




Chapter 6

... mais la vision la plus belle qui nous reste
d’une oeuvre est souvent celle qui s’éleva au–
dessus des sons faux tirés par des doigts mal-
habiles, d’un piano désaccordé.

(Marcel Proust, A la recherche
du temps perdu. Du coté de chez Swann)
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Chapter 6

Dimension and multiplicity

We are going to discuss the notion of dimension for complex–analytic local algebras a little further.
The main purpose of this Chapter is the insight that dimension and multiplicity are encoded in a single
algebraic object, the Hilbert polynomial .

6.1 Algebras of dimension zero

Let us first characterize the algebras A of dimension zero, i.e. dimCA < ∞ . Recall from Local Algebra
that a ring is called artinian, if any descending chain of ideals becomes stationary. A prime ideal p ⊂ A
is called isolated , if it does not contain any proper prime ideal1. In particular, p = (0) is the only
isolated prime ideal of A if A has no zero divisors. For noetherian local rings, one has

(∗)
⋂

p isolated

p =
⋂

p prime

p = n = nA

with the nilradical n = { f ∈ A : ∃ t ∈ N such that f t = 0 } . We agree to call redA := A/ nA the
reduction of A . If A ∼= B/ b , then

redA ∼= B/ rad b .

Clearly, rad (0) = n . An ideal q is called primary if p := rad q is a prime ideal (we then also say
that q is p–primary). This is equivalent to the condition: if f g ∈ q , g ̸∈ q then f t ∈ q for some t .

Lemma 6.1 Let A ∼= B/ b be a complex analytic local algebra. Then, the following are equivalent :

i) dim A = 0 ;

ii) A is artinian ;

iii) m = mA is an isolated (and hence the unique) prime ideal ;

iv) mA = nA ;

v) redA ∼= C ;

vi) b is an mB–primary ideal ;

vii) there exists r ∈ N with mr
B ⊂ b ;

viii) b is of finite codimension in B .

1In many, if not most texts on Commutative Algebra, such ideals are called minimal prime ideals. In accordance to
our main source [01 - 02], we reserve the last notion for prime ideals p ̸= 0 in an integral domain R that contain the
trivial ideal as the unique prime ideal.
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Proof . i) =⇒ ii) Since dimCA < ∞ any descending chain of ideals (which is a descending chain of
C–vector subspaces) must stop.

ii) =⇒ iii) Let p be an isolated prime ideal of A and B := A/ p . Then, clearly, B is artinian, as
well. So, if g ∈ B , we have g B ⊃ g2B ⊃ · · · such that gt = gt+1h for some t . Since B is an integral
domain, 1 = g h if g ̸= 0 . Therefore, B is a field, i.e. p is maximal.

iii) =⇒ iv) follows from (∗).

iv) =⇒ v) is trivial by definition.

v) =⇒ vi) C ∼= redA ∼= B/ rad b implies rad b = mB .

vi) =⇒ vii) Since mB is finitely generated the claim follows easily.

vii) =⇒ viii) mr
B ⊂ b induces an epimorphism B/mr

B → B/ b .

viii) =⇒ i) is trivial. □

Remark . Parts of this Lemma have been included earlier in Theorem 2.13.

6.2 Parameter systems

In order to get a better insight into the true meaning of dimension we first give a new proof to the
following result (see the Remark after Theorem 3.36).

Lemma 6.2 If f ∈ mA , then dim A − 1 ≤ dim A/fA ≤ dim A .

Proof . Let d := dim A , c := dim A/fA . From the composition of finite homomorphisms Rd → A →
A/fA we get c ≤ d . If φ : Rc → A/fA is a finite homomorphism we construct a commutative
diagram

Rc A/fA-
φ

Rc+1 A-ψ

? ?

where the extra variable in Rc+1 is sent to f via ψ . Since ψ is quasi–finite, ψ is also finite whence
c + 1 ≥ d . □

Let us recall the following definition from Chapter 3:

Definition. A set (f1, . . . , fd) , fj ∈ mA , is called a parameter system for A if A/ (f1, . . . , fd)A is
artinian and no system of shorter length has this property.

Theorem 6.3 If d = dim A ≥ 1 , then parameter systems for A exist. They all have the same length
d . In particular,

dim A = min { k : ∃ f1, . . . , fk ∈ mA such that A/ (f1, . . . , fk)A is artinian } .

Remark . The right hand side of the equation in the Theorem is usually called the Chevalley–
dimension.

Proof . A/ (f1, . . . , fk)A is artinian if and only if the substitution homomorphism{
Rk −→ A

xj 7−→ fj
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is quasi–finite, hence finite. Therefore, the dimension of A equals the Chevalley–dimension, and
parameter systems (of length d = dim A) exist. □

By the Theorem above, we have for any parameter system (f1, . . . , fd) in A with d = dim A ≥ 1 :

dim A/ (f1, . . . , fk)A = d − k , 0 ≤ k ≤ d .

In particular, there exist elements f ∈ mA with dim A/fA = dim A − 1 if dim A ≥ 1 . In the
next Section we give a sufficient condition for elements f ∈ mA that drop the dimension (and later a
stronger necessary and sufficient condition).

Example. Not every nontrivial element f ∈ mA has this property. Look for instance at the algebra
A = R2/ x1x2R2 which has dimension 1 as one can easily see by the Weierstraß’ Division Theorem.
But the quotient of A by the residue class of x2 is isomorphic to R1 which has dimension 1 , too!

6.3 Active elements

The Lemma characterizing 0–dimensional algebras gives a hint how one can explicitly find elements
which drop the dimension.

Definition. An element f ∈ mA is called active if its residue class red f ∈ redA = A/ nA is a
nonzerodivisor. In other terms: f ̸∈ nA , and if fg ∈ nA then g ∈ nA .

Lemma 6.4 Active elements exist in an analytic algebra A if and only if dim A ≥ 1 .

Proof . If A is artinian, all elements f ∈ mA are nilpotent by Lemma 1, hence not active. If, on the
other hand, m = mA consists of inactive elements only, then

m ⊂
ℓ⋃

λ=1

pλ

for the isolated prime ideals p1, . . . , pℓ . (It is a general fact that local noetherian rings have only finitely
many isolated prime ideals). By an elementary argument which we elaborate in the proof of the next
Lemma for the convenience of the reader, we conclude that m ⊂ pr for some r , whence m = pr and
m is an isolated prime ideal. □

Lemma 6.5 Let p1, . . . , pℓ be prime ideals in A with pλ ̸⊂ pκ for λ ̸= κ , and let a be an ideal in
A that is contained in the set–theoretical union of the pλ :

a ⊂
ℓ⋃

λ=!

pλ .

Then, there exists an index r ≤ ℓ such that a ⊂ pr .

In particular, for each index s with 1 ≤ s < ℓ there exists an element

f ∈
s⋂

λ=!

pλ with f ̸∈
ℓ⋃

λ=s+1

pλ .

Proof . Suppose that a ̸⊂ pλ for all λ . Then also

a ∩
⋂
κ ̸=λ

pκ ̸⊂ pλ

since otherwise we get a contradiction to our assumption pλ ̸⊂ pκ for λ ̸= κ . Let fλ ∈ a ∩⋂
κ̸=λ pκ , fλ ̸∈ pλ , and f :=

∑
λ fλ . It follows that f ∈ a , but f ̸∈ aλ because of

∑
κ̸=λ fκ ∈ pλ and
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fλ ∈ aλ . Contradiction!

Assume to the contrary that, for some s with 1 ≤ s < ℓ , we have

s⋂
λ=!

pλ ⊂
ℓ⋃

λ=s+1

pλ .

By the first part, there exists r with r > s such that

s∏
λ=1

pλ ⊂
s⋂

λ=!

pλ ⊂ pr .

Since pr is a prime ideal, it is easily shown that it must contain one of the ideals pλ , λ = 1, . . . , s .
Contradiction! □

Lemma 6.6 An element f ∈ mA is active in A if and only if it does not belong to any isolated prime
ideal p1, . . . , pℓ of A .

