Grauert), the modules Hj(X̃, S) are finite dimensional complex vector
spaces.

Choose holomorphic functions f1, f2 ∈ H0(X, OX) having only the point x(0) as common zero, and

denote by J the ideal sheaf on X̃ generated by f1 · π and f2 · π . Then there exists an integer r ≥ 1
with

(+) Ir ⊂ J ⊂ I .

We regard the sheaf homomorphism
S ⊕ S −→ J S

(s1, s2) 7−→ (f1 ◦ π) s1 + (f2 ◦ π) s2 .

The exact sequence of sheaf homomorphisms

0 −→ R −→ S ⊕ S −→ J S −→ 0

implies exactness of
0 −→ IsR −→ IsS ⊕ IsS −→ J Is S −→ 0 .

(I is locally free). For any exponent k < s , we have a commutative diagram with exact rows
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Hj(X̃, Ik S ⊕ Ik S) Hj(X̃, Ik J S)-
Φ

Hj(X̃, Is S ⊕ Is S) Hj(X̃, Is J S)-

?
Hj+1(X̃, Ik R)-

Hj+1(X̃, IsR)-

?

β

?

γ

By induction assumption, γ = 0 for s > k sufficiently large. Thus, im β ⊂ im Φ .

For simplicity, we write imHj(aS) = im (Hj(X̃, aS) → Hj(X̃, S)) for any coherent ideal sheaf
a ⊂ OX̃ . Since

im Hj(IℓS) ⊂ im Hj(IkS) for ℓ > k ,

the sequence of submodules im Hj(IℓS) will stabilize for large ℓ . Moreover,

im Hj(JIsS) = im Hj(JIkS) = im Hj(IkS)

for s ≥ k ≥ k0 because of (+).

Let ξ1, . . . , ξm ∈ im Hj(JIsS) be elements whose images in Hj(X̃, S) form a C–basis of the submodule
im Hj(IsS) . Further, let η1, . . . , ηn form a C–basis of the kernel of

Hj(X̃, Ik0S) −→ Hj(X̃, S) .

The relation im β ⊂ im Φ yields an equation

ξµ = f1(
∑
λ

u
(1)
λµ ξλ +

∑
ν

v(1)νµ ην) + f2(
∑
µ

u
(2)
λµ ξλ +

∑
ν

v(2)νµ ην) .

By construction, the ην go to zero in Hj(X̃, S) ; hence,

im Hj(JIk0S) ⊂ (f1, f2) im Hj(JIk0S) .

Now, the modules im Hj(JIk0S) are finitely generated over the local ring OX,x(0) by the Coherence
Theorem. Applying Nakayama’s Lemma implies

Hj(JIk0S) = 0 . □

An easy consequence of Theorem 45 is the following

Corollary 9.47 Let π : X̃ → X be given as in Theorem 45, and let S be a coherent analytic sheaf
on X̃ . Then

Rjπ∗S = 0 and Hj(X̃, S) = 0 for j > 1 .

Proof . Let I denote the ideal sheaf of E . From Theorem 45 and the definition of the direct image
sheaves, it follows that for j ≥ 1 and k ≫ 0 the sheaf homomorphisms

Rjπ∗I
kS −→ Rjπ∗S

are zero. Hence, the exact sequence 0 → IkS → S → S/ IkS → 0 implies exactness of

Rjπ∗I
kS

0−→ Rjπ∗S −→ Rjπ∗(S/ I
kS)

for j ≥ 1 . Since E is one–dimensional and compact, we have

(Rjπ∗(S/ I
kS))x(0)

∼= Hj(E, S/ IkS) = 0 , j ≥ 2 .

Therefore, (Rjπ∗S)x(0) ⊂ (Rjπ∗(S/ I
kS))x(0) = 0 , j ≥ 2 . Outside x(0) , the higher direct image

sheaves vanish by trivial reasons. Finally, since X is Stein,

Hj(X̃, S) ∼= H0(X, Rjπ∗S) = 0 , j ≥ 2 . □

In a more general situation, we will deduce a similar result from Grauert’s Comparison Theorem (see
Lemma 12.1).
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9.28 The structure of proper modifications of smooth surfaces

The goal of the present Section consists in providing the reader with some arguments for the following
central result.

