




Chapter 5

Es ist eine alte Geschichte,
doch bleibt sie immer neu;
und wem sie just passieret,
dem bricht das Herz entzwei .

(Heinrich Heine,
Buch der Lieder)
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Chapter 5

Blowing up, tangent cone and embedded
resolution of plane curve singularities

We are going to use the σ–modification of Chapter 4.9 for “resolving” the singularities of a plane curve
C , i.e. of an analytic hypersurface C in C2 (or, more generally, in a two–dimensional complex analytic
manifold M ). More precisely, we will construct a new manifold N together with a proper holomorphic
map π : N → M that is (locally with respect to M ) a finite iteration of σ–modifications such that the
strict transform C of C in N is smooth. An essential constant in this construction is the multiplicity
of such a singularity which is an invariant of its tangent cone. We introduce the notion of multiplicity
in full generality and study it more closely in the next Chapter.

5.1 The resolution of the ordinary double point and of the cusp

The ordinary double point is isomorphic to the singularity of the cone

C = {x = (x1, x2) ∈ C2 : x1x2 = 0 }

at the vertex 0 = (0, 0) . Thus, it can be resolved by the general method developed in Chapter 4. In
this specific example, the base C ⊂ P1 consists only of two distinct points, and therefore, the restriction
L|C of the tautological bundle L on P1 to C is a disjoint union of two lines. If σ denotes the canonical
map L → C2 , then we know that, moreover,

C = L|C = σ−1(C \ { 0 }) .

We want to show in the present Chapter that all plane curves C can be resolved by taking strict
transforms of C under (iterated) σ–modifications as above. Before we embark into the formal proof,
we fix our notations and present some more examples.

As explained in Chapter 4, the tautological bundle L on P1 can be constructed by identifying

(u0, v0) ∼ (u1, v1) ⇐⇒ u0 =
1

u1
, v0 = u1v1 ;

we write the map σ , slightly deviating from our former notations, in the form{
x1 = v0

x2 = u0v0
resp.

x1 = u1v1

x2 = v1 .

The zero–section of L is of course given by the vanishing of v0 and of v1 , resp.
Let us now investigate the isolated singularity 0 of the cusp (Neil’s parabola)

C = { (x1, x2) : x
3
1 − x2

2 = 0 }
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which is not a cone. Under the σ–modification σ : L → C2 , the total transform σ−1(C) has the
(local) equations

v30 − (u0v0)
2 = 0 , (u1v1)

3 − v21 = 0 .

To get the strict transform C = σ−1(C \ { 0 }) , we must divide out v0 and v1 , resp., as often as
possible. Hence, C is described in the two coordinate charts of L by

v0 − u2
0 = 0 and u3

1v1 − 1 = 0 , resp.

and therefore, it is a smooth submanifold of L which resolves the singularity of C . A (real) picture is
roughly the following:

Figure 5.1

Besides the coinciding fact that both, the ordinary double point and the cusp, are resolved by a single
σ–process, there are also striking differences: In the case of the ordinary double point, the resolution
C consists of two connected components (in accordance with the reducibility of C into two analytic
components), whereas, for the cusp, C is connected (this can easily be verified by parametrizing C via

C ∋ t 7−→

{
(u0, v0) = (t, t2)

(u1, v1) = (t−1, t3) , t ̸= 0 .

Moreover, the two components of C intersect the zero–section P1
∼= σ−1(0) of L transversely in the

first case, whereas in the second case C touches the zero–section (i.e. C and σ−1(0) have linearly
independent resp. dependent tangent vectors at their common point).

To give also an Example for the fact that in general we have to perform more than one σ–modification
in order to resolve plane curve singularities, we look at the isolated singular point 0 of the curves

Ck = {xk
1 − x2

2 = 0 } ⊂ C2 , k ≥ 2 ,

the case k = 2 being (up to isomorphism) the ordinary double point. A now straightforward calculation
shows that the strict transform Ck has at most one singular point (in the chart with coordinates u0, v0 )
given by the equation of type Ck−2 :

vk−2
0 − u2

0 = 0 .

So, for k ≥ 4 , the game has to be continued, but it is clear that it stops after finitely many steps.
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5.2 The σ - process for complex analytic manifolds

The last Example in the previous Section shows that we must be able to perform σ–modifications at
any point of an arbitrary complex analytic manifold M (of dimension m = n + 1 ≥ 2 ). But this
is easily done, since the interesting features of the map σ : L → Cm are concentrated around the
origin 0 ∈ Cm ; to be more precise: If V is any open neighborhood of 0 ∈ Cm and Ṽ = σ−1(V ) ⊂ L
is the preimage, then the restriction σ|Ṽ → V is a proper holomorphic map such that σ−1(0) is

biholomorphic to Pm−1 and nowhere dense in Ṽ , and the induced map Ṽ \ σ−1(0) → V \ { 0 } is
biholomorphic.

So, if M is a complex analytic manifold of dimension m ≥ 2 together with a distinguished point
x(0) ∈ M , we choose any coordinate chart ξ : U → V ⊂ Cm sending x(0) to 0 and form the
composition π = ξ−1 ◦ (σ|Ṽ ) : Ṽ → U which induces the analytic isomorphism

Ṽ \ π−1(x(0)) ∼= Ṽ \ σ−1(0)
∼−→ V \ { 0 } ∼= U \ {x(0) } .

Hence, patching together Ṽ and M \{x(0) } along Ṽ \π−1(x(0)) resp. U \{x(0) } via this isomorphism

yields a new manifold M̃ together with a proper holomorphic map

π : M̃ −→ M

such that π−1(x(0)) ∼= Pm−1 is nowhere dense in M̃ , inducing an isomorphism

M̃ \ π−1(x(0))
∼−→ M \ {x(0) } .

We call this map the σ–process of M at x(0) . M̃ is very often also referred to as the blow–up or
blowing up of x(0) in M or the Hopf modification at x(0) .

Of course, this construction depends on the chosen local coordinates. However, the following is true:

*Theorem 5.1 Let M be a m = n + 1–dimensional complex manifold, and denote by πj : M̃j →
M , j = 1, 2 , two blow–ups of a point x(0) ∈ M (with respect to two possibly different holomorphic
charts of M around x(0) ). Then there exists a unique biholomorphic map making the following diagram
commutative:

M M

M̃1 M̃2
-∼

?

π1

?

π2

-id

We will postpone the proof in the surface case (m = 2) until Chapter 09, Section 26.

5.3 Blowing up and strict transforms of subvarieties

In contrast to the situation in the case of plane curves, higher dimensional objects can generally not
be resolved just by taking strict transforms under σ–processes. However, for surface singularities, there
is the classical result due to Zariski that one can obtain a resolution by successively blowing up and
forming normalizations. More about this approach will be said in Chapter 15. As a preparation, we
study here some examples and develop the general theory of blowing up analytic subsets, coherent
analytic ideal sheaves and arbitrary coherent analytic sheaves. This will be - among others - used for
introducing the concept of the multiplicity of a singularity in the next Chapter.

For the sake of computations, it is first of all useful to have an explicit description of the σ–
process σ : M̃ → M at the point x(0) in terms of local coordinates x1, . . . , xn of the manifold
M vanishing at x(0) . According to the local description of M̃ as total space of the tautological
bundle L → Pn−1 , we may cover M̃ near σ−1(x(0)) by n coordinate neighborhoods V1, . . . , Vn
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with coordinates (u
(j)
1 , . . . , u

(j)
n ) , j = 1, . . . , n , u

(j)
j small enough, such that σ|Vj

: Vj → M is given
by

σ(u
(j)
1 , . . . , u

(j)
n ) = (u

(j)
1 u

(j)
j , . . . , u

(j)
j−1u

(j)
j , u

(j)
j , u

(j)
j+1u

(j)
j , . . . , u

(j)
n u

(j)
j ) .