Proof . If f ̸∈
⋃

pλ , then from f g ∈ nA =
⋂

pλ it follows immediately that g ∈ nA . Hence, f is

active.

On the other hand assume that f ∈
⋃

pλ and - without loss of generality - that f ∈ p1 . If ℓ = 1 ,

then f is nilpotent and consequently not active. If ℓ > 1 , there exists an element g ∈ ∩λ≥2pλ which
does not belong to p1 . Therefore, g ̸∈ nA , but f g ∈ nA , such that f is not active. □

Active elements really diminish the dimension (by one); this is the reason for their name (given to
them by Grauert and Remmert).

Theorem 6.7 (Active Lemma) If f ∈ mA is active then dim A/fA = dim A − 1 .

Before we embark into the proof of this Theorem, we draw the long overdue conclusion.

Corollary 6.8 dim Rn = n .

Proof (of Corollary 8) by induction. The case n = 0 being trivial, assume that dim Rn−1 = n − 1 .
Clearly, xn ∈ Rn is active, since Rn is an integral domain. Thus,

dim Rn = dim Rn/ xnRn + 1 = dim Rn−1 + 1 = (n − 1) + 1 = n . □

This might be the right place to insert here the proof of a regularity criterion we mentioned already
in Chapter 3. In fact, we know sharper statements (see loc. cit.).

Theorem 6.9 If dim A = embdimA = e , then any epimorphism Re → A is an isomorphism.

Proof . If φ : Re → A is not injective we choose an element f ∈ ker φ with f ̸= 0 and arrive at a
finite morphism Re/ fRe → A . By the division theorem we find a finite morphism Re−1 → Re/ fRe

and hence, dim A ≤ e − 1 . □

For completing the proof of Theorem 7 we use another Lemma.

Lemma 6.10 If φ : Rn → A is finite and f ∈ mA is active, then φ−1(f A) ̸= 0 .

Postponing the proof of this Lemma we can easily see that the “Active Lemma” is true: Due to
Lemma 2, what we only have to show is that dim A/fA ≤ d − 1 , d = dim A , for any active element
f ∈ mA . Take a finite homomorphism φ : Rd → A . By the preceding Lemma there exists a nontrivial
element g ∈ φ−1(f A) ⊂ Rd . Assume that g is x1–generic. Then, the induced homomorphism from
the composite ψ : Rd → A → A/fA =: A

Rd/ (g, x2, . . . , xd) −→ A/ (ψ (g), ψ (x2), . . . , ψ (xd))A
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is finite. However, Rd/ (g, x2, . . . , xd) is artinian such that the ring on the right hand side is artinian
as well. But ψ (g) = 0 because of φ (g) ∈ fA , whence dim A ≤ d − 1 . □

Proof (of Lemma 10). φ : Rn → A being finite, A is integer over Rn . In particular,

f t + φ (a1) f
t−1 + · · ·+ φ (at) = 0 , aj ∈ mn .

Thus, there exists a minimal number s such that

ω := fs + a1f
s−1 + · · ·+ as ∈ n = nA .

Since red f is a nonzerodivisor in A/ nA , we conclude that as ̸= 0 (otherwise s would not be minimal).
Finally, there is an m ∈ N such that ωm = 0 and consequently, g := ams ∈ φ−1(f A) . □

6.4 Noether normalization

Remark . Lemma 10 is a quite weak version of a much more general result.

If f1, . . . , fd ∈ mA are elements such that A/ (f1, . . . , fd)A is artinian then for all c = (c1, . . . , cd) ∈
Cd \H , H a finite union of linear subspaces of lower dimension, the element

f = c1f1 + · · ·+ cdfd

is active.

(See loc. cit., Satz II.4.10). - This implies immediately the following:

For any finite homomorphism φ : A → B , B not artinian, there exist active elements f ∈ mA such
that φ (f) is active in B .

We need in the following only a special version whose proof, however, contains already the main
ingredients of the general arguments.

Theorem 6.11 Let φ : Rd ↪−→ A be a finite injective homomorphism, d ≥ 1 . Then, after a linear
change of coordinates in Rd , the element φ (xd) is active in A .

Proof . By our assumption, necessarily dim A ≥ 1 such that the conclusion makes sense. Let p1, . . . , pℓ
denote the isolated prime ideals of A , and let πλ be the projections A → A/ pλ . Clearly, the
tuple (φ (x1), . . . , φ (xd)) is a weak parameter system in A , and so are, for each λ , the tuples
((πλ◦φ) (x1), . . . , (πλ◦φ) (xd)) in A/ pλ . If, for some λ , we have (πλ◦φ) (x1) = · · · = (πλ◦φ) (xd) =
0 , then, consequently, dim A/ pλ = 0 . Since the last ring is an integral domain, it is also reduced,
such that it is a field. Therefore, mA = pλ is an isolated prime ideal, such that dim A = 0 due to
Lemma 1. Contradiction! In other words: If ψλ denotes the C–linear mapping which associates to any
d–tuple (c1, . . . , cd) ∈ Cd the residue class of φ (

∑
cjxj) in the ring A/ pλ , then ker ψλ ̸= Cd . Hence,⋂

λ

(Cd \ ker ψλ) is open and dense in Cd , and each d–tuple (c1, . . . , cd) ̸= 0 in this set gives rise to a

nontrivial linear form
∑

cjxj whose image φ (
∑

cjxj) is active in A . Replacing this form by xj if
cj ̸= 0 and interchanging xj with xd , if necessary, yields the result. □

We now come to our central result (see also Theorem 3.34).

Theorem 6.12 (Noether normalization) We have dim A = d if, and only if, there exists a finite
and injective homomorphism

φ : Rd ↪−→ A .

Proof . Only one direction needs verification. We proceed by induction on d . The case d = 0 being
trivial, we may assume that d ≥ 1 and that the result is true for d − 1 . Then we may further choose
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coordinates x1, . . . , xd in Rd such that f := φ (xd) is active in A (Theorem 11). According to the
next much more general Lemma, the induced finite homomorphism

φ : Rd−1 = Rd/ xdRd −→ A/fA =: A

is also injective. Hence,

dim A − 1 = dim A = d − 1 . □

Lemma 6.13 Let φ : A → B be a finite homomorphism with kerφ ⊂ nA , let a ⊂ mA be an ideal
and

φ : A = A/ a −→ B/ aB = B

the associated homomorphism. Then, ker φ ⊂ nA .

Proof . Let f be an element of ker φ and f a preimage of f in A . Then, fB = φ (f)B ⊂ aB ,
if B is regarded as an A–module via φ . So, setting N = B , R = S = A , s = f , the Dedekind
Lemma 3.13 yields elements g1, . . . , gt ∈ a such that

f t + g1f
t−1 + · · ·+ gt ∈ AnAB = ker φ ⊂ nA .

Calculating modulo the ideal a gives f
t
= 0 , i.e. f ∈ nA . □

6.5 Dimension and finite homomorphisms

We state in this Section various applications for finite homomorphisms. In particular, we shall see that
the dimension is a function of the underlying reduced structure.

For an epimorphism φ : A → B the very definition of dimension implies dim B ≤ dim A , and
the dimension really drops down if ker φ contains active elements. We now have the following

Theorem 6.14 For finite φ : A → B one has

dim B = dim A/ ker φ ≤ dim A ,

hence dim B = dim A if φ is injective. On the other hand, if φ : A → B is finite, dim B = dim A
and A is an integral domain, then, φ is injective. Moreover, dim A = dim A/ a for any ideal a ⊂
n = nA ; in particular,

dim A = dim redA .

Proof . Since the induced homomorphism A/ ker φ → B is finite, we may assume from the beginning
that φ is injective. If dim A = 0 , then B is also a finite dimensional C–vector space, i.e. dim B =
0 = dim A .

Suppose now that d ≥ 1 . If A is of dimension d , there exists a finite injective homomorphism
Rd ↪→ A . Composed with φ , this leads to a homomorphism Rd ↪→ B of the same kind, such that
dim B = d , too.

If φ : A → B is finite, A an integral domain and ker φ ̸= 0 , then ker φ contains active elements
such that dim A > dim A/ kerφ = dim B .