Theorem 9.48 Any proper modification π : N → M of connected smooth surfaces is a (with respect
to M ) locally finite iterated σ–process.

For a rather elementary proof we need four steps.

a) The fibers of π are connected.

b) There exists a minimal locally finite set S ⊂M such that the restriction π : N \π−1(S) →M \S
is biholomorphic.

c) Locally at a point y(0) ∈ π−1(S) , π is given by two functions f1, f2 such that

(f1(y) : f2(y)) , y ̸∈ π−1(S) ,

converges to a point of P1 if y → y(0) .

d) π factorizes over the σ–transformation at any point x(0) ∈ S .

ad a). If E = π−1(x(0)) is not connected, we have disjoint open sets V1, V2 ⊂ N with E ⊂ V1 ∪ V2 ,
but E ̸⊂ V1, E ̸⊂ V2 . Since π is proper and surjective, there exists a connected open neighborhood U
of x(0) such that U ⊂ π (V1) ∪ π (V2) . U \ {x(0) } is connected and π : π−1(U) \ E → U \ {x(0) } is
biholomorphic. Consequently, (V1\E)∪(V2\E) is connected close to E . Contradiction to V1∩V2 = ∅ !

ad b). For general reasons on modifications, the set A ⊂M of base points of π is of codimension 2, i.e.
A consists of isolated points. If the fiber π−1(x(0)) , x(0) ∈ A , is 0–dimensional, it consists in exactly one
point y(0) by part a), and π is locally biholomorphic near y(0) due to Riemann’s removable singularity
theorem. Thus, we get S just by removing all such points x(0) from A , and for all x(0) ∈ S , the fibers
E = π−1(x(0)) are connected curves.

ad c). Let y = (y1, y2) be local coordinates for N at a point y(0) ∈ π−1(S) , and x = (x1, x2) be
local coordinates for M at x(0) = π (y(0)) such that x(0) = 0 , y(0) = 0 and π is locally at y(0)

given by x1 = f1(y1, y2) , x2 = f2(y1, y2) . We claim that

lim
y→0
y ̸∈E

(f1(y), f2(y))

exists as a point in P1 . To see this, we write (as germs at 0 ) f1 = q g1 , f2 = q g2 with the
greatest common divisor q of f1 and f2 , and we have to show that g1(0) = g2(0) = 0 is impossible.
Since g1 and g2 are relatively prime, this holds also for r1g1 + g2 and r2g1 + g2 for different
constants r1, r2 ∈ C . Let now h = 0 be a local equation of E near y(0) . Each prime factor of h can
divide r g1 + g2 for at most one value r . Consequently, there exist elements r ∈ C such that h and
g := r g1 + g2 are relatively prime. So, after choosing representatives of the given germs in a sufficiently
small neighborhood V of y(0) , we find a curve C = N (g) ⊂ V which intersects E ∩ V = N (h) in
exactly this point. If we change the coordinates (x1, x2) to (ξ1, ξ2) := (x1, r x1 + x2) , then π will
be described by

(ξ1, ξ2) = q (y1, y2) (g1(y1, y2), g (y1, y2))

such that π (C) ⊂ C0 := {ξ2 = 0} and π (N (q)) = x(0) , i.e. N (q) ⊂ E . Let now ρ : C̃ −→ C be

an embedded resolution. Then, π ◦ ρ : C̃ −→ C0 is bijective outside ρ−1(x(0)) . Hence, C̃ has only one
irreducible component, and π ◦ ρ is biholomorphic. This implies that we have a holomorphic inverse
π−1 = ρ ◦ (π ◦ ρ)−1 : C0 → C . Denote by D a small disc around the origin in C , and write ι for the
embedding D ↪−→ C0 defined by ι (ζ) := (ζ, 0) . Then, π−1 ◦ ι will be given by a pair of functions
(p1, p2) in the variable ζ , and by the definition of π we have the identity
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(+) ζ = f1(p1(ζ), p2(ζ)) = Q (ζ)G1(ζ)

with Q (ζ) = q (p1(ζ), p2(ζ)), G1(ζ) := g1(p1(ζ), p2(ζ)) . Suppose finally that g1(0, 0) = 0 . Then
G1(0) = 0 , and by differentiating (+) we find

Q (0)
∂G1

∂ζ

∣∣∣∣
ζ=0

= G1(0)
∂Q

∂ζ

∣∣∣∣
ζ=0

+ Q (0)
∂G1

∂ζ

∣∣∣∣
ζ=0

=
∂ζ

∂ζ

∣∣∣∣
ζ=0

= 1 .