Recall that, for n = 2 , we used instead coordinates (v1, u1) and (u2, v2) with σ (v1, u1) =
(v1, v1u1) , σ (u2, v2) = (v2u2, v2) . For n = 3 , we will always calculate in coordinates

(v1, ξ1, ξ2) , (η1, v2, η2) , (ζ1, ζ2, v3)

such that
σ (v1, ξ1, ξ2) = (v1, v1ξ1, v1ξ2)

σ (η1, v2, η2) = (v2η1, v2, v2η2)

σ (ζ1, ζ2, v3) = (v3ζ1, v3ζ2, v3) .

The reason for the uniqueness of the σ–process (Theorem 5.1) is simply the following: Although
Pn−1 was introduced as the projective space with homogeneous coordinates [x1 : · · · : xn ] it may
be invariantly considered to be the projective space P (TM,x(0)) = T ∗

M,x(0)/C∗ associated to the tan-

gent vector space TM,x(0) of M at x(0) which is independent of local coordinates. The tautological
line bundle L is also easily described by TM,x(0) and P (TM,x(0)) without referring to concrete vari-
ables. Finally, M being a complex analytic manifold, there exists a canonical local biholomorphic

isomorphism (M, x(0))
∼→ (TM,x(0) , 0) . With respect to concrete calculations, this remark implies

that the isomorphism M̃1
∼→ M̃2 between two σ–processes σ1 and σ2 induces an isomorphism

Pn−1
∼= σ−1

1 (x(0))
∼→ σ−1

2 (x(0)) ∼= Pn−1 which is given by the projective linear automorphism associ-
ated to the Jacobi matrix of the coordinate transformation at x(0) .

If Z ⊂ M denotes any (not necessarily reduced) positive dimensional complex analytic subvariety,
we call the closure

Z = σ−1(Z \ {x(0) }) in M̃

the blow–up of Z at x(0) or the strict transform of Z in M̃ (as opposed to the full preimage or total
transform σ−1(Z) which contains Z ). Notice that this process depends on the embedding of Z in M .
But in the case that Z is a smooth submanifold at x(0) the fact that the restriction of the tautological
bundle on Pn−1 to a linear subspace is again (isomorphic to) the tautological bundle implies that
the restriction Z → Z is the σ–modification of Z at x(0) if dimZ ≥ 2 and an isomorphism for
dim Z = 1 . That Z is in fact a complex analytic subvariety of M̃ is easily seen by the explicit
description given above. If f is any function vanishing on Z , then

f̃j(u
(j)
1 , . . . , u

(j)
n ) = fj(u

(j)
1 u

(j)
j , . . . , u

(j)
j , . . . , u

(j)
n u

(j)
j )

vanishes on σ−1(Z) ∩ Vj . There is a unique decomposition

f̃j =
(
u
(j)
j

)rj
· gj ,

such that gj does not vanish identically for u
(j)
j = 0 . It is clear that the closure of σ−1(Z \ {x(0) })

in Vj is precisely the set of points where all the functions gj constructed in this manner vanish. The
same reasoning shows that

σ−1(Z) = Z ∪ σ−1(x(0))

and that σ−1(x(0)) ∼= Pn−1 is an irreducible component of σ−1(Z) .
We should remark here that the concept of strict transforms was already used in Chapter 4 for

resolving cones C ⊂ Cn+1 over smooth projective varieties C ⊂ Pn : The construction of the subman-
ifold C̃ inside the tautological bundle L on Pn is obviously nothing else but taking the closure of
σ−1(C \ { 0 }) in L with respect to the σ–process σ : L → Cn+1 , i.e. C̃ coincides with the strict
transform C of C under σ . In other words, we can phrase parts of the results obtained there by saying
that isolated singular vertices of (algebraic) cones C ⊂ Cn can be resolved by their strict transforms
C after one blow–up. Recall that under the map σ : C → C the exceptional set σ−1(0) ⊂ Pn−1 is
isomorphic to the base C of C .
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5.4 Absolutely isolated singularities

An isolated singular point x(0) ∈ X ⊂ U ⊂ Cn is called infinitesimally isolated (up to first order), if its
strict transform X with respect to the σ–process at x(0) has only (necessarily finitely many) isolated
singular points. In such a situation one can blow up the new singular points and hope that the iterated
process will stop after finitely many steps. If this actually happens, X is called absolutely isolated .
Examples are again the cones over projective algebraic manifolds, but also all plane curve singularities
as we will prove later in this Chapter. In the present Section we wish to give some counterexamples in
dimension larger than one.

It is easily seen that the strict transform of an isolated hypersurface singularity given by an equation

F (x1, . . . , xn) = g (x1, . . . , xk) +

n∑
j=k+1

x2
j = 0

has no singularities in the coordinate charts Vk+1, . . . , Vn . Therefore, investigating e.g. the function

f (x, y, z) = z2 − (x4 + y4) ,

we have only to consider the first coordinate system (using the symmetry between x and y )
along σ−1(0) . Thus, we substitute (x, y, z) = (v1, ξ1v1, ξ2v1) , and get - after dividing v21 out of
f (v1, ξ1v1, ξ2v1) - the defining function

g1(v1, ξ1, ξ2) = ξ22 − v21 (1 + ξ21) .

Near ξ1 = 0 , the zero set of g1 is the product of a complex line with the one–dimensional ordinary
double point. Therefore, the original singularity X is not infinitesimally isolated and there is no way
to resolve it by blowing up isolated points only. However, it is clear that the normalization of the strict
transform X is already smooth such that X can be resolved by normalized blow–ups.

This being true for all two–dimensional singularities, a slight variation gives a stronger counterex-
ample in dimension 3. The same calculation as above for

X = { f (x, y, z, w) = (z2 + w2) − (x4 + y4) = 0 }

yields
g1(v1, ξ1, ξ2, ξ3) = ξ22 + ξ23 − v21 (1 + ξ21) ,

such that the zero set { g1 = 0 } is (near ξ1 = 0 ) the product of the complex line with the two–
dimensional ordinary double point, hence normal with a one–dimensional singular locus which has to
be blown up simultaneously in order to resolve the original isolated singularity.

In the first example, X was not locally irreducible, but could be resolved just by separating the
irreducible components. That this behaviour is not generally adopted can be concluded from the function
f (x, y, z) = z3 + x5 + y5 which leads to a product of a line with the cusp { v21 + ξ32 = 0 } .

Finally, let us consider the two–dimensional singularity defined by the polynomial f (x, y, z) =
x4 + y4 + z6 . Here, we have to do the computations in each of the three coordinate patches:

f (v1, ξ1v1, ξ2v1) = v41 (1 + ξ41 + ξ62v
2
1)

f (η1v2, v2, η2v2) = v42 (η
4
1 + 1 + η62v

2
2)

f (ζ1v3, ζ2v3, v3) = v43 (ζ
4
1 + ζ42 + v23) .

There is only one singularity in the strict transform, of type z2 = x4 + y4 . Thus, the original singularity
is infinitesimally isolated up to second, but not to first order.

5.5 Surface singularities of type Ak, Dk and Ek

The problem to determine all absolutely isolated hypersurface singularities in C3 of type
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(∗) z2 = g (x, y)

leads to the same list of function germs g as does the classification of all simple plane curve singularities
(see the Appendix to the present Chapter for this list). The corresponding equations (∗) in three
dimensions define singular objects, the rational double points, that occur in completely different branches
of mathematics. The whole Chapter 16 will be devoted to such characterizations that are discernible as
equivalent without relating on these equations too much. There we will also present a conceptual proof
for the equivalence of rational double points and function germs of multiplicity 2 in three variables
defining absolutely isolated singularities.

In the present Section we are going to show by brute force that all these singularities are indeed
absolutely isolated. Let us start with the singularity of type E8 and equation z2 = x3 + y5 . Straight-
forward calculations imply equations{

ξ22 = v1 + ξ51v
3
1 on V1

η22 = η31v2 + v32 on V2 .

There is no singularity in V1 and precisely one in V2 , of type E7 : z2 = x3 + xy3 .
In the case E7 , we get {

ξ22 = v1 + ξ31v
2
1 on V1

η22 = η31v2 + η1v
2
2 on V2 .

Again, the only singularity lies at the origin of the second coordinate system. Substituting z = η2 , x =
v2 + η21/ 2 , y = η1 leads to an equation of the form z2 = x2y − y5/ 4 that is of type D6 .