Take a finite injective homomorphism φ : Rd → A and denote the composition with the projection
A → A/ a by φ . If f ∈ ker φ , then φ (f) ∈ a ⊂ nA . Hence, for some t , φ (f t) = (φ (f))t = 0 and
therefore f t = 0 . Since Rd has no zerodivisors, f = 0 and φ is injective, too. □
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6.6 Lasker - Noether decomposition

The full geometric power of Rückert’s Nullstellensatz, or rather its (obvious) generalization to arbi-
trary complex analytic algebras becomes much clearer if the Lasker–Noether Decomposition Theorem
is brought into the play. Recall that an ideal q is called primary if its radical rad q is a prime ideal p
(then q is also called p–primary).

*Theorem 6.15 (Lasker - Noether) Any ideal a in a local noetherian ring A is the intersection
of finitely many primary ideals q1, . . . , qt :

a = q1 ∩ . . . ∩ qt .

Via the general rules for zero sets this so called primary decomposition of a implies a decomposition

(∗)
N (a) = N (q1) ∪ . . . ∪N (qt) = N (rad q1) ∪ . . . ∪N (rad qt)

= N (p1) ∪ . . . ∪N (pt) , pj = rad qj ,

and consequently,
i (N (a)) = i (N (p1)) ∩ . . . ∩ i (N (pt)) .

Since, obviously, rad a = p1 ∩ . . . ∩ pt it suffices to show that

i (N (p)) = p

for any prime ideal p ⊂ A in order to prove Rückert’s Nullstellensatz for the algebra A .
To understand the geometric meaning of (∗), we give the following

Definition. An analytic germ X is called irreducible if X cannot be written in the form X = X1 ∪
X2 , X1 ̸⊂ X2 , X2 ̸⊂ X1 ; otherwise X is reducible.

We first characterize such irreducible germs algebraically.

Lemma 6.16 Let q ⊂ A be an ideal in a complex analytic algebra. Then, the following are equivalent :

i) q is primary ;

ii) if a ∩ b ⊂ p := rad q for ideals a , b ⊂ A , then a ⊂ p or b ⊂ p ;

iii) if N (q) ⊂ N (a) ∪N (b) , then N (q) ⊂ N (a) or N (q) ⊂ N (b) ;

vi) if N (q) = N (a) ∪N (b) , then N (q) = N (a) or N (q) = N (b) .

Proof . i) =⇒ ii). Suppose a ∩ b ⊂ p and b ̸⊂ p . Take an arbitrary element a ∈ a and an element
b ∈ b \ p . Then ab ∈ a ∩ b ⊂ p and thus a ∈ p .

ii) =⇒ iii). By assumption, i (N (a)) ∩ i (N (b)) ⊂ i (N (q)) = p and hence, without loss of generality,
rad a = i (N (a)) ⊂ i (N (q)) = p . Therefore, N (q) = N (p) ⊂ N (rad a) = N (a) .

iii) ⇐⇒ iv). If N (q) ⊂ N (a) , then N (a) ⊂ N (a) ∪ N (b) = N (q) ⊂ N (a) implies N (q) = N (a) .
If, on the other hand, N (q) ⊂ N (a) ∪ N (b) , then N (q) = N (q) ∩ (N (a) ∪ N (b)) = (N (q) ∩
N (a)∪ (N (q)∩N (b)) = N (a + q)∪N (b + q) , whence N (q) = N (a + q) , say, such that N (q) =
N (q) ∩N (a) ⊂ N (a) .

iii) =⇒ i). It is sufficient to show that the radical p of q is a prime ideal. Take f, g ∈ A with f g ∈ p
and set a = fA , b = gA . Then, N (p) ⊂ N (fgA) ⊂ N (a)∪N (b) and, assuming N (p) ⊂ N (a) , we
get f ∈ i (N (fA)) ⊂ i (N (p)) = p . □

Thus, the Lasker–Noether decomposition (∗) leads to a decomposition of N (a) into a union of
finitely many irreducible germs N (pj) . A prime ideal pj is called embedded (for a ) if N (pj) ⊂ N (pk)
for some k ̸= j , i.e. if it exists a k ̸= j with pk ⊂ pj . Clearly,

N (a) = N (p1) ∪ . . . ∪N (ps) , pσ not embedded for a ,
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and one can show that this decomposition of the germ N (a) into irreducible components is unique (up
to order). Moreover, the primary ideals q1, . . . , qs corresponding to p1, . . . , ps are uniquely determined
by the ideal a , but, in general, not the primary ideals associated to the embedded prime ideals.

Suppose finally that A = Rn/ a . Then, primary decompositions of the trivial ideal (0) ⊂ A are in
1 : 1–correspondence to primary decompositions of a in Rn . Under this correspondence, the isolated
prime ideals of A correspond to the nonembedded prime ideals of a . This remark implies

dim N (a) = max
p⊃a

isolated

dim N (p) .

6.7 Krull dimension of analytic algebras

Geometrically speaking give parameter systems f1, . . . , fd in a d–dimensional algebra A a sequence of
subspaces

X = Xd ⊃ Xd−1 = N (f1) ⊃ Xd−2 = N (f1, f2) ⊃ · · · ⊃ X0 = N (f1, . . . , fd) = { 0 }

with dim Xj = j . So, Xj−1 is always a hypersurface in Xj .

As an Example we regard A = R3/ f R3 with f = x21 + x22 − x23 and take f1, f2 to be the residue
classes of x1 and x2 in A . Then, the geometric picture is the following

Figure 6.1

As we see, the algebras Ad−j := A/ (f1, . . . , fj) may neither be integral domains nor reduced.

The geometric idea behind the Krull dimension is to find a maximal sequence of irreducible sub-
spaces

X ⊃ Xd ⊃ · · · ⊃ X0 = { 0 } .

Here, we cannot start always with X = Xd since X may not be irreducible. If we e.g. have X ⊂ K3

given by x3x1 = x3x2 = 0 , and take f1 and f2 as above we get the sequence of pictures
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Figure 6.2

Hence, the dimension is 2 , i.e. equal to the dimension of the highest dimensional component . It is easy
to see in both examples how to find sequences of irreducible subspaces of length 2 (if one neglects the
trivial last one, a point). This is no coincidence.

Definition. Let A be a noetherian local algebra. Then, a chain of prime ideals in A of length k is a
sequence

pd ⊂ · · · ⊂ p1 ⊂ p0 = m

of prime ideals pj with pj−1 ̸= pj for all j = 1, . . . , d . The Krull dimension of A is the maximum
of all possible chains of prime ideals.

We only state without proof the important result that the Chevalley dimension agrees with the
Krull dimension for complex analytic local algebras (for complete details see loc. cit.).

*Theorem 6.17 For complex analytic algebras A = C ⟨x1, . . . , xn ⟩/ a of dimension d there exist
chains of prime ideals of length d , and no chain has larger length.

It is clear that any maximal chain must stop with an isolated prime ideal pd . Moreover, dim A/ pj =
j . For no prime ideal p we can have dim A/ p > d (since otherwise we can construct a chain of prime
ideals in A of length > d ending with p ). This consideration implies the geometrically reasonable

Corollary 6.18 dim A = max { dim A/ p , p isolated prime ideal } .

This result gives rise to the following

Definition. A local algebra A is called pure–dimensional if

dim A/ p = dim A

for all isolated prime ideals p of A .

If A is in particular an integral domain, then, p = 0 is the unique isolated prime ideal and A is,
consequently, pure–dimensional.

6.8 Noether normalization, once more

It is not difficult to deduce from Remark [??] the following result by induction.
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Theorem 6.19 Let g1, . . . , gk ∈ mA be elements such that A/ (g1, . . . , gk)A is artinian. Then, for all
c ∈ Ckd \H , H a finite union of hyperplanes, the d elements

f1 =

r∑
j=1

c1jgj , . . . , fd =

r∑
j=1

cdjgj

form a system of parameters.

By this result we can prove that our definition of the dimension in Chapter 1 coincides with that
given in this Chapter.