Hence, q (0, 0) = Q (0) ̸= 0 . But this contradicts the fact that f1 and f2 vanish on E and thus have
a common nontrivial factor.

ad d). Suppose without loss of generality that g2(0, 0) ̸= 0 . If (ξ1, ξ2) = (ξη, η) = (ξ′, ξ′η′) denotes

the σ–process π̃ : M̃ −→M at x(0) with exceptional curve E0 , then the association

(y1, y2) 7−→
(
f1(y1, y2)

f2(y1, y2)
=

g1(y1, y2)

g2(y1, y2)
, f2(y1, y2)

)
defines a holomorphic mapping ϕ : N −→ M̃ =: M (1) which is an extension of the mapping π̃−1 ◦ π :
N \ E −→ M̃ \ E0 . Therefore, π = π̃ ◦ ϕ .

Continuing in the same vein yields a decomposition of π into a chain of modifications

N −→ M (r) −→ · · · −→ M (1) −→ M

in which all mappings are quadratic transformations besides the first one that is a modification with
discrete fibers, i.e. an isomorphism. □

Remark . The modification π : N → M may locally be regarded as a resolution of the “regular”
singularity x(0) ∈ M which is rational by definition. As we will show in Chapter 12 in a general
context, the exceptional curves of any resolution of a rational singularity are always smooth rational
curves. Therefore, E = ∪ℓ

j=1Ej and all Ej
∼= P1 . The canonical sheaf Ω2

N has in arbitrarily small
neighborhoods of E nontrivial holomorphic sections (see Chapter 15, Section 8) and is therefore defined
by an effective divisor on N which we call a canonical divisor KN . Moreover, Ω2

N is trivial in V \
E , V := π−1(U) , for a sufficiently small neighborhood U of x(0) in which Ω2

M is trivial. Hence,
K := KN is supported on E :

K =

ℓ∑
j=1

aj Ej , aj ∈ N>0 .

By the Grauert–Mumford criterion, we have (K ·K) < 0 . Hence, (K ·Ej) < 0 for at least one curve
Ej , and (Ej ·Ej) < 0 . By “reinterpretation” of the adjunction formula and Riemann–Roch, we obtain

(K · Ej) + (Ej · Ej) = ((K + Ej) · Ej) = d (Ω1
Ej

) = 2 g (Ej) − 2 = − 2 ,

which is only possible if
(Ej · Ej) = (K · Ej) = −1 .

It is simply realized as before that π : N → M factorizes over the σ–process contracting the (−1)–
curve Ej . □

9.29 Neighborhoods of smooth components of the exceptional
set

The main result of Section 25 can obviously be formulated in the following way:

Theorem 9.49 For any (−1)–curve E ⊂M there exists a neighborhood of E which is biholomorphic
to a neighborhood of the zero section in the total space of the line bundle L ∼= NE|M on E ∼= P1 with
Chern number −1 .
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One can ask more generally when a similar statement is correct for an arbitrary smooth compact
curve E ⊂ M . Grauert proved that for two such exceptional curves E ⊂ M , E′ ⊂ M ′ one has an
actual biholomorphic map between neighborhoods of E and E′ if there exists a formal isomorphism
between M and M ′ along E resp. E′ . As an application in the situation where E′ is the zero section
in the total space of the (negative) line bundle N := NE|M he comes up with the following important
result.

*Theorem 9.50 If the smooth exceptional curve E ⊂M satisfies

H1(E, TE ⊗ (N∗)⊗ℓ) = H1(E, (N∗)⊗ℓ) = 0 , ℓ ≥ 1 ,

then a neighborhood of E in M is biholomorphic to a neighborhood of the zero section in the total
space of the line bundle N := NE|M .