Type E6 is given by z2 = x3 + y4 . Almost the same calculation as in the case E8 leads to the
singularity z2 = x3y + y2 of type A5 (substitute y − x3/ 2 for y ).

For the series Dk : z2 = x2y + yk−1 , k ≥ 5 , one obtains the singularities z2 = x2y + yk−3

in the second coordinate system, i.e. Dk−2 for k ≥ 6 and A3 for k = 5 (substitute y − x2/ 2 for
y ). For D4 , the strict transform is smooth in the second coordinate chart. But in the first one, we
easily get an equation z2 = xy + xy3 = xy (1 + y2) which has three singularities of type A1 (at
x = 0 , y = 0, i, −i), whereas for Dk , k ≥ 5 , there lies precisely one A1–singularity on that chart.

Since the Ak , given by z2 = x2 + yk+1 , k ≥ 1 , generate an Ak−2 for k ≥ 3 and no singularity
for k = 1, 2 (which we simply denote by A0 ), we can finally indicate the full system of dependence
relations in the following somewhat mysterious diagram (which will be explained conceptually in the
Appendix to Chapter 12):

· · · A6
-

· · · A7
-

A4
-

A5
-

A2
-

A3
-

A0
-

A1
-

?

· · · D9
- D7

-

· · · D8
-

D5
-

D6
- D4

-

E8 E7
- E6

@
@
@
@R?

@
@R

A1

@
@R

A1

@
@R

A1
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B
B
B
B
B
B
B
B
B
B
B
B
B
BN

A
A
A
A
A
A
A
A
AU ???

Figure 5.2
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One could use the same pattern of reasoning more accurately to determine the precise structure
of the resolutions obtained by successively blowing up. We will apply invariant theory instead (see
Chapter 11). As it turns out there is always a simple relation between resolutions of surface singularities
of type Ak , Dk and Ek and the corresponding Coxeter–Dynkin–Witt (CDW) diagram.

Let us close this Section with an Example of a germ of multiplicity two which is infinitesimally
isolated up to order 1 , but not to order 2 : the germ z2 = x3 + y6 gives after one blow–up the
isolated singularity z2 = x3y + y4 , but the last one leads to z2 = x3y2 + y2 which is singular along
y = z = 0 , x arbitrary.

5.6 Projective and affine tangential cones

We now develop the necessary tools for developing the general theory of multiplicities for isolated
singularities X ⊂ U ⊂ Cn , the distinguished point x(0) being always the origin (for more details, see

the next Chapter). Denote by σ : Ũ → U the Hopf blow–up at the origin. Then X , the blow–up of

the distinguished point in X , is the analytic closure of σ−1(X \ { 0 }) in Ũ , and the restriction of σ
to X will be denoted by π :

X U-

Ũ-

?

π

?

σ

σ−1 (X \ {0}) = X

Under this assumption, the fiber π−1(0) = X ∩ σ−1(0) is called the projective tangential cone of X
(or more precisely: of the pair (X, Cn) since it depends on the embedding of X in Cn ). We denote it
always by T c

X,0 .

As we have seen, T c
X,0 is an analytic subvariety of σ−1(0) ∼= Pn−1 . Hence, it is projective algebraic.

The cone over T c
X,0 in Cn is called the affine tangential cone of X , denoted by T a

X,0 . By construction,
T c
X,0 consists of all points in Pn−1 (interpreted as lines in Cn through the origin) which are limits of

secants going through 0 and another point x ∈ X \ { 0 } . Therefore, T a
X,0 is just the union of all these

limit lines - but counted carefully: The (algebraic and) complex analytic structures on T c
X,0 and T a

X,0

have to be taken as the full structures; that is, one has to compute locally the functions gj mentioned
in the proof that X is complex analytic (following the definition of the blow–up X ), and then one
has to plug in the coordinates of the origin to get the locally defining equations for T c

X,0 in Pn−1 . In
general, this structure is not reduced, as we will see in a moment.

Regard as a first Example the equation x3 + xy + y3 = 0 in C2 . This is the “folium cartesium”
(for the parameter a = 1/3 and reflected on the line y = −x ; see Figure 1.6). So, we expect
T a
X,0 = {xy = 0 } . In fact, the total transform of X under σ has the equations{

v31 + v21u1 + v31u
3
1 = 0 on V1

v32u
3
2 + v22u

2
2 + v32 = 0 on V2 .

The equations of the strict transform are again derived by dividing out the highest possible power of
vj . Therefore, we have the following description of X :{

v1 + u1 + v1u
3
1 = 0 on V1

v2u
3
2 + u2 + v2 = 0 on V2 ,

and from these identities we get the equations for T c
X,0 by putting v1 = 0 , v2 = 0 . Thus, we obtain

the union of the two lines {u1 = 0 } and {u2 = 0 } which correspond to { y = 0 } and {x = 0 } ,
resp.

Remark . It is clear that we get the same result for all polynomials xy + P (x, y) where P is of total
degree ≥ 3 (or P = 0).

As a next Example we consider once more the cusp X = {x2 = y3 } ⊂ C2 .
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Figure 5.3

The usual calculations imply {
v21 (1 + v1u

3
1) = 0

v22 (u
2
2 + v2) = 0 .

Consequently, T c
X,0 has only points in the second coordinate neighborhood, where it is described by the

non–reduced equation u2
2 = 0 . - The same phenomenon occurs in our examples of type z2 = g (x, y) ,

where g is of degree ≥ 3 . Here, the (x, y)–plane must be counted twice.
We leave it as an Exercise to the reader to determine T c

X,0 for the other curves in Chapter 1 and

the two clover-leaves (x2 + y2)2 + 3x2y − y3 = 0 resp. (x2 + y2)3 − 4x2y2 = 0 .

Figure 5.4

The examples suggest that the tangential cone does only depend on the leading terms of the defining
functions for X . Recall that for a nonvanishing convergent power series f ∈ C ⟨x1, . . . , xn ⟩ there is a
unique expansion

f =
∑
d≥m

fd , fm ̸= 0 ,

with homogeneous polynomials fd ∈ C [x1, . . . , xn ] of degree d . fm is called the leading or inital term
of f , in symbols

fm := in (f) ,

and m is the multiplicity of the function germ f . By a careful analysis of the examples above, the
reader should be able to convince himself that for a hypersurface singularity X = { f = 0 } the
tangential cone T c

X,0 is given by in (f0) = 0 . However, for arbitrary singularities X = N (f1, . . . , fr) ,
the ideal defining T c

X,0 is in general not just generated by the initial forms of f1,0, . . . , fr,0 . Instead,
one has to take all initial forms of elements in the ideal generated by f1, . . . , fr :

*Theorem 5.2

a) If X is the variety associated to a coherent ideal I , then the ideal defining T c
X,0 is generated by

the initial forms of the germs f0 ∈ I0 .

b) If the ideal of T c
X,0 is generated by in (f1,0), . . . , in (ft,0) with elements f1,0, . . . , ft,0 ∈ I0 , then

I0 is generated by the germs f1,0, . . . , ft,0 .
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5.7 Statement of the main Theorem and strategy of proof

The main objective of the present Chapter is the proof of the following:

Theorem 5.3 Let C be a curve in a two–dimensional complex manifold M (i.e. a complex analytic
hyperplane in M ). Then there exists a manifold N and a proper holomorphic map π : N → M which
is locally (with respect to M ) a finite iteration of σ–processes such that the strict transform C of C
in N is smooth. In particular, π|C : C → C has only finite fibers and induces a biholomorphic map

after removing discrete sets from C and C , resp.

Remarks. 1. We do not assume in the statement that our curve C has a reduced structure, that is:
(local) defining equations f = 0 for C may have multiple prime factors (for this and the following,
see Chapter 1.4). Therefore, local equations f for C we construct during the proof may also have
this deficiency such that smoothness of C means that N (f) is smooth in its reduced structure, i. e.
f = xm

2 for some m ≥ 1 and some local coordinates x1, x2 on N .