Lemma 6.20 Let a be an ideal in Rn and denote by d the smallest natural number such that there
exist d linear forms

ℓj =

n∑
k=1

cjk xk , j = 1, . . . , d

with the property that the ideal a + (ℓ1, . . . , ℓd)Rn contains a power of the maximal ideal mn . Then,

d = dim Rn/ a .

Proof . Suppose that a + (ℓ1, . . . , ℓk)Rn contains a power of mn for some linear forms ℓ1, . . . , ℓk . Then,
we have for the residue classes ℓ1, . . . , ℓk in A = Rn/ a that

A/ (ℓ1, . . . , ℓk)A ∼= Rn/ a + (ℓ1, . . . , ℓk)Rn

is finite dimensional over C . Consequently, k ≥ dim A = dim Rn/ a .

To prove the opposite direction notice that for the residue classes x1, . . . , xn in A the quotient ring
A/ (x1, . . . , xn)A is artinian. By the preceding Theorem, A contains a parameter system g1, . . . , gd
consisting of linear combinations of the xj with constant coefficients. These can be lifted to linear forms
ℓ1, . . . , ℓd in x1, . . . , xn , and since

Rn/ a + (ℓ1, . . . , ℓd)Rn
∼= A/ (g1, . . . , gd)A

is artinian, the ideal a + (ℓ1, . . . , ℓd)Rn contains a power of mn . □

Remark . Since the zero set of d (independent) linear forms is a plane of dimension n − d , i.e. of
codimension d , this result is equivalent to the statement that N (a) is d-dimensional at the origin if
and only if there exist planes E through 0 of dimension n − d and no of higher dimension such that
0 is an isolated point of the intersection N (a) ∩ E .

The Lemma stated above allows another interpretation. It is clear that the linear forms ℓ1, . . . , ℓd
must be linearly independent. Therefore, we can choose them as the first d of a set of new coordinates
x1, . . . , xn of Rn . Now, in the following diagram

Rd A-
�

�
�
��

Rn

?

with canonical inclusion Rd ↪→ Rn the composition Rd → A is quasi–finite and thus finite (and
necessarily injective). So, we see that not only such Noether normalizations Rd ↪→ A exist abstractly
but that they are realized by “almost all” projections to d–dimensional planes where d = dim A .

Theorem 6.21 If Rn → A is an epimorphism onto an analytic algebra A of dimension d then, after
generic change of variables in Rn , the natural inclusion Rd ↪→ Rn induces a Noether normalization
Rd ↪→ A .



6.9 Finite algebra homomorphisms and finite holomorphic map germs 155

In order to illustrate this result we look again at the example of the ideal a = (x1x3, x2x3) in R3 .
The mapping R2 → R3/ a = A given by

x1 7−→ x1 , x2 7−→ x2

is not finite since

A/ (x1, x2)A ∼= R3/ (x1x3, x2x3, x1, x2)R3
∼= R3/ (x1, x2)R3

is not artinian. But after an arbitrary small change of variables

(x1, x2, x3) 7−→ (x1 + ε1x3, x2 + ε2x3, x3) , ε1ε2 ̸= 0 ,

everything is alright since

R3/ ((x1 + ε1x3)x3, (x2 + ε2x3)x3, x1, x2)R3
∼= R3/ (x1, x2, x

2
3)R3

is an artinian ring.

Figure 6.3

6.9 Finite algebra homomorphisms and finite holomorphic map
germs

We call a holomorphic map germ between analytic sets finite if it has a finite representative (recall the
definition for finite topological maps from Chapter xxx). Our main result is the following

Theorem 6.22 Let f : N (a) → N (b) be a holomorphic map germ associated to a diagram

= B A =-
φ

Rm Rn
-ψ

? ?
Rm/ b Rn/ a

Rm Rn

as in Chapter xx.xx. Then, the following are equivalent :

i) f is finite ;

ii) f−1(0) is isolated in N (a) ;

iii) φ : B → A is a finite homomorphism ;
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iv) φ : B → A is a quasi–finite homomorphism.

The proof of this Theorem will occupy the rest of this Section. We start with showing ii) ⇐⇒ iv). The
claim that f−1(0) = N (ψ (mm)) is isolated in N (a) is obviously the same as to say that N (a) ∩
N (ψ (mm)) = N (a + ψ (mm)) is a point. By Rückert’s Nullstellensatz this is equivalent to the fact
that the ideal a + ψ (mm) is of finite codimension in Rn . But this, in turn, is equivalent to A/mBA
being a finite dimensional C–vector space, i.e. to the quasi–finiteness of φ . It is also immediately clear
by the definitions that i) =⇒ ii) and from the Quasi–finiteness Theorem that iii) ⇐⇒ iv).

Thus, it remains to show that, e.g., iii) =⇒ i). This conclusion will be established in several steps. To
begin with, we make a few useful comments on finite maps.

Lemma 6.23 Let f : X → Y , g : Y → Z be continuous mappings of locally compact Hausdorff
spaces. Then, the following are true :

i) If f and g are finite, then g ◦ f is finite ;

ii) If g ◦ f and g are finite, then f is finite ;

iii) If g ◦ f is finite, and if f is finite and surjective, then g is finite.

Proof . i) follows directly by the definition. For ii) we use the alternative characterization of finite maps.
The only fact to be proven is that f is a proper map. Now, if K ⊂ Y is compact the preimage f−1(K)
is closed and a subset of the compact set (g◦f)−1(L) since L := g (K) is compact in Z . Consequently,
f−1(K) is compact. For iii): By the assumptions, it is clear that all fibers of g are finite; moreover each
closed set B ⊂ Y is the image under f of the closed set A := f−1(B) . Hence, g (B) = (g ◦ f) (A) is
closed in Z . □

Remark . Again by the second characterization of finiteness it is plain that the restriction of a finite
map f : X → Y to f−1(V ) , V open in Y , is finite. This observation has the consequence that the
implications of the Lemma above remain valid for map germs.

For the rest of the Section we say that (∗) is satisfied for a finite homomorphism φ : B → A if
the implication iii) =⇒ i) is valid. If φ factorizes over an epimorphism ε : B → C we can reduce the
proof for (∗) to the proof of (∗) for the remaining map C → A by separating our basic diagram into
two parts:

B C-
ε

Rm Rm
-id

? ?
A-

Rn
-

?

This follows from conclusion ii) in the Lemma on finite continuous maps. Indeed, if B = Rm/ b then
there exists an ideal c ⊃ b such that Rm/ c ∼= C and the identity id : Rm → Rm induces the
commutative diagram

Rm/ b = B A = Rn/ a-φ

Rm/ c ∼=

@
@

@
@R �

�
�
��

Rm/ b = B A = Rn/ a
φ

C

which leads to a factorization N (a) → N (c) ⊂ N (b) . Since N (c) is a closed subset of N (b) , the
inclusion is clearly finite. □

As a Corollary, we get
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Corollary 6.24 (∗) holds for any epimorphism φ : B → A .

Proof . Exploiting the same diagram as above, we can take C = A and ε = φ . By Lemma 02.xx, we
know that the map N (a) → N (c) is a homeomorphism, hence finite. □

After dividing out the kernel of φ we are reduced via part i) of the preceding Lemma to the
case where φ is injective (but, as we will see, for this we need again the result for general surjective
homomorphisms). Using Noether normalization Rd ↪→ B and invoking part ii) of the preceding Lemma
again, we are immediately reduced to the case B = Rd ↪→ A . Thus, we see that our Theorem follows
from its

Corollary 6.25 For a Noether normalization Rd −→ A the corresponding map germ N (a) → (Cd)0
is finite.

Remark . It is not too difficult to show that a representative of N (a) → (Cd)0 is in fact outside a lower
dimensional analytic subset of (Cd)0 an unbranched holomorphic covering (see the next Section). If A
is normal, this covering is even connected.