In particular, blowing down such curves amounts to the same as to blow down the zero section
in negative line bundles. Hence, the resulting singularities are generalized cones (see Section 7 and
Chapter 10.4). By Serre duality, these assumptions are equivalent to

H0(E, Ω1
E ⊗N⊗ℓ) = H0(E, N⊗ℓ) = 0 , ℓ ≥ 1 ,

Since the canonical divisor has degree 2g − 2 , g = g (E) the genus of the curve, these two cohomology
groups vanish if

ℓ d (N) < 2 − 2 g .

As a consequence, we may state:

Corollary 9.51 The conclusion of the Theorem above is always valid for exceptional rational and for
exceptional elliptic curves. For an arbitrary smooth curve this is true if the degree of the normal bundle
is smaller than min (0, 2 − 2g) , g = g (E) .

So, by blowing down rational curves E ∼= P1 , we get exactly the cones over the rational normal
curves (see Chapter 4.12). If E is an elliptic curve the corresponding singularities are called simple
elliptic (see Chapter 10.5).

9.30 The plumbing construction

The rest of the present Chapter will be concerned with a construction which associates to any weighted
dual graph with negative definite intersection matrix a good resolution of a surface singularity.

Let M be a two–dimensional complex analytic manifold containing a connected one–dimensional
compact analytic subset E with smooth irreducible components E1, . . . , Er . We say that M is plumbed
along E , if (eventually after shrinking M with respect to E) the following is true: There exist line
bundles Lj on Ej , neighborhoods Uj , Vj of Ej in M resp. of the zero–section Ej in Lj and
biholomorphic maps

λj : Vj −→ Uj

such that

(i)

r⋃
j=1

Uj = M ,

(ii) λj|Ej
is the identity on Ej ,

(iii) Ej ∩ Ek = ∅ =⇒ Uj ∩ Uk = ∅ ,



9.30 The plumbing construction 309

(iv) if Ej ∩ Ek ̸= ∅ , then Ej ∩ Ek = {x(0) } and Ujk = Uj ∩ Uk is connected; more precisely:
λ−1
j (Ujk) resp. λ−1

k (Ujk) are of the form { |uj | < ε , | vj | < ε } resp. { |uk | < ε , | vk | < ε } ,
where uj and uk are local parameters on Ej and Ek , and vj and vk are fiber coordinates of
Lj and Lk near x(0) , resp., such that the bijection

λ−1
j (Ujk)

λ−1
k ◦λj−→ λ−1

k (Ujk)

is given by (uk, vk) = (vj , uj) .

In particular, the curves Ej , Ek meet transversely with (Ej · Ek) = 0 or 1 , and no three curves go
through one point. Naively, the picture of a plumbed manifold looks as follows:

Figure 9.17

As in the case of resolutions we can simply attach a dual graph Γ̌ = Γ̌M to a plumbed manifold
M by assigning a vertex to each curve Ej and connecting two vertices belonging to Ej and Ek , if
and only if (Ej · Ek) = 1 : • •

Ej Ek

or, more precisely, a weighted dual graph, if the vertices are replaced by symbols

−bj
•
[gj ]

where −bj = (Ej · Ej) and gj is the genus of the Riemann surface Ej .
Now, given any connected weighted dual graph Γ̌ , it is an easy task to construct a complex analytic

manifold plumbed in such a way that its associated dual weighted graph is the given one: Just notice
that compact Riemann surfaces carry holomorphic line bundles of all degrees and patch suitably chosen
neighborhoods of the zero–section in such line bundles together.
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In the C∞–category, a plumbed manifold M is completely determined by Γ̌M . The main reason
for this fact lies in the Tabular Neighborhood Theorem of differential geometry saying that there exist
arbitrarily small neighborhoods of Ej in M which are diffeomorphic to a neighborhood of Ej in the
normal bundle of Ej in M . But, in our case, the normal bundle is already differentiably determined
by its Chern number. It is also easily seen that there are no C∞–obstructions against the plumbing
construction.

For the determination of the complex analytic structure, the knowledge of Γ̌ is not sufficient. In
fact, more is needed:

(1) The analytic structure of the curves Ej and of the bundles Lj , j = 1, . . . , r ,

(2) the sets Ej \
⋃
k ̸=j

Ek , j = 1, . . . , r up to analytic automorphisms of the Riemann surfaces Ej .