2. It is, however, not difficult to show in the process described below that starting with reduced equations
leads to such after each blowing up.

3. A consequence of our statement is the fact that a reduced curve C has only isolated singularities.
(The discrete sets mentioned at the end of Theorem 3 are, of course, the set of singular points of the
reduction and its preimage under π|C) . However, for the proof to work, we must know a priori that this

is true. We will give the argument later in Section [??] in a more general situation and will assume for
the moment that C has only isolated singularities. But then the statement of the theorem is of purely
a local nature.

Proof . So, we may assume that C = { f = 0 } ⊂ U ⊂ C2 and that the origin 0 is the only singular
point of C . We have to show that, after blowing up 0 in U , the strict transform C has only finitely
many singularities which - in a certain sense - are less terrifying than the original one.

The crucial measure for the singular behaviour of C will be the multiplicity m of f at 0 ; i.e.

m = mult0(f) = max
µ∈N
{ f0 ∈ mµ

2 } .

If this number would drop at least by one for each singular point of C , we could finish the game in at
most m − 1 steps (since mult0(f) = 1 implies df (0) ̸= 0 ). However, the behaviour of m is a little
more complicated, as can be seen from the sequence of singularities { fk(x1, x2) = x2

1 + xk
2 = 0 }

which all have multiplicity 2 for k ≥ 2 . Therefore, we have to introduce one more invariant. By the
Weierstraß Preparation Theorem, we can write f (after a linear change of coordinates) in the form

f = e (xm + a1(y)x
m−1 + · · ·+ am(y))

with e (0, 0) ̸= 0 , a1(0) = · · · = am(0) = 0 and m = mult0(f) - we only have to arrange matters
such that

fm(x, 0) ̸= 0 , where fm = jmf − jm+1f .

After using the Tschirnhaus transformation

x 7−→ x − a1(y)

m
,

if necessary, we always can assume that a1(y) ≡ 0 . Since mult0 f = m , the aj must vanish of order
mult0 aj ≥ j . We then define

ν = ν0(f) = min
2≤j≤m

(
mult0 aj

j

)
,

where we put mult0 aj = ∞ for aj = 0 . Hence, ν0(f) ≥ 1 and

ν0(f) ∈
1

m!
N ∪ {∞} ,
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where ν0(f) = ∞ belongs to f = e · xm in which case N (f) = N (x) is smooth.

We now perform a σ–modification σ : Ũ → U at 0 . Writing f as a convergent series

f =

∞∑
µ=m

fµ

with homogeneous polynomials fµ of degree µ , we immediately check that

fµ(u0v0, v0) = vµ0 fµ(u0, 1)

such that C ∩ σ−1(0) is given by

{ fm(u0, 1) = 0 } ∪ { fm(1, u1) = 0 } ⊂ P1 = σ−1(0) ,

in other words, if (ξ0, ξ1) denote homogeneous coordinates on σ−1(0) = P1 with u0 = ξ0/ ξ1 , u1 =
ξ1/ ξ0 , then

C ∩ σ−1(0) = { [ ξ0 : ξ1 ] ∈ P1 : fm(ξ0, ξ1) = 0 } .

As an analytic subset of a one–dimensional compact complex manifold, this set consists of finitely many
points only, say y1, . . . , yℓ . Denote by m1, . . . ,mℓ and ν1, . . . , νℓ the multiplicities resp. ν–invariants
of the canonical defining equations of C at y1, . . . , yℓ . Then Theorem 3 can obviously be deduced from
the following two facts which we will prove in the next Section:

1. If ν = ν0(f) = 1 , then ℓ > 1 and mλ < m = mult0(f) for all λ = 1, . . . , ℓ ;

2. If ν = ν0(f) > 1 , ν < ∞ , then ℓ = 1 and either m1 < m or m1 = m but ν1 = ν − 1 .

5.8 Proof of the two crucial facts

We first investigate the conditions under which we get ℓ = 1 . Supposing without loss of generality
that fm(1, 0) ̸= 0 and assuming that ℓ = 1 , we have for some α ∈ C , c0 ∈ C∗ :

fm(u0, 1) = c0(u0 − α)m .

By homogeneity of fm , this implies

fm(x, y) = c0y
mfm

(
x

y
− α

)m

= c0(x − αy)m .

On the other hand, denoting the homogeneous part of aj(y) of degree j by ajj(y) , we find that

fm(x, y) = e (0, 0) (xm + a22(y)x
m−2 + · · ·+ amm(y)) .

These two expressions can only coexist, when

α = 0 and a22(y) = · · · = amm(y) = 0 ,

and then we necessarily have
ν0(f) > 1 .

By reversing the argument we see also that ν0(f) > 1 leads to ℓ = 1 . Thus, the first statements in
1. and 2. are shown to be correct.

To finish the proof for the second parts, we have to study the defining equation for C :

g (u0, v0) =

∞∑
µ=m

vµ−m
0 fµ(u0, 1) = e (u0v0, v0)

(
um
0 +

a2(v0)

v20
um−2
0 + · · ·+ am(v0)

vm0

)
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near the points (u0, v0) with fm(u0, 1) = 0 and v0 = 0 . In case 2, u0 = 0 such that we always
have m1 ≤ m , and from m1 = m we can easily deduce that

ν1 = min
2≤j≤m

mult0(aj/ v
j
0)

j
= min

2≤j≤m

mult0 aj − j

j
= ν − 1 .

In case 1, there exists a number m′ < m such that

fm(u0, 1) = (u0 − u0)
m′

A (u0)

with a holomorphic function A (u0) defined near u0 and not vanishing there. Thus, we see that the
function

g (u0, v0) = (u0 − u0)
m′

A (u0) + v0 B (u0, v0)

has multiplicity ≤ m′ < m at (u0, 0) . □

5.9 Divisors with normal crossings

We now return to the map π : N → M in Theorem 3. Denoting by S the singular locus of the curve
C ⊂M :

S = sing C = {x(0) ∈ C : x(0) is a singular point of C } ,

we are going to clarify the structure of the preimage π−1(S) and its relation to the strict transform C
of C .

Blowing up a point x(0) ∈ M creates a curve E1
∼= P1 ⊂ M̃1 . Blowing up again a point x1 ∈ E1

creates a new rational curve E2 ⊂ M̃2 , and the total transform of E1 under the second σ–process
σ2 : M̃2 → M̃1 equals

E2 ∪ E1 ,

E1 denoting the strict transform of E1 . Using the explicit description for the two–dimensional σ–
process in Section 1, it is easily checked that σ2 induces a biholomorphic map E1 → E1 (this is true,
of course, for an arbitrary smooth curve in a manifold and its strict transform under a σ–process).
So, E1 is a rational curve which obviously meets E2 transversely in just one point. We visualize the
situation by the following picture:
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Figure 5.5



126 Chapter 5 Blowing up, tangent cone and embedded resolution of plane curves

For the next step, there are two possibilities: either x2 , the point we are going to blow up, is a smooth
point of E2∪E1 , or it is the singular point. After blowing up, the picture is schematically the following
- only the position of the newly created curve depends on the position of the point blown up:

Figure 5.6

Proceeding by induction, this consideration yields the following:

Theorem 5.4 Under the assumptions of Theorem 3, the preimage π−1(S) of S = sing C decomposes
into the connected components

π−1(x) , x ∈ S ,

and each connected component is a finite union

E1 ∪ E2 ∪ . . . ∪ Er

of smooth rational curves Eρ which intersect each other (transversely) in at most one point.

Moreover, the proof of Theorem 4 shows that the sets E1 ∪ . . . ∪ Er form trees:

Figure 5.7
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i.e., they do not contain cyclic configurations like
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Figure 5.8

In particular, the preimage π−1(S) is a set of the type which we will call a divisor with normal
crossings, namely a curve in a two–dimensional complex analytic manifold which has no singularities
except ordinary double points:

Figure 5.9

It is plain that the preimage π−1(C) of the curve C ⊂ M consists of the union of the smooth
strict transform C and the set π−1(S) which in general do not fit together to form a normal crossing
divisor. However, this nice situation can be achieved after blowing up some more points as we are going
to explain on the remaining pages of the present Section.