Proof of Corollary. Finiteness of the homomorphism φ : Rd ↪→ A = Rn/ a implies that each residue
class fj = yj ∈ A , j = 1, . . . , n , is algebraic over Rd where y1, . . . , yn denote a holomorphic
coordinate system for Rn . Therefore, we find Weierstraß polynomials ωj = ωj(x, Yj) ∈ Rd [Yj ] such
that ωj(x, fj) = 0 or, equivalently, ωj(x, yj) ∈ a ·Rd+n . The canonical factorization Rd ↪→ Rd+n →
Rn of a lifting Rd → Rn of φ then yields a factorization of the diagram we started with:

Rd Rd+n/ (ω1, . . . , ωn)-

Rd Rd+n
-

?

id

?
A-

Rn
-

?

in which the arrow on the lower right hand side is surjective by construction. So, we are finally reduced
to the homomorphism

Rd −→ Rd+n/ (ω1, . . . , ωn)Rd+n

which is clearly (quasi–) finite. Geometrically, this homomorphism corresponds to the restriction of the
projection Cd × Cn → Cd to

Ω := { (x, y1, . . . , yn) : ωj(x, yj) = 0 , j = 1, . . . , n } ⊂ (Cd × Cn)0

which is indeed (in a neighborhood of 0 ∈ Cd ) a finite map (a straightforward generalization of the
case of Weierstraß hypersurfaces). □

6.10 Topological properties of Noether normalization

For a Noether normalization Rd −→ A the corresponding map germ N (a) → (Cd)0 is finite. We are
going to get more information concerning the topological properties of this finite map.

We first apply former considerations in Chapter xx.xx to maps φ : Rm → A , in particular to the
Noether normalization, by exploiting the following diagram
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Rm A =-
�
�

�
�
��

Rn

?
Rn/ a

Rm/ ker φ
?�

�
�

�
��

Then, f (N (a)) ⊂ N (ker φ) ⊂ N (0) = (Cm)0 , and N (ker φ) is a proper analytic set germ of (Cm)0
if φ is not injective. Of course, this occurs for the composition

Rd ↪−→ A −→ A/ p ,

where Rd ↪→ A is finite (such that d = dim A ) and p is an isolated prime ideal of A such that
dim A/ p < d .

Corollary 6.26 Under a Noether normalization homomorphism Rd ↪→ A = Rn/ a , lower dimen-
sional components of N (a) are mapped into lower dimensional analytic germs of (Cd)0 .

Remarks. 1. In fact, the lower dimensional components are mapped onto such analytic germs.

2. By the preceding Corollary, understanding a Noether normalization topologically “up to analytic
germs of lower dimension” in (Cd)0 depends only on the components of top dimension d . Moreover, it
is geometrically obvious that intersections N (p1)∩N (p2) of two different top–dimensional components
are also of dimension < d . Thus, one must study only one component of dimension d outside suitable
hypersurfaces in Cd , and this can be seen to be an unbranched covering (c.f. below).

We are going to make these Remarks on the “topological” properties of a Noether normalization
Rd ↪→ A more precise. If p ⊂ A denotes an isolated prime ideal with dim A/ p = d , the given Noether
normalization induces also a Noether normalization of A/ p by composition: Rd ↪→ A → A/ p . If
a ⊂ A is any other ideal such that dim A/ p + a = d the canonical epimorphism

A/ p −→ A/ p + a

is injective due to Lemma xxx and henceforth an isomorphism, i.e. p = p + a ⊃ a . In particular, if p′

is a second prime ideal with the property stated above, but different from p , the composition

Rd −→ A/ p + p′

is not injective such that N (p)∩N (p′) = N (p + p′) is again mapped into a lower dimensional analytic
germ of (Cd)0 .

Thus, to understand the finite map germ N (a) → (Cd)0 “up to codimension 1 ”, we can restrict
ourselves to the case where A is an integral domain in which we can exploit general results of the
theory of finite field extensions by going over to the respective quotient fields.

6.11 Existence of universal denominators

A little more generally we regard in this Section a finite injective homomorphism φ : B ↪→ A of
integral domains A and B and denote by K and L the quotient fields of A and B , resp.. Clearly,
φ induces an embedding

L ↪→ K .
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If g is any nontrivial element in A , it satisfies an equation gℓ + b1g
ℓ−1 + · · ·+ bℓ = 0 , bλ ∈ B . If ℓ is

chosen to be minimal, we have bℓ ̸= 0 since B has no zerodivisors. Therefore, to each g ∈ A we find
a nontrivial h ∈ A with g h ∈ B ; in particular, each element in K can be written in the form f/ g
with f ∈ A , g ∈ B . Hence, K = A · L , and elements f1, . . . , fr ∈ mA generating A as an algebra
over B also generate K over L . In other words: the field K is a finite algebraic extension of L .

Since we are working in characteristic zero we can now apply the Theorem of Primitive Elements:
there exists ϑ̃ ∈ K such that K is the simple extension of L associating ϑ̃ ; in symbols

K = L [ ϑ̃ ] .

Moreover, ϑ̃ can be chosen to be a “generic” linear combination of any set of generators.

Remark . If we regard a Noether normalization coming from a generic projection

Rd A-
�
�

�
�
��

Rn

?

then the elements xd+1, . . . , xn ∈ A form a set of algebra generators. Hence, a primitive element ϑ̃ is
given by the residue class of a suitably chosen linear combination cd+1xd+1 + · · ·+ cnxn . After a linear
change of coordinates we can even assume that this is equal to xd+1 .

Corollary 6.27 If A = Rn/ p , p a prime ideal different from zero, then, after generic linear coordi-
nate change of Rn , the canonical embedding Rd ↪→ Rn induces a Noether normalization of A such
that Q (A) = Q (Rd) [xd+1 ] .

As a next step we prove the existence of universal denominators.

Lemma 6.28 If B ↪→ A is a finite homomorphism of integral domains, then there exists a nontrivial
element ∆ ∈ mB and an element ϑ ∈ A such that

∆A ⊂ B [ϑ ] ⊂ A .

Proof . Let Q̃ = Y m + q1Y
m−1 + · · ·+ qm ∈ L [Y ] be the minimal polynomial of a primitive element

ϑ̃ , i.e. Q̃ (ϑ̃) = 0 , m minimal, and suppose ϑ̃ ∈ A . Then,

P̃ (Y ) := b Q̃ (Y ) ∈ B [Y ] ,

if b denotes the product of the denominators of q1, . . . , qm ∈ L = Q (B) . Clearly, P̃ (ϑ̃) = 0 , and P̃

is indecomposable (otherwise, Q̃ would not be minimal). Define now ϑ = bϑ̃ and

P (Y ) := bm−1 P̃ (Y/ b) .

Then, P is a monic polynomial in B [Y ] which is minimal for ϑ as an element of L [Y ] . In particular,
P is indecomposable. Let now f1, . . . , fr generate the B–module A . Since A ⊂ K = L [ϑ ] we find
polynomials Pj ∈ B [Y ] and nontrivial elements δj ∈ B such that

fj = Pj(ϑ)/ δj , j = 1, . . . , r .

Therefore, ∆ := δ1 · . . . · δr ̸= 0 and ∆ fj ∈ B [ϑ ] which implies ∆A ⊂ B [ϑ ] . □

Applying the preceding Lemma to a Noether normalization Rd → A , A an integral domain, and
the associated holomorphic map germ N (a) → (Cd)0 , the following is more or less an immediate
consequence (for more details, cf. Chapter xxx).
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Corollary 6.29 There are arbitrarily small connected neighborhoods V = V (0) ⊂ Cd and represen-
tatives X of N (a) over V such that the following are satisfied :

i) ∆ ∈ O (V ) ;

ii) over V0 := V \ {x ∈ V : ∆ (x) = 0 } the map

π : X0 = π−1(V0) −→ V0

is a (holomorphic) covering. In particular, π is open at the origin, i.e. there are arbitrary small
neighborhoods U of 0 ∈ N(a) such that π (U) is a neighborhood of 0 ∈ Cd .

We leave it as an Exercise to the reader to conclude the following.

Theorem 6.30 Let A be an analytic subset of an open set G ⊂ Cn . Then, the dimension function
A ∋ x 7→ dimxA is upper semicontinuous, i.e.

dimxA ≤ dimx(0) A

for all x in a neighborhood U ∩A of x(0) .