For a rational curve P1 , however, each line bundle L is isomorphic to a bundle O (b) , and each
set of three points can be moved by an analytic automorphism to 0, 1, ∞ , say. Consequently, we can
state:

Theorem 9.52 To each set of data (Ej , bj) , Ej
∼= P1 , bj ∈ Z , j = 1, . . . , r , with Ej ∩ Ek empty

or consisting of one point, j ̸= k , and Ej ∩∪k ̸=jEk having not more than three points for all j , there
exists one (and up to analytic isomorphism only one) plumbed manifold having these data.

9.31 Existence of normal surface singularities associated to ab-
stract graphs

Using the plumbing construction in combination with the Grauert–Mumford criterion immediately
yields

Theorem 9.53 Given any weighted dual graph Γ̌ with negative definite intersection matrix, there exists
a normal surface singularity having Γ̌ as dual resolution graph.

As we remarked before, the plumbing construction will lead in general to many nonisomorphic
singularities with the same weighted dual graph. Moreover, although we encountered up to now only
singularities having a plumbed resolution, one should be aware of the fact that there might exist still
more nonisomorphic singularities having the same data for a good resolution which, however, cannot be
constructed by plumbing . The reason for this phenomenon does lie in the existence of obstacles against
the construction of biholomorphic maps between neighborhoods of a curve Ej ⊂M and neighborhoods
of the zero–section in the normal bundle Nj of Ej in M ; and even if these obstacles vanish it might
be impossible to patch two such neighborhoods together according to the rules of plumbing (see also
the Appendix A). Note however, that the first difficulty is not essential since by blowing up sufficiently
many points on curves of higher genus we may force their normal bundles to have small enough degrees.

We finally want to show in this Section that the philosophy of Theorem 53 remains true, if we drop
the implicit assumption for the resolution X̃ to be good . Of course, in this situation the weighted
dual graph is not enough information. But we can start with weighted “graphs” of the following type
(see next page), to which we can associate an intersection matrix C = (cjk) with cjj = −bj and
cjk counting the number of intersection points of the j–th and k–th “curve” (with multiplicity, if we
attach to each intersection point numbers according to the prescribed contact numbers). The general
assumption again is the negative–definiteness of C .

As in the case of abstract intersection matrices, we can perform in a completely formal manner
blow–ups of such graphs. The associated intersection matrix will remain negative definite such that
after a finite number of steps we end up with a “good graph” for which we can construct by plumbing
an associated complex analytic manifold M . But the “curves” inserted by the formal σ–processes are
now concrete submanifolds of M isomorphic to P1 which can be actually contracted by Theorem 38
(in the opposite order of their formal creation). So, finally, we find a complex manifold together with
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an embedded system of smooth Riemann surfaces Ej having the correct genus and self–intersection
number and intersecting each other combinatorially in the prescribed manner.

Figure 9.18

9.A Appendix A: Taut singularities

A normal two–dimensional singularity X is called taut by Henry B. Laufer, if all other normal two–
dimensional singularities X ′ with the same (weighted) dual resolution graph as X are biholomorphi-
cally equivalent to X . In other words: A taut singularity is analytically determined by the topological
information inherent in its dual graph.

It is clear that already the plumbing construction yields many different analytic structures associated
to a given graph, if there is a curve of genus ≥ 1 . So, necessarily, all curves must be rational for a taut
singularity. Moreover, since the cross ratio is an analytic invariant on P1 , no curve can be cut by more
than three other curves. Hence, a graph of type

•

• • •

•

(with suitable self–intersection numbers to make the intersection matrix negative–definite) does not
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belong to a taut singularity. But also the rational graph of Example 11.2 is not taut (due to Tjurina).

−2 −2
• •

•@
@

@

�
�
�

−3

• −4

−2 • •�
�
�

−3 −3 •@
@

@

• −2

• •
−2 −2

The results on quotient surface singularities imply that they are taut; in particular, all rational
double points are taut. Tjurina proved that rational triple points have the same property. A complete
list of all taut graphs was finally given by Laufer. He shows that if a dual graph with given weights
belongs to a taut singularity, so does the same graph with more negative weights. With this in mind,
the “minimal” graphs of taut singularities are those of

– rational double points

– rational triple points

– most of the singularities whose dual weighted graph may be obtained by joining the longest arms
of two of the rational double or triple points

– cusp singularities (which will be studied in more detail in Chapter [??]). Their dual graph is a
cycle