We have to deal with the following two kinds of singular points of π−1(C) :

1. C meets π−1(S) in an ordinary double point, intersecting both components transversely;

2. C touches one of the irreducible components (at a smooth or a singular point of π−1(S) ).
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Figure 5.10

In case 1, if π−1(S) is locally given by x1x2 = 0 in appropriately chosen coordinates, then a local
equation for C is necessarily of the form

f (x1, x2) = a1x1 + a2x2 + higher order terms

with a1 ̸= 0 , a2 ̸= 0 . After blowing up the origin, the strict transform of C has an equation

g (u0, v0) = a1 + a2u0 + v0 h (u0, v0)

and intersects P1 ∩ { (u0, v0) ∈ C2 } = { (u0, v0) ∈ C2 : v0 = 0 } transversely at the point
(u0, 0) , u0 = −a1/ a2 ̸= 0 .

�����������������������

v1 = 0 P1

(∞, 0) u1 = 0

(−a1/a2, 0)

u0 = 0 (0, 0)

v0 = 0

•

•

•strict transform of C

Figure 5.11

In the second case, we may assume that the (local) component E of π−1(S) , which is touched by
C , is given by x2 = 0 near the origin, and that the local equation for C is of the form

f (x1, x2) = x2 +
∑

j+k≥2

ajk x
j
1 x

k
2 .

There must be a j ≥ 2 with aj0 ̸= 0 , because otherwise f = x2 · g , g (0, 0) ̸= 0 , such that C
would be locally contained in E which is impossible for a strict transform. We call the number

c = min
j≥2
{ aj0 ̸= 0 } − 1 ≥ 1
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the order of contact between C and E . By dividing out the unit

1 +
∑

2≤j+k≤c
1≤k

ajk x
j
1 x

k−1
2 ,

we may assume that f is given in the form

f (x1, x2) = x2 + a xc+1
1 + other terms of degree µ ≥ c + 1 , a ̸= 0 .

After performing a σ–process, the strict transform of C has an equation

g (u0, v0) = u0 + a vc0 + other terms of degree ≥ c .

Hence, the contact order decreases by one for c ≥ 2 , and for c = 1 the σ–process reduces the case 2
to case 1 (such that we will refer to a transverse intersection as being a contact point of order 0 ).

Summarizing, we may say that the following holds true:

Theorem 5.5 Let C be a curve in a two–dimensional complex manifold M . Then there exists a
manifold Ñ and a proper holomorphic map π̃ : Ñ → M which is locally (with respect to M ) a finite

iteration of σ–processes such that the preimage π̃−1(C) is a divisor in Ñ with normal crossings.

This result will serve us for two different purposes: First, we realize an arbitrary surface singularity
X as a branched analytic covering X → U ⊂ C2 and transform the branch locus to a normal crossing
divisor. By analyzing (normal) surface singularities with such a special branch locus and by explicit
resolution of those singularities, we are able to construct resolutions for all singularities. This is the
method that goes back to Jung. Once we have constructed a resolution π : X̃ → X , the so–called
exceptional set E = π−1(sing X) is a curve in the two–dimensional manifold X̃ . Using Theorem 5,
we are led to the existence of the more specific good resolutions for which E has (among others) the
property of being a normal crossing divisor.

5.10 Divisors and line bundles

In fact, the considerations of the preceding Sections apply more generally to so called divisors which
we have to discuss anyway.

A divisor D on M is a formal (locally finite) sum D =
∑

nτCτ with nτ ∈ Z and Cτ are
irreducible curves in M (possibly with singularities, but reduced). The set Div M of all divisors
has an obvious abelian group structure. More generally, we can introduce this notion for an arbitrary
complex manifold M of dimension n when the curves Cτ are replaced by (irreducible) hypersurfaces.

If h is a meromorphic function on M , then there exists a unique divisor

div h =
∑

nτCτ

such that
h|M\

⋃
τ Cτ

is holomorphic and nowhere vanishing and h has multiplicity nτ along

C ′
τ = reg Cτ \

⋃
σ ̸=τ

Cσ

(which means that it has zeros of order nτ along C ′
τ if nτ > 0 and poles of order |nτ | if nτ < 0) .

Now, locally, every divisor D is the divisor of a meromorphic function, and two such defining
functions have a well–defined nowhere vanishing holomorphic ratio. Hence, if

D|Uj
= div hj , M =

⋃
j

Uj ,
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then

fkj :=
hk

hj
∈ O∗

M (Ujk)

defines a holomorphic line bundle on M which is determined by D up to analytic isomorphism. This
bundle (more precisely: its class in H1(M, O∗)) is always denoted by [D ] . Note that [D ] has a global
meromorphic section {hj } such that

D|Uj
= div hj .

We abbreviate the symbol O ([D ]) in the following by O (D) .
Notice that we have [D1 + D2 ] ∼= [D1 ]⊗ [D2 ] for all divisors D1 , D2 . In particular [D ]⊗ [−D ]

is the trivial line bundle such that [−D ] is canonically isomorphic to the dual bundle of [D ] :

[−D ] ∼= [D ]∗ .

On the other hand, if a holomorphic line bundle L on the manifold M has a global nontrivial
meromorphic section {hj} , then

div hj = div fjkhk = div fjk + div hk = div hk ,

such that
D|Uj

= div hj

defines a divisor D on M with L ∼= [D ] .
This correspondence between holomorphic line bundles which carry a nontrivial meromorphic section

and line bundles associated to divisors is valid for complex analytic manifolds of arbitrary dimension.
We will use the fact that line bundles on compact Riemann surfaces have a nontrivial meromorphic
section and hence are given by divisors extensively in later Chapters. More generally, this statement is
true for any projective algebraic manifold and even varieties. For us, it is more important that the same
principle holds for resolutions of surface singularities (cf. Chapter 9 for this and also for more details
about our claims at the beginning of the present Section).

As an Example, we look at the hyperplane H = {x0 = 0 } in Pn . Considered as the divisor 1 ·H ,
H has local defining equations

h0 =
x0

x0
, h1 =

x0

x1
, . . . , hn =

x0

xn
,

such that the transition functions fkj of [1 ·H] are given by

fkj =

(
x0

xk

)
·
(
x0

xj

)−1

=
xj

xk
,

i.e. by the transition functions of the hyperplane bundle on Pn . Therefore, our notation O (1) is only a
short version of the correct symbol OPn(1·H) , and, more generally, O (ℓ) stands for OPn(ℓ·H) , ℓ ∈ Z .

5.11 Local intersection multiplicities

Let two curves C, D on M be given with local equations f = 0 resp. g = 0 near the point x ∈M ,
and suppose that the intersection C ∩D is isolated at x . Then

(C ·D)x := dimCOM,x/ (fx, gx)

is finite and independent of the choices of f and g . It is called the intersection multiplicity of C and
D at x . Clearly,

(C ·D)x = 1

if and only if fx and gx form coordinates of M at x (and (C ·D)x = 0 if and only if x ̸∈ C ∩D ).
Assume now that C is reduced and denote by ν : C → C the embedded resolution of C . We write

ν−1(x) = {x(1), . . . , x(r) } and g = (g|C) ◦ ν . We are going to prove:
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Lemma 5.6 One has the equality

(C ·D)x =

r∑
k=1

ordx(k) g .

Remark . The following proof uses sheaf theory, in particular the exactness of the direct image functor
for finite holomorphic maps. The uninitiated reader may skip the proof for the moment and should come
back to it later. However, the same proof yields the following result which can be proven by elementary
calculations. The preceding Lemma 6 is derived by applying this finitely many times.

*Lemma 5.7 Let C ⊂M be a reduced curve and denote by ν : C → C the restriction of a σ–process
σ : M → M to the strict transform C of C . We write ν−1(x) = {x(1), . . . , x(r) } and denote by
σ−1(D) the total preimage of D . Then,

(C ·D)x =

r∑
k=1

(C · σ−1(D))x(k) .