For each top–dimensional component Aj of A at x(0) , the dimension dimxAj is constant in a neigh-
borhood of x(0) .

6.12 Proof of Rückert’s Nullstellensatz

Recall that Rückert’s Nullstellensatz is equivalent to the statement

(+) i (N (p)) = p

for all prime ideals p ⊂ Rn if we take the Lasker–Noether decomposition for granted. The purpose of
this Section is a proof of (+) and a short sketch for a somewhat weaker formulation and derivation of
the Lasker–Noether decomposition.

In the following, we always refer to a Noether normalization Rd ↪→ A = Rn/ p , p a prime ideal,
induced by a substitution homomorphism Rd ↪→ Rn with (necessarily) p∩Rd = (0) . - We start with
an easy

Lemma 6.31 For all f ∈ Rn there exist g ∈ (Rn \ p) and h ∈ Rd such that

g f + h ∈ p .

Proof . Since A is a finite Rd–homomorphism, we have a relation

fm +

m−1∑
j=0

ajf
j ∈ p , aj ∈ Rd .

If m is minimal, a0 ̸= 0 since p is prime. So, it suffices to set

g = fm−1 +

m−1∑
j=1

ajf
j−1 and h = a0 . □

Corollary 6.32 For all prime ideals p ⊂ Rd we have i (N (p)) = p .

Proof . We know that p ⊂ i (N (p)) . So, let f ∈ i (N (p)) . Using a decomposition g f + h ∈ p as above,
we conclude that h ∈ i (N (p)) ∩Rd . Due to the Corollary at the end of the preceding Section, h ≡ 0
outside the discriminant set {∆(x) = 0 } ⊂ V ⊂ Cd . Therefore, h = 0 , and g f ∈ p , g ̸∈ p implies
f ∈ p . Hence, i (N (p)) ⊂ p . □
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If we do not want to use the general Lasker–Noether decomposition Theorem, we can proceed along
the following lines. First prove that N (a) = N (rad a) is indecomposable if and only if rad a is prime,
i.e. a is primary, without using Rückert’s Nullstellensatz. Secondly, by the Noether property of Rn we
immediately derive that descending chains of zero sets

N (a0) ⊃ N (a1) ⊃ · · ·

must become stationary . From this it is easy to conclude that

(∗∗) N (a) = A1 ∪ · · · ∪Ar

for any ideal a ⊂ Rn where the analytic set germs Aj = N (aj) are indecomposable such that q is
primary. If we put pj = rad qj we get

i (N (a)) = i (A1) ∩ · · · ∩ i (Ar) =

r⋂
j=1

i (N (qj)) =

r⋂
j=1

i (N (pj)) =

r⋂
j=1

pj .

Corollary 6.33 For any ideal a ⊂ mn ⊂ Rn , we have a decomposition

i (N (a)) =

r⋂
j=1

pj

with prime ideals pj .

Remark . Since a ⊂ i (N (a)) , it is clear that the set { pj : 1 ≤ j ≤ r } consists of all prime ideals
p ⊂ Rn satisfying a ⊂ p , i.e. of all isolated prime ideals of a .

6.13 Multiplicity and degree

The multiplicity of a function germ f can be interpreted as an invariant of the projective tangent cone
TX,0 for X = { f (x) = 0 } . We will use this fact to define the multiplicity of a general singularity in
a similar vein.

We have seen above that for a function germ f of multiplicity m there is an identity

TX,0 = {x = [x1 : · · · : xn ] ∈ Pn−1 : fm(x) = 0 } ,

where fm = in (f) is a homogeneous polynomial of degree m in n variables. The number m associated
to the projective algebraic hypersurface TX,0 ⊂ Pn−1 has a simple algebro–geometric interpretation:
For most lines ℓ ⊂ Pn−1 , the restriction fm|ℓ is a nonzero polynomial of degree m in one variable such
that its number of roots counted with multiplicities equals m .

This is a special example of what is called the degree d = deg Y of a variety Y ⊂ PN . In the
general situation, one regards, if V is of dimension r , say, all r–codimensional linear spaces in PN

which form the Graßmann manifold
Grass (N − r, PN ) .

One can show that the generic r–codimensional linear space L intersects the underlying set of Y in
finitely many points y(1), . . . , y(s) . (Here, generic means that all such linear spaces are parametrized by
an open dense subset of the manifold Grass (N − r, PN ) ). If Y = N (F1, . . . , Ft) with homogeneous
polynomials Fj and if x1, . . . , xN are local coordinates near a point y(k) such that L can be described
by {x1 = · · · = xr = 0 } , then the ring

C ⟨xr+1, . . . , xN ⟩/ (F1(0, . . . , 0, xr+1, . . . , xN ), . . . , Ft(0, . . . , 0, xr+1, . . . , xN ))

is artenian by assumption. We call its C–vector space dimension the multiplicity of the intersection
Y ∩ L at y(k) , in symbols:

multy(k)(Y ∩ L) .
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Finally, the total number
s∑

k=1

multy(k)(Y ∩ L)

can be shown to be constant for generic L ∈ Grass (N − r, PN ) . Its value is by definition the degree
deg Y of the variety Y . By an easy exercise the reader can convince himself that this definition
generalizes the old one for hypersurfaces. One should also notice that the number deg Y does only
depend on the top–dimensional irreducible components of Y .

By definition, the multiplicity multx(0) of a complex space X at a point x(0) is given by the degree
of the projective tangential cone:

mult0X = deg TX,0 .

Sometimes, a germ (X, x(0)) is called simple (with respect to multiplicity) if multx0 X = 1 . Of
course, regular points are simple in this sense. The converse is also true for normal surface singularities
(see Section 7). Similarly, the terms double point, triple point etc. refer to singular points of multiplicity
2, 3 , etc.

There exists an extensive literature concerning the algebraic theory of degree and multiplicity which
we briefly recall in the following.

If A denotes the local ring OCn,0/ I0 =: Rn/ a of X = N (I) at 0 , then the homogeneous
coordinate ring A of TX,0 is isomorphic to the algebra Sn/ in (a) , where Sn = C [x1, . . . , xn ] and
in (a) denotes the ideal generated in Sn by all initial forms in (f) , f ∈ a . Certainly, if m = mA , then

A =

∞⊕
i=0

mi/mi+1 .

A is a graded ring, elements in mi/mi+1 being of grade i , and A will be generated as an A0 =
A/m = C–algebra by elements of grade 1 . In particular, A is a C [x1, . . . , xn ]–module.

Even more generally, one has the following existence theorem for the Hilbert polynomial :

*Theorem 6.34 Let M be a finitely generated graded module over the polynomial ring C [x1, . . . , xn ] ,
i.e.

M =
⊕
k≥k0

Mk

with submodules Mk ⊂M satisfying f ·Mk ⊂Mk+ℓ for all f ∈ C [x1, . . . , xn ] of degree ℓ . Then there
exists a polynomial HM (t) of degree ≤ n − 1 with rational coefficients, such that

HM (k) = dimCMk

for all sufficiently large k .
If Y ⊂ Pn−1 is a projective algebraic variety of dimension r and degree d , then the polynomial

HA of its homogeneous coordinate ring A (regarded as C [x0, . . . , xn−1 ]–module) has the form

HA(t) = d · t
r

r!
+ lower order terms .

6.14 The Artin-Rees Lemma and Krull’s Intersection Theorem

In the following let A be a noetherian ring with a distinguished ideal q and M a finitely generated
A–module with a fixed filtration

(Mj) M = M0 ⊃M1 ⊃ · · · .

We call this a q–filtration if qMj ⊂ Mj+1 for all j ∈ N . It is called q–stable if qMj = Mj+1 for
sufficiently large j . Since we fix the ideal q and the filtration we write

Gr A = Gr (q, A) =

∞⊕
j=0

qj/ qj+1
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and

Gr M =

∞⊕
j=0

Mj/Mj+1 .

When (Mj) is a q–filtration, Gr M is a Gr A–module in a natural way.

Lemma 6.35 If the filtration (Mj) is q–stable, then Gr M is a finitely generated module over Gr A .