• •

•�
�
�

•@
@

@

• •

•@
@

@

. . . •�
�
�

Of course, cusp singularities are not rational (they are minimally elliptic; see Chapter [??], [??]). Most
of the other taut singularities are rational; the only exceptions are in the third class those with negative–
definite dual graph

@
@@
•

�
��•

• • . . . • •�
��
•

@
@@•

−2 −2 −2 −2
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Laufer also classified all pseudotaut singularities which have by definition the property that there
are only countably many analytically different normal singularities with the same resolution graph. It
turns out that to a pseudotaut graph there correspond only finitely many singularities. One of these
graphs is the following (which we will see again in Chapter [??]):

−p
•

•
−1

•�
�
�

•@
@

@

−q −r

9.B Appendix B: Riemann-Roch and duality on embedded sin-
gular curves

Up to now it has been our strategy to avoid singular curves in the exceptional divisor of resolutions
of surface singularities. In the present Appendix, we sample a few general facts about duality on such
curves and the correct version of the Riemann–Roch Theorem that shall be needed in Chapter 12.

9.B.1 Interpretation of the adjunction formula

We have seen in Section 12 that for a smooth curve C in a two–dimensional manifold M there is a
canonical isomorphism

Ω2
M |C

∼= Ω1
C ⊗N∗

C|M .

Taking into account that O (NC|M ) ∼= OM (C)|C we can rewrite this in the form

Ω1
C

∼= Ω2
M ⊗OC(C) .

We now define for an arbitrary curve C ⊂M the sheaf ωC by the same formula:

ωC := Ω2
M ⊗OC(C) .

It is easy to conclude that ωC is the dualizing sheaf of C in the sense of Chapter 14; in other words:

Lemma 9.54 ωC := Ext1(OC , Ω
2
M ) .

Proof . From the exact sequence

(∗) 0 −→ I = OM (−C) −→ OM −→ OC −→ 0 ,

which is a free resolution of OC over OM , we deduce the exactness of

Hom (OC , Ω
2
M ) −→ Hom(OM , Ω

2
M ) −→ Hom(I, Ω2

M ) −→

Ext1(OC , Ω
2
M ) −→ Ext1(OM , Ω

2
M ) = 0 .

Now, Hom (OM , Ω
2
M ) ∼= Ω2

M and Hom (I, Ω2
M ) ∼= Ω2

M (C) . On the other hand, tensoring (∗) by
Ω2

M ⊗OM (C) yields the exact sequence
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(∗∗) 0 −→ Ω2
M −→ Ω2

M (C) −→ ωC −→ 0 ,

whence the claim. □

Remark . In addition, the preceding proof implies the vanishing of the group Hom (OC , Ω
2
M ) . This,

however, is a general fact which we state in a “local” version as follows.

Lemma 9.55 Let R be a local noetherian ring, M an R–module and a an ideal in R . Then,

HomR(R/a, M) ∼= {m ∈M : am = 0 for all a ∈ a } .

In particular, if for all m ∈M , m ̸= 0 , there exists an element a ∈ a with am ̸= 0 , then

HomR(R/a, M) = 0 .

Proof . Left–exactness of the functor Hom ( , M) gives the injectivity of the homomorphism
HomR(R/a, M) −→ HomR(R, M) , and it is immediate that

HomR(R/a, M) = {φ ∈ HomR(R, M) : φ|a = 0 } .

Now, as we already used before, M ∼= HomR(R, M) , the isomorphism being given by m 7−→ φm

where φm(a) := am . □

9.B.2 Duality on embedded singular curves

Suppose now that C ⊂M is a (not necessarily reduced) compact curve in a two–dimensional complex
analytic manifold M . Notice that OC is a Cohen–Macaulay ring as the local quotient of OM by an
equation f of C and even a complete intersection. Therefore, the dualizing sheaf ωC is locally free.
Moreover, C is projective algebraic (see Chapter 4). Hence, the general duality theorem in Chapter 14
gives the following special result.

*Theorem 9.56 In the situation described as before, there is a canonical isomorphism

H0(C, F∗ ⊗ ωC)
∼−→ H1(C, F)∗

for arbitrary locally free sheaves F on C .