Proof of Lemma 6. Let I be the ideal on C generated by g|C , and let I = I OC be the image of

ν∗I = I ⊗OC
OC → OC which is generated by g (since I is locally free, ν∗I ∼= I ). We get a

commutative diagram with exact rows and columns ( ν∗ being an exact functor (c.f. the Supplement,
Section [??])):

0

OC/I

?

0 OC
-

?

0 I-

?

0

?

0

ν∗(OC/I)
-p

?

ν∗OC
-

?

ν∗ν
∗I =-

?

0

?

Q2-

ν∗I Q1
-

?

q

0-

0-

Clearly, the coherent sheaves Q1 and Q2 are concentrated at x (if C is chosen so small that x is the
only singular point), as are the sheaves on the last row. It suffices to show that

(+) dim ker px = dim coker px

since then

dimxOC/ I = dimx ν∗(OC/ I) ,

which gives the claim because of dimxOC/ I = dimxOM/ (fx, gx) = (C ·D)x and

dimx ν∗(OC/ I) = dimx

r⊕
k=1

OC,x(k)/ gx(k) =

r∑
k=1

ordx(k) g .
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Now, the snake lemma implies ker px ∼= ker qx and coker px ∼= coker qx . Thus the equation (+) is
equivalent to

dim Q1,x = dim Q2,x .

But this follows from the commutative diagram

OC ν∗OC
-

OC ν∗OC
-

?

·g
?

·g

which induces compatible isomorphisms of OC with I and ν∗OC and ν∗I and therefore an isomor-
phism Q2,x

∼= Q1,x . □

If C is compact and D arbitrary (or vice versa) with C ∩D discrete, we define

(C ·D) :=
∑

x∈C∩D

(C ·D)x =
∑

x∈C∩D

∑
y∈ν−1(x)

ordy g .

This is called the intersection number of C and D , sometimes also denoted by (C, D) or C ·D . The
definition is symmetric in C and D and bilinear because of ordy(gh) = ordy g + ordy h . Therefore,
it may be linearly extended to divisors C and D with appropriate conditions.

We are next rephrasing this definition in terms of numbers attached to line bundles. If D is (locally
near C ) given by the vanishing of the holomorphic functions gj , the line bundle [D ] has a holomorphic
section given locally by gj . After finitely many σ–processes on M we get a diagram

M̃ M
-

σ

C C-ν

? ?

in which the strict transform C of C is smooth (and hence the normalization of C ). Clearly, σ∗([D ])
has a holomorphic section given by the functions gj ◦ σ . Since

σ∗([D ])|C = ν∗([D ]|C) ,

the line bundle on the right hand side has a holomorphic section consisting of the functions gj = gj ◦ν .
Thus,

(C ·D) = deg ν∗([D ]|C)

where deg L denotes the degree of a holomorphic line bundle on a compact Riemann surface, i.e. the
total order of zeros and poles of a nontrivial meromorphic section (see Chapter 9.6).

This identity allows us to generalize our definition to holomorphic line bundles L on C by

(C, L) := deg ν∗L , ν : C −→ C the normalization .

In particular, if C is smooth,
(C, L) = deg L .

Moreover, we can introduce self–intersection numbers by

(C · C) := (C, [C]|C) .
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5.12 Intersection numbers and blowing up

It will be important for later applications to control the behaviour of the intersection numbers under
blowing up. Recall Lemma 6 which, in turn, is a consequence of Lemma 7. We can prove even more.

Lemma 5.8 If σ : M → M is the σ–process at x ∈M , then

(C ·D) = (C · σ−1(D)) , (C, L) = (C, σ∗L)

where C denotes the strict transform of C in M and σ−1(D) the total transform.

Proof . Either x is a smooth point of C in which case the induced mapping C → C is biholomorphic,
or σ is one step in the process of normalizing C such that the normalization factors through C . □

We apply this Lemma to study the intersection matrix ((Ej · Ek)) for compact irreducible curves
Ej with Ej ∩Ek discrete, j ̸= k , under blowing up at a point x . Notice that this matrix is symmetric
(see the previous Section).

Denote by mj the multiplicity of (a defining equation of) Ej near x . Then,

σ−1(Ej) = mj E0 + Ej ,

where E0 = σ−1(x) ∼= P1 as one can easily check by a concrete calculation. Since [Ej ] is trivial near
x , we have

0 = (E0 · σ−1(Ej)) = (E0 ·mjE0) + (E0 · Ej) ,

hence (E0 · Ej) = mj because of (E0 · E0) = −1 . Further, for j, k ≥ 1 ,

(Ej · Ek) = (Ej · (σ−1(Ek) − mkE0)) = (Ej · Ek) − mjmk .

So, the new intersection matrix looks as follows:

E0 E1 E2 · · ·
E0 −1 m1 m2 · · ·
E1 m1 (E1 · E1)−m2

1 (E1 · E2)−m1m2 · · ·
E2 m2 (E2 · E1)−m2m1 (E2 · E2)−m2

2 · · ·
...

...
...

...

Adding m1 times the first column to the second one and then m1 times the first row to the second
and proceeding with the other columns and rows it becomes evident that the quadratic form associated
to the new matrix is equivalent to the matrix

−1 0 · · · 0

0
... (Ej · Ek)
0

 .

This proves the following theorem which will play a central role in connection with the Grauert–Mumford
criterion.

Theorem 5.9 The intersection matrix ((Ej · Ek))j,k=1,...,r is negative definite if and only if the cor-
responding matrix ((Ej · Ek))j,k=0,...,r has this property.
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5.A Appendix: The classification of simple plane curve singu-
larities

In the present Appendix, we introduce the fundamental concept of an unfolding of a holomorphic

function germ f ∈ O(n)
0 in the sense of a family of small variations of the original function. f is called

simple, if f deforms locally only into finitely many different function germs.

5.A.1 Simple germs of holomorphic functions

An unfolding of a germ f0 ∈ O(n)
0 is the germ F0 of a function

F ∈ H0(U × V, OCn+k) ,

0 ∈ U ⊂ Cn , 0 ∈ V ⊂ Ck , with

f (x1, . . . , xn) := F (x1, . . . , xn, 0, . . . , 0)

inducing f0 . We think of F as being a deformation of f with parameters t = (t1, . . . , tk) ∈ V ⊂ Ck .
A germ f0 ∈ mn is called simple (or, more precisely, right–simple), if there exist finitely many germs

g1, . . . , gr ∈ O(n)
0 such that for any unfolding F0 of f0 and all zeros (x(0) , t0) of a representative F

in a suitable small neighborhood U × V of 0 ∈ Cn+k , the germ of the function

f t0(x) := F (x, t0)

at x(0) is (right) equivalent to one of the germs g1, . . . , gr .
The purpose of this Appendix is the beginning of the classification of such simple germs: We will

completely solve the problem for n = 2 . The general problem will be reduced to this case in Appendix A
to Chapter 14.

Before we present the somewhat computational details, we study as an Example the function

f (x1, x2) = x1 x2 (x1 + x2) (x1 − x2) ,

whose zero set consists of four different lines intersecting at the origin. It is sufficient to look at the
unfolding

F (x1, x2, t) := x1 x2 (x1 − t x2) (x1 − x2)

for t close to −1 and x(0) = 0 . If f t and f t′ were equivalent (for small t + 1 and t′ + 1) at
x(0) = 0 , we would find a linear automorphism φ ∈ GL(2,C) with

f t′

0 = f t
0 ◦ φ

(since f t and f t′ are homogeneous functions in x of the same degree). The corresponding projective
linear automorphism φ of P1 maps the points [ t′ : 1 ] , [ 1 : 0 ] , [ 0 : 1 ] , [ 1 : 1 ] to the points [ t : 1 ] ,
[ 1 : 0 ] , [ 0 : 1 ] , [ 1 : 1 ] . Since φ preserves the cross ratio

z1 − z3
z1 − z4

:
z2 − z3
z2 − z4

for any quadruple of points z1, z2, z3, z4 ∈ P1 , where we identify P1 with C = C ∪ {∞} via
[ ξ0 : ξ1 ] 7→ ξ1/ ξ0 , t