Proof . Suppose that qMj = Mj+1 for all j ≥ n . Since

(q/ q2) (Mj/Mj+1) = Mj+1/Mj+2 for j ≥ n ,

the union of any finite sets of generators of the modules Mj/Mj+1 , 0 ≤ j ≤ n , will generate Gr M
over Gr A . □

We now introduce the blowup algebra of q in A :

BqA := A⊕ q⊕ q2 ⊕ · · ·

which can be regarded as an A–subalgebra of the polynomial ring A [ t ] . Notice that

BqA/ qBqA ∼= Gr A

and
BM := M0 ⊕M1 ⊕ · · ·

becomes a graded module over BqA .

Lemma 6.36 The q–filtration (Mj) is stable if and only if the BqA–module BM is finitely generated.

Proof . Assuming stability of the q–filtration yields qjMn = Mn+j for j ≥ 0 . Then, BM is generated
by the union of sets of generators for M0, . . . ,Mn .

Conversely, let BM be a finitely generated BqA–module. Then, any finite set of generators is contained
in the direct sum of the first n terms for some n . Replacing them by their homogeneous components,
we infer that BM is generated by elements in M0, . . . ,Mn . Therefore,

Mn ⊕Mn+1 ⊕ · · ·

is generated as a BqA–module by Mn . This implies Mn+j = qjMn for all j ≥ 0 , so (Mj) is q–stable.
□

We now formulate and prove the Artin–Rees Lemma.

Lemma 6.37 Let A be a noetherian ring, q ⊂ A an ideal, M a finitely generated A–module, M ′ ⊂M
a submodule. If (Mj) is a q–stable filtration of M , then the induced filtration (M ′

j = Mj ∩M ′) is
also q–stable. In other words: there exists a number n such that

Mj+n ∩M ′ = qj(Mn ∩M ′) , j ≥ 0 .

Proof . By the Hilbert Basis Theorem, BqA is a finitely generated A–algebra as a subalgebra of A [ t ] ,
hence noetherian (for more details, see below). Then, BM ′ is, as a submodule of the noetherian qA–
module BM (use the preceding Lemma), finitely generated. Invoking the Lemma again gives the result.
□

Krull’s Intersection Theorem is an easy consequence of the Artin–Rees Lemma: Take a local
noetherian ring A , a proper ideal q ⊂ mA and a finitely generated A–module M . Define a q–stable
filtration (Mj) by Mj := qjM and set M ′ =

⋂∞
j=1 q

jM . Due to the Artin–Rees Lemma,

M ′ = Mn+1 ∩M ′ = q (Mn ∩M ′) = qM ′ ⊂ mAM
′ ,

and Nakayama’s Lemma implies M ′ = 0 , i.e.
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∞⋂
j=1

qjM = 0 . □

Besides Hilbert’s Basis Theorem itself which we do not want to prove we used a Corollary of it which
can be stated as follows:

Corollary 6.38 If A is a noetherian ring and B a finitely generated A–algebra, then B is noetherian.

Proof . Since B is a finitely generated A–module there exists an A–algebra epimorphism
A [x1, . . . , xt ] → B . By Hilbert’s Theorem,

A [x1, . . . , xt ] = A [x1, . . . , xt−1 ] [xt ]

is noetherian, and epimorphic images of noetherian rings are again noetherian. □

6.15 Multiplicities of local rings with respect to m - primary
ideals

Now we change our point of view and some notations slightly. In the local algebra A (of dimension
d ), we take an m–primary ideal q , i.e. an ideal q satisfying mℓ ⊂ q ⊂ m for some ℓ or, equivalently,
rad q = m . Then again, the vector spaces qi/ qi+1 are finite dimensional, and we can form the graded
ring

Gr (q, A) =

∞⊕
i=0

qi/ qi+1 ,

thus generalizing the definition of A = Gr (m, A) .
Using Theorem 2, it is easy to see that there exists a polynomial

HA,q(t) = m (q) · t
d

d!
+ lower order terms ,

such that
HA,q(i) = dimCA/ q

i , i >> 0 .

We call the number mult (q, A) := m (q) the multiplicity of the local analytic algebra A with respect
to the m–primary ideal q . Of course, mult (m (OX,x), OX,x) is the multiplicity of X at x .

In the following, we want to give a geometric interpretation of the multiplicity by comparing
mult (m, A) and mult (q, A) for certain ideals q . We proceed by induction on the dimension of A .
Recall that for two ideals a , b ⊂ A the symbol (a : b) denotes the ideal quotient

{x ∈ A : x b ⊂ a } .

In particular, (0 : b) = Ann b .

Lemma 6.39 Let q ⊂ A be an m–primary ideal, x ∈ q . Then

HA/xA,q/xq(i) = HA,q(i) − dimC(A/ (q
i : xA)) .

Proof . By the canonical isomorphism

(A/xA)/ (q/ x q)i ∼= A/ (qi + xA) ,

we get the identity

HA,q(i) − HA/xA,q/xq(i) = dimC(A/ q
i) − dimC(A/ (q

i + xA)) .
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The exact sequence of Artin rings

0 −→ (qi + xA)/ qi −→ A/ qi −→ A/ (qi + xA) −→ 0

implies that the difference in question is in fact equal to

dimC((q
i + xA)/ qi) = dimC(xA/ (q

i ∩ xA))

= dimC(xA/xA (qi : xA))

= dimC(A/ (q
i : xA)) .

We call an element x ∈ q \ q2 to be of good reduction (with respect to q ), if there exists a natural
number c such that

(qi : xA) ∩ qc = qi−1

for sufficiently large i .

Lemma 6.40 Let A , m , q be given as above, and let x be of good reduction with respect to q . Then,
with H = HA,q , H = HA/xA,q/xq , there exist inequalities:

H (i) − H (i − 1) ≤ H (i) ≤ H (i) − H (i − 1) + H (c) .

Proof . Since x has good reduction, it exists a number c ∈ N such that

dimC((q
i : xA)/ qi−1) = dimC((q

i : xA)/ (qi : xA) ∩ qc)

= dimC((q
c + (qi : xA))/ qc)

≤ dimC(A/ q
c) = H (c) .

Hence, 0 ≤ H (i − 1) − dimC(A/ (q
i : xA)) ≤ H (c) , and the result follows from Lemma 3. □

Let us remark that an element x ∈ q \ q2 has good reduction, if the leading term of x in Gr (q, A)
has only zerodivisors of bounded degree. In this case, mult (q, A) = mult (q/ xq, A/ xA) . The situation
is much better, if Gr (q, A) is a Cohen–Macaulay ring (see Chapter 13.2). In that case, we have more
precisely the equality

HA,q(i) =

i∑
j=0

HA/xA,q/xq(j) .

If x has good reduction, then dim A/xA = dim A − 1 .
We want to proceed by induction with the help of elements of good reduction. For this purpose we

need an Existence Theorem.

Theorem 6.41 Let A be a noetherian local ring of dimension d > 0 such that the residue field
k = A/m has infinitely many elements. Then, to each m–primary ideal q , there exist elements x of
good reduction.

Proof . Let p1, . . . , pr be the minimal ideals of Gr (q, A) , where the numbering is chosen in such a way
that

a :=

∞⊕
i=1

qi/ qi+1

is contained in ps+1, . . . , pr , but not in p1, . . . , ps . Hence, pσ ∩ (q/ q2) is a proper vector subspace of
p , σ = 1, . . . , s . Since k has infinitely many elements, we can find an element x ∈ q such that its
residue class x in q/ q2 is not contained in ∪s

σ=1 pσ .

According to the remark before Theorem 5, we want to show that there exists a natural number c ∈ N
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such that αx = 0 and deg α ≥ c implies α = 0 . Now, by the Lasker–Noether Decomposition
Theorem, we find ideals qρ with rad qρ = pρ such that

r⋂
ρ=1

qρ = (0) .

Furthermore, to each ρ = s + 1, . . . , r , there exists a number cρ satisfying

acρ ⊂ qρ ,

hence

ac ⊂
r⋂

ρ=s+1

qρ , c = max cρ .