Proof . The left hand side is canonically isomorphic to HomOC
(F , ωC) since

HomOC
(F , ωC) = H0(C, HomOC

(F , ωC))

and HomOC
(F , ωC) ∼= F∗ ⊗ ωC , ωC being locally free. □

Remark . In order to describe the isomorphism in the duality theorem, we have to associate to any
homomorphism φ : F → ωC a linear form on the vector space H1(C, F) . Now, φ induces a homo-
morphism

H1(φ) : H1(C, F) −→ H1(C, ωC)

and it suffices to find a (nontrivial) canonical homomorphism H1(C, ωC) → C . Using (∗∗) in Sec-
tion B.1, there is a homomorphism

H1(C, ωC) −→ H2
c (M, Ω2

M ) ,

the subscript c denoting cohomology with compact support. By Dolbeault’s lemma, cohomology classes
in H2

c (M, Ω2
M ) can be represented by (automatically ∂–closed) (2, 2)–forms α with compact support

on M , and Stokes theorem implies that
H2

c (M, Ω2
M ) −→ C

α 7−→
∫
M

α

does not depend on the representative α of the class α .
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9.B.3 Riemann-Roch on embedded singular curves

It is one of the ironies in mathematics that one has to develop the theory of embedded curves in full
generality (taking into account the possibility of nonsmooth reduced components, nontransversality of
intersections and so on) in order to show that all these pathologies cannot occur for the exceptional set
E in an arbitrary resolution of, e.g., a rational singularity X .

Before we can begin our brief summary about the generalized Riemann–Roch Theorem, we would
like to rephrase the classical version (Theorem 16). Recall that the Euler–Poincaré characteristic for a
coherent analytic sheaf S on a compact complex projective algebraic manifold M of dimension n is
defined by

χ (M, S) =

n∑
j=0

(−1)j dim Hj(M, S) .

Remark . From the long exact cohomology sequence and the simple observation that for any long exact
sequence

0 −→ V0 −→ V1 −→ · · · −→ VN −→ 0

of finite dimensional complex vector spaces Vj we have

N∑
j=0

(−1)j dimC Vj = 0 ,

we easily conclude that the functor χ is additive.

Lemma 9.57 If 0 −→ S1 −→ S −→ S2 −→ 0 is a short exact sequence of coherent sheaves on
M , then

χ (M, S) = χ (M, S1) + χ (M, S2) .

We always put

χ (M) = χ (M, OM ) ,

such that for a smooth compact Riemann surface C of genus g we have

χ (C) = 1 − g ,

and therefore, given any holomorphic line bundle L → C of degree d (L) , the Riemann–Roch Theorem
asserts that

(+) χ (C, OC(L)) = d (L) + χ (C) .

We consider now the case of an arbitrary compact (not necessarily reduced) analytic curve C in a
two–dimensional complex manifold M , defined by the (necessarily locally principal) ideal I ⊂ OM . If

C =

r⋃
j=1

Cj

denotes the decomposition of C into irreducible components Cj and if Ij is the ideal of all holomorphic
functions vanishing on Cj , then we can find positive integers nj such that

(++) I = In1
1 · . . . · Inr

r .

We associate to C the positive divisor
∑

njCj . On the other hand, each positive divisor defines a
curve via (++) . Thus, the concepts of curves embedded in M and of positive divisors are the same.
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To generalize the Theorem of Riemann and Roch to holomorphic line bundles L on such curves C ,
we need the correct definition for their degree d (L) . We will see below that the following is a good
choice:

d (L) =

r∑
j=1

nj d (L̃j) ,

where νj : C̃j → Cj denotes the normalization of the reduced curve Cj and L̃j is the pull–back of
Lj under νj . In particular, if all Cj are smooth, then

d (L) =

r∑
j=1

nj d (L|Cj
) .

Now, if C is reduced, then the normalization ν : C̃ → C has C̃1, . . . , C̃r as connected components.
Moreover, the higher direct images Rjν∗S vanish for coherent analytic sheaves S on C̃ , since preimages
of suitably small open sets in C are disjoint unions of open sets in C , hence Stein. The Leray spectral
sequence then implies

r∑
j=1

χ (C̃j , OC̃j
(L̃j)) = χ (C̃, OC̃(L̃)) = χ (C, ν∗OC̃(L̃)) .