′ must be equal to one of the values

t ,
1

t
, 1 − t ,

1

1 − t
,

t − 1

t
,

t

t − 1
,

which is possible (if and) only if t′ = t or t′ = 1/ t . Therefore, the unfolding F contains in any
neighborhood of −1 infinitely (in fact uncountably) many inequivalent function germs: the germ of
f (x1, x2) is not simple.
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5.A.2 The generalized Morse Lemma and the main result

Regular germs f0 ∈ mn are obviously simple. We thus may restrict our considerations to critical germs
f0 ∈ m2

n . For a nondegenerate critical germ f - we suppress from now on for the rest of this Chapter
the suffix 0 - all nearby germs f t

x(0) of an arbitrary unfolding F of f are either regular or critical,
but nondegenerate, as a simple calculation using the Taylor series of F shows. So, the germ

f (x1, . . . , xn) =

n∑
j=1

x2
j

is simple. For the case, that the rank r of the two–jet j2f of f at 0 , viz.

r = rank

(
∂2f

∂xi∂xj
(0)

)
,

is smaller than n , we need some substitute for the Morse Lemma. This is provided by

Theorem 5.10 If f ∈ m2
n has a two–jet of rank r , 0 ≤ r ≤ n , then f is right equivalent to the

germ of a function of type

x2
1 + · · ·+ x2

r + g (xr+1, . . . , xn) , g ∈ m3
n−r .

The proof will be given in Appendix A.8. In Appendix A to Chapter 14 we will show that the simple
germs g ∈ m2

n , n ≥ 2 , are exactly those of type

g (x1, . . . , xn) = f (x1, x2) + x2
3 + · · ·+ x2

n

with a simple germ f ∈ m2
2 (up to right equivalence). So, the following list - which is due to V. I. Arnol’d

- contains already all information about the simple holomorphic function germs with isolated critical
points (we write (x, y) instead of the coordinates (x1, x2) ):

Theorem 5.11 Any simple germ f ∈ m2
2 with isolated critical point is right equivalent to one and only

one of the following list :

(Ak) xk+1 + y2 , k ≥ 1 ,

(Dk) x2y + yk−1 , k ≥ 4 ,

(E6) x3 + y4 ,

(E7) x3 + xy3 ,

(E8) x3 + y5 .

Remark . Of course, for n = 1 there is only the Ak–series consisting of the germs xk+1 , k ≥ 1 .

5.A.3 Normal forms for two - and three - jets

Since r = rank j2f = 2 leads to the singularity of type A1 , we assume that r < 2 . The case r = 1
is easily discussed. By Theorem 10, we have

f (x, y) = x2 + g (y) , g ∈ m3
1 .

For g = 0 , we get a germ that is not simple, since for (fixed) t ̸= 0 the germs of the functions

x2 + t yk , k ∈ N ,

are pairwise nonequivalent. Therefore, g (y) = yℓ · unit , ℓ ≥ 3 , and f is equivalent to a function of
type



136 Chapter 5 Appendix Simple plane curve singularities

(Ak) x2 + yk+1 , k ≥ 2 .

It remains to investigate the much more complex situation, where j2f = 0 . Here, we first have to
find normal forms for the homogeneous three–jet j3f . Since the number of zeros of a nontrivial cubic
form on P1 is 3 (counted with multiplicity) and any 3 points on P1 can be moved to 0, 1, ∞ by a
projective linear automorphism, we have

Lemma 5.12 Each cubic form a0x
3 + a1x

2y + a2xy
2 + a3y

3 is reduced by C–linear transformations
to one (and only one) of the forms

x2y + y3 , x2y , x3 , 0 .

In the next Section, we will show that the case x2y + y3 leads to D4 , whereas x2y leads to
the Dk , k ≥ 5 . In Section A.5, we shall see that only the germs of type Ek can be simple with
j3f = x3 . Finally, Section A.6 is devoted to the fact that simple germs must have nontrivial three–jets.
In Section A.7 we give some hints how to prove that all the germs in Theorem 7 are indeed simple.

5.A.4 j3f = x2y + y3, x2y

By Theorem 2.30, the germ x2y + y3 is 3–determined; hence, f ∼ x2y + y3 is of type D4 . The germ
x2y is not simple, since

x2y + t yk , k ∈ N ,

are pairwise nonequivalent germs (for fixed t ). Therefore, we must find an ℓ–jet, ℓ ≥ 4 , of type

jℓf = x2y + ayℓ + 2bxyℓ−1 + x2g (x, y) , g ∈ mℓ−2
2 .

By a linear substitution x1 = x + byℓ−2 , y1 = y + g (x, y) , the ℓ–jet is reduced to the form

jℓf = x2
1y1 + ayℓ1 .

If a = 0 , we can repeat this process, and we come to the conclusion that (since f is finitely determined)
either f ∼ x2y - which is impossible - or that there exists an ℓ ≥ 4 and a complex number a ̸= 0
with

jℓf = x2y + ayℓ .

The last germ being ℓ–determined by Theorem 2.30, we have

f ∼ x2y + yk−1 , k ≥ 5 .

5.A.5 j3f = x3

In this case, we write the four–jet of f in the form

j4f = x3 + ay4 + bxy3 + 3x2g (x, y) , g ∈ m2
2 .

Using the substitution x1 = x + g (x, y) , y1 = y yields the form

j4f = x3 + ay4 + bxy3

(with a possibly different constant b ).

In the case a ̸= 0 , we substitute y 7→ cy + dx for suitable c, d , and derive a form

j4f = x3 + y4 + 3x2h (x, y) , h ∈ m2
2 .

After the transformation x1 = x + h (x, y) , y1 = y , we are led to the four–jet

x3
1 + y41



5.A.5 j3f = x3 137

which is 4–determined. Hence, f ∼ x3 + y4 , i.e. f is a germ of type (E6) .

If a = 0 , but b ̸= 0 , we may assume b = 1 . We are then going to prove that the germ

x3 + xy3

is 4–determined such that in this case f must be equivalent to the germ of type (E7) . Unfortunately,
Theorem 2.30 yields only the 5–determinacy of this germ. Therefore, we are forced to show that each
germ

x3 + xy3 + αx5 + βx4y + γx3y2 + δy5 + xy3g (x, y) , g ∈ m2 ,

is equivalent to x3 + xy3 modulo m6
2 . Because of the term xy3 , we are reduced at once to the case

g = 0 by the substitution y1 = y (1 + g (x, y))1/3 . Repeating the same trick for the term x3 leads
to α = β = γ = 0 , and we may assume that δ = 1 . The nontrivial transformation{

x = x1 − x2
1/ 3 − x1y1 − y21

y = y1 + x1

gives finally a 5–jet of type
x3
1 + x1y

3
1 + x1h (x1, y1) , h ∈ m4

2 ,

which is seen to being equivalent to the jet x3
1 + x1y

3
1 by following our arguments once more.

We are left with the case a = b = 0 . Writing the 5–jet in the form

x3 + cy5 + dxy4 + 3x2g (x, y) , g ∈ m3
2 ,

we can easily transform this to x3 + y5 modulo m6
2 , if c ̸= 0 . Since the germ of type (E8) is 5–

determined, we are done.

To complete the classification in the given case, we have to show that an arbitrary germ f with 5–jet
of type

x3 + dxy4 + 3x2 g (x, y) , g ∈ m3
2 ,

is not simple. Substituting x1 = x + g (x, y) , y1 = y reduces our considerations to g = 0 . Following
the same strategy as in the case a = 0 , b ̸= 0 , we easily simplify the 6–jet of such a germ in case
d ̸= 0 to one of the form

x3 + xy4 + ey6 .

We now introduce the unfolding

F (x, y, λ) = f (x, y) + λ y6

whose 6–jet equals
x3 + xy4 + t y6 , t = e + λ ,

which is 6–determined for t ̸= 0 (see Chapter 2.13). In case d = 0 , we study the two–parameter
family

F (x, y, λ, µ) = f (x, y) + λ y6 + µxy4

near µ = 0 . That both families violate the condition for f to be simple is an easy consequence of

Lemma 5.13 The germs f t ∈ O(2)
0 of the functions f t(x, y) = x3 + xy4 + t y6 , t ∈ C , are generically

not equivalent.