To finish the proof, let α ∈ Gr (q, A) be a zerodivisor of x . Since x ̸∈ pσ , σ = 1, . . . , s , we must have
α ∈ qσ , σ = 1, . . . , s . But, if the degree of α would exceed c , then we would have α ∈ ac , and hence

α ∈
r⋂

ρ=1

qρ = (0) . □

A central result in the theory of multiplicities is the following

Theorem 6.42 Let A be a local noetherian ring with maximal ideal m and infinite residue class field
k = A/m , and let q be an m–primary ideal. Then there exists a parameter system

x1, . . . , xd ∈ q

(i.e. a system x1, . . . , xd such that A/ (x1, . . . , xd)A is artinian) with

mult ((x1, . . . , xd), A) = mult (q, A) .

Proof (by induction on d = dim A ). In the case d = 0 , each ideal a ⊂ m is nilpotent. Hence,
HA,q = const = dimk A . So, it suffices to take the empty parameter system.

In the case d = 1 , m is the only nonminimal prime ideal of A . There are two possibilities:

a) m is not embedded. By the same arguments as in the proof of Theorem 5, we can then show that
there exists an element x ∈ m with good reduction with respect to q which does not belong to any
prime ideal associated to A . So, we find a number c such that

(qi : xA) ∩ qc = qi−1 for all i

and consequently (see [02–06], vol. III, Chap. VIII, Paragraph 5, Theorem 13, Corollary 1),

(qi : xA) ⊂ qs(i) , lim
i→∞

s (i) = ∞ .

This implies (qi : xA) = qi−1 for large i , and therefore, by Lemma 4,

HA/xA,q/xq(i) = HA,q(i) − HA,q(i − 1) .

Since HA,q is linear, the difference on the right hand side is precisely mult (q, A) . Since A/xA
has dimension 0 , the left hand side equals the length ℓ (A/xA) = dimC(A/xA) for large i . Now
A/xA ∼= xi−1A/xiA for all i , whence

HA,xA(i) − HA,xA(i − 1) = dim (xi−1A/xiA)

= HA,q(i) − HA,q(i − 1) ,
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and

mult (xA, A) = mult (q, A) .

b) q is an embedded prime ideal of A . Choose again an element x of good reduction with respect to
q , and define a := AnnA(x) . a is a finite A/xA–module, and since A/xA is artinian, a is of finite
length. Since ⋂

i≥0

(qi ∩ a) ⊂
⋂
i≥0

qi = (0)

and a is of finite length, we get

qi ∩ a = (0) , i >> 0 .

Now, we put

A∗ := A/ a , q∗ := (q + a)/ a .

Then, by definition and the exactness of

0 −→ (qi + a)/ qi −→ A/ qi −→ A/ (qi + a) −→ 0 ,

we have
HA∗,q∗(i) = ℓ (A∗/ q∗i) = ℓ ((A/ a)/ (qi + a)/ a)

= ℓ (A/ (qi + a))

= ℓ (A/ qi) − ℓ ((qi + a)/ qi)

= ℓ (A/ qi) − ℓ (a/ qi ∩ a)

= HA,q(i) − ℓ (a) , i >> 0 ,

and therefore,

mult (q, A) = mult (q∗, A∗) .

By the same arguments, one can show that

mult (xA, A) = mult (x∗A∗, A∗) ,

where x∗ is the image of x under the restriction map A → A/ a = A∗ . Because of the case a), we
know

mult (x∗A∗, A∗) = mult (q∗, A∗) ,

which implies

mult (xA, A) = mult (q, A) .

Finally, let d be greater than 1 , and suppose that the statement is proven for all rings of dimension
d − 1 . Take an element x ∈ q \ q2 of good reduction and define

A∗ := A/xA , q∗ := q/ x q , H := HA,q , H∗ := HA∗,q∗ .

As an immediate consequence of Lemma 4, we get

mult (q∗, A∗) = mult (q, A) .

By induction hypothesis, we find a parameter system

(x∗1, . . . , x
∗
d−1) ⊂ q∗

of A∗ with

mult ((x∗1, . . . , x
∗
d−1), A) = mult (q∗, A∗) .
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Choose representatives x1, . . . , xd−1 of x∗1, . . . , x
∗
d−1 resp. in q . Then the set x1, . . . , xd−1, x forms

a parameter system in q and generates an m–primary ideal q′ ⊂ q . By Lemma 3 and the inclusion
(q′)i−1 ⊂ ((q′)i : xA) , we deduce

HA/xA,q′/xq′(i) = HA,q′(i) − dimC(A/ (q
′i : xA))

≥ HA,q′(i) − HA,q′(i − 1) .

Thus,
mult ((x∗1, . . . , x

∗
d−1), A

∗) = mult (q′/ x q′, A/ xA) ≥ mult (q′, A)

and
mult (q, A) ≥ mult (q′, A) .

Since q′ ⊂ q , the opposite estimate holds trivially. □

6.16 A geometric interpretation for Cohen - Macaulay rings

For Cohen–Macaulay rings A one can get a very precise formula for the Hilbert polynomial with respect
to a regular sequence x1, . . . , xd , d = dim A , i.e. a sequence in which x1 ∈ m is a nonzerodivisor in
A and xj ∈ m is a nonzerodivisor in A/ (x1, . . . , xj−1)A , j = 2, . . . , d . (For more details on Cohen–
Macaulay rings, see Chapter 13). We shall prove in Theorem 14.1 that for the ideal q generated by
x1, . . . , xd the quotient q/ q2 is a free A/ q–module of rank d . Then it is certainly true that qi/ qi+1

is isomorphic to the i–th symmetric power of q/ q2 , i ≥ 1 . Consequently,

Gr (q, A) =
⊕
i≥0

qi/ qi+1 =
⊕
i≥0

(SA/q)i(q/ q
2) ∼= (A/ q)[ξ1, . . . , ξd] .

(Notice that, in general, Gr (q, A) is an epimorphic image of the polynomial ring (A/ q)[ ξ1, . . . , ξd ]
for any parameter system x1, . . . , xd ∈ m).

By assumption, A/ q is zero–dimensional such that N (q) = N (m) and rad q = rad m = m by
Rückert’s Nullstellensatz. Therefore, q is an m–primary ideal, and we can conclude:

Theorem 6.43 Let A be a d–dimensional local noetherian Cohen–Macaulay ring, and let q be the
m–primary ideal generated by a regular sequence x1, . . . , xd . Then

HA,q(i) = (dimCA/ q)

i∑
j=0

(
j + d − 1

d − 1

)
.

In particular,
mult (q, A) = dimCA/ q .

Combining Theorem 7 and Theorem 6, we find a parameter system x1, . . . , xd for any Cohen–
Macaulay ring A satisfying

dimCA/ q = mult (q, A) = mult (m, A) , q = (x1, . . . , xd)A .

But the length ℓ = ℓ (A/ q) has a nice geometric interpretation for local analytic Cohen–Macaulay
rings A = OX,x . The sequence x1, . . . , xd defines a finite injective morphism

Kd = C ⟨x1, . . . , xd ⟩ ↪−→ A ,

which makes A into a free Kd–module (see Theorem 13.20) and induces (locally) a finite branched
covering ρ : X → Cd . Then the coherent analytic sheaf ρ∗OX is free near ρ (x(0)) = 0 of rank

dimCA/ (x1, . . . , xd)A = ℓ ,

and therefore, ρ is outside the discriminant set an ℓ–sheeted covering. On the other hand,

mult (m, A) ≤ mult (q, A)

for all m–primary ideals q . - These remarks imply
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Theorem 6.44 The multiplicity m of a d–dimensional Cohen–Macaulay singularity X is the smallest
number ℓ such that X can be realized as an ℓ–sheeted finite branched covering of Cd .

Corollary 6.45 A Cohen–Macaulay singularity of multiplicity one is regular.

Notice that these results apply to any normal two–dimensional singularity.

Notes and References

Some of the material, especially the treatment of the Artin–Rees Lemma in Section 6, is taken from [02
- 01].
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