The canonical map OC(L) → ν∗ν
∗OC(L) is injective (the kernel having isolated support), and its

cokernel is isomorphic to that of OC → ν∗ν
∗OC because of the projection formula ν∗ν

∗F ∼= F⊗ν∗OC̃ .
Hence, we get finally from the classical Riemann–Roch Theorem and the additivity of χ on short exact
sequences the formula

χ (C, OC(L)) − χ (C) = χ (C, ν∗OC̃(L̃)) − χ (C, ν∗OC̃)

=

r∑
j=1

(χ (C̃j , OC̃j
(L̃j)) − χ (C̃j)) =

r∑
j=1

d (L̃j) .

If C is not reduced, one can write I = J1J2 for the defining ideal and use the exact sequence

0 −→ J1 (OM/ J2) ∼= J1/ I −→ OM/ I −→ OM/ J1 −→ 0

and its satellite obtained by tensoring with F = O (L) . By induction hypothesis on
∑
nj , we may

apply the generalized Riemann–Roch Theorem to the curves C1 = N (J1) and C2 = N (J2) and to
the bundle L|C1

resp. to L|C2
⊗ J1 . By invoking once more the additivity of χ , we easily finish the

proof of

Theorem 9.58 Let C be a compact curve embedded in the smooth surface M . Then, for any holo-
morphic line bundle L on C , the generalized Riemann–Roch identity holds true:

χ (C, OC(L)) = d (L) + χ (C) .

9.B.4 A vanishing Theorem for embedded singular curves

Under our standard assumptions in the present Appendix, the dualizing sheaf ωC is a holomorphic line
bundle whose degree can be computed by the Riemann–Roch Theorem in the last Section:

d (ωC) = χ (ωC) − χ (OC) .

But by duality, H0(C, OC) ∼= H1(C, ωC) , H
1(C, OC) ∼= H0(C, ωC) such that we can conclude:

Lemma 9.59 d (ωC) = 2χ (ωC) = −2χ (OC) .
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Remark . The number 1 + χ (ωC) = 1 − χ (OC) is usually called the arithmetic or arithmetical (or
virtual) genus of C , in symbols: pa(C) or p (C) . If C is smooth, then

pa(C) = dim H1(C, OC) = dim H0(C, Ω1
C) = g (C) .

In the general case, the exact sequence

0 −→ OC −→ ν∗OC̃ −→ ν∗OC̃/OC −→ 0

yields with the dimension δ of the finite dimensional vector space ν∗OC̃/OC :

pa(C) = 1 − χ (ν∗OC̃) + δ = 1 − χ (OC̃) + δ = g (C̃) + δ .

Since g (C̃) ≥ 0 and δ ≥ 0 , we immediately deduce:

Lemma 9.60 If pa(C) ≤ 0 for a compact, embedded reduced irreducible curve C , then C is smooth
and C ∼= P1 .

For later application we finally state the following vanishing result.

Theorem 9.61 Let C be an embedded reduced irreducible curve and L be a holomorphic line bundle
on C with

d (L) > 2pa(C) − 2 .

Then,
H1(C, O (L)) = 0 .

Proof . Since ωC is locally free, L ∼= L ⊗ ω∗
C ⊗ ωC and H1(C, O (L)) ∼= H0(C, O (L∗) ⊗ ωC) by

duality. The degree is an additive function on tensor products. Thus,

d (L∗ ⊗ ωC) = − d (L) + d (ωC) < −2 (pa(C) − 1) + 2 (pa(C) − 1) = 0 .

Therefore, it remains to show that for any line bundle L with d (L) < 0 we have H0(C, O (L)) = 0 .
This is obviously correct if C is smooth since then d (L) < 0 implies that L has no nontrivial

holomorphic sections. In the general case we regard a normalization ν∗ : C̃ → C and put L̃ = ν∗L .
There is a canonical injective homomorphism

L −→ ν∗L̃ = ν∗(ν
∗L)

which gives rise to an injection

H0(C, O (L)) ⊂ H0(C, ν∗L̃) = H0(C̃, L̃) = 0 ,

the last identity being a consequence of d (L̃) = d (L) < 0 . □
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due to the author.

The elementary treatment of modifications of two–dimensional manifolds is a variant of Chapter V
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been followed in [01 - 18].
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