Proof . Let t1, t2, t3 be the roots of the equation λ3 + λ + t = 0 . Then

f t(x, y) = (x − t1y
2) (x − t2y

2) (x − t3y
2) ,

and the analytic hypersurface { f t(x, y) = 0 } consists for generic t of three different parabolae
touching each other at the origin:
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Figure 5.12

Blowing up the origin yields the equations

ℓj = {u = tjv } , j = 1, 2, 3 ,

for the strict transforms ℓj of these parabolae (in the coordinate system (u, v) = (u1, v1) at “infinity”).

ℓ1

ℓ2

ℓ3

∞

P1

Figure 5.13

For another complex number t′ , we denote by t′1, t
′
2, t

′
3 the corresponding roots of the equation λ3 +

λ + t′ = 0 . It is easily checked that an arbitrary biholomorphic automorphism germ φ0 mapping
f t to f t′ induces a linear automorphism of the tangent plane of the blow–up of C2 at the point
∞ ∈ σ−1(0) ∼= P1

∼= C which maps the three directions t1, t2, t3 to the directions t′1, t
′
2, t

′
3 , keeping

the fourth direction ∞ fixed. Hence, by projectivizing the tangent plane, we see that the cross ratios

τ =
t3 − t1
t3 − t2

and τ ′ =
t′3 − t′1
t′3 − t′2

coincide up to the natural action of the symmetric group S3 on P1 (which associates to the transpo-
sition (1 2) the rational map τ 7→ τ−1 and to the cycle (1 2 3) the rational map τ 7→ (τ − 1) τ−1 ).

Obviously, it is enough (for finishing the proof of Lemma 13) to show that for all t ∈ C outside the
discriminant locus of the equation λ3 + λ + t = 0 (which consists of the two points ±t0 satisfying
4 + 27 t20 = 0 ) there is no infinite sequence t′ → t with φt′ ∼ φt for all t′ . So, assume by reductio
ad absurdum that such a converging sequence exists. It is clear that we can locally define holomorphic
maps

C \ {±t0 } ∋ t′
τ7−→ τ (t′) =

t′3 − t′1
t′2 − t′1

∈ C \ { 0 } ⊂ P1

which induce a globally defined continuous map

C \ {±t0 } ∋ t′
τ7−→ τ (t′) = τ (t′) mod S3
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from C \ {±t0 } to the topological quotient P1/S3 . By our assumption and the Identity Theorem for
holomorphic functions in one variable, the maps τ and τ would be constant near t . As it is well–
known (and will be discussed in more detail in Chapter 8) the quotient P1/S3 carries a natural complex
analytic manifold structure making the projection P1 → P1/S3 - and hence the map τ - holomorphic.
A straightforward generalization of the Identity Theorem then implies that τ : C \ {±t0 } → P1/S3

must be globally constant. But this is impossible since for t ̸= ±t0 converging to ±t0 , the image of t
in P1/S3 consists of an S3–orbit{

τ ,
1

τ
, 1 − τ ,

1

1 − τ
,

τ − 1

τ
,

τ

τ − 1

}
with τ ̸= 0, 1, ∞ which converges to the exceptional orbit

{ 0, ∞, 1 }

(since there are no triple roots of λ3 + λ + ±t0 = 0 ). □

5.A.6 j3f = 0

If g is a second germ with j3g = 0 , and if f ∼ g , then necessarily the homogeneous parts of degree
4 of f and g resp. are equivalent. So, if f were simple, there would not exist an unfolding F of f
with j3F t = 0 for all t and having only finitely many equivalence classes among the j4F t . But such
a family is easily written down:

F (x, y, t0, t1, t2, t3, t4) = t0x
4 + t1x

3y + t2x
2y2 + t3xy

3 + t4y
4 + f (x, y) .

The family of 4–jets being the variety of all homogeneous polynomials of degree 4, it contains the
open and dense subset corresponding to 4–forms having only simple zeros on P1 . But those germs are
equivalent to the nonsimple germs

x y (x − y) (x − ty) , t ̸= 0, 1

(see Section A.1).
Let us formalize the last argument a little further: In fact, we regard the 5–dimensional vector

space S4 of all homogeneous 4–forms in two variables together with the action of the general linear
group GL (2, C) which is induced from the action of Aut OC2,0 ⊃ GL (2, C) on OC2,0 ⊃ S4 . But
GL (2, C) has dimension 4 such that orbits of this action can only have dimensions at most 4 . So,
every neighborhood of an element in S4 ought to meet uncountably many such orbits.

5.A.7 The versal unfolding of holomorphic function germs

An unfolding F (x1, . . . , xn, t1, . . . , tr) of the function f (x1, . . . , xn) is called versal , if each unfold-
ing G (x1, . . . , xn, s1, . . . , sm) of f can be derived from F up to right equivalence by a holomorphic
substitution t = φ (s) . More precisely, that means that there exist holomorphic maps

φ : Cm −→ Cr and Φ : Cn × Cm −→ Cn

with Φ (x, 0) = x such that

G (x, s) = F (Φ (x, s), φ (s)) .

It is clear, how one has to modify this definition for germs of functions.
It follows from the condition Φ (x, 0) = x that Φt(x) := Φ (x, t) gives rise to a family of biholo-

morphic map germs for t close to the origin. In particular, the knowledge of such a versal unfolding
F and the equivalence classes of the germs F t(x) , t near 0 , is sufficient for knowing all germs Gs(x)
for all unfoldings G of f , s small.
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Fortunately, there exists a versal unfolding in the cases we are interested in which, moreover, is
easily computable. It is not difficult to show that the existence of such an unfolding for a germ f ∈ mn

implies that

dimCO(n)
0 / Jf < ∞ , Jf =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
O(n)

0 .

The converse is also true:

*Theorem 5.14 Let h1, . . . , hr be representatives of a finite C–basis of the vector space O(n)
0 / Jf .

Then f possesses a versal unfolding F which is given by

F (x, t) = f (x) + t1h1(x) + · · ·+ trhr(x) .

By an easy computation we are able to write down the versal unfolding for the presumably simple
function germs.

Theorem 5.15 The versal unfoldings of the germs of type (Ak) , (Dk) and (Ek) are the following:

(Ak) xk+1 + y2 + t1 + t2x + · · ·+ tkx
k−1

(Dk) x2y + yk−1 + t1 + t2y + · · ·+ tk−1y
k−2 + tkx

(E6) x3 + y4 + t1 + t2y + t3y
2 + x (t4 + t5y + t6y

2)

(E7) x3 + xy3 + t1 + t2y + t3y
2 + t4y

3 + t5y
4 + x (t6 + t7y)

(E8) x3 + y5 + t1 + t2y + t3y
2 + t4y

3 + x (t5 + t6y + t7y
2 + t8y

3) .

For fixed t , we can now subject these germs to the algorithm developed in the Sections A.3, A.4 and
A.5. The result is usually documented in form of an adjacency diagram in which a consecutive sequence
of arrows

C ←− · · · ←− D

indicates that the germ of type C arises at the germ of a fiber F t of the versal unfolding F of D
for arbitrarily small t . The germ C is then called adjacent to D . An adjacency diagram is always
assumed to be complete in that it should comprise all possible adjacencies.

Theorem 5.16 The following is the adjacency diagram for the germs of type (Ak) , (Dk) and (Ek) :

-

E8 E7
-

-

E7 E6
-

· · · A8
-

· · · D8
-

A8 A7
-

D7

A6
-

D6

A5
-

D5
-

A4
-

D4
-

A3
- A2

- A1
- A0

-

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

A
A
A
A
AU

A
A
A
A
AU

A
A
A
A
AU

As a Corollary, we finally may conclude that these germs are actually simple, thereby finishing
the proof of Theorem 11 up to the demonstration of the generalized Morse Lemma which we supply
subsequently.

5.A.8 Proof of the generalized Morse Lemma

As in the statement of Theorem 10, let us assume that the critical germ f ∈ m2
n has a two–jet j2f of

rank r . Then we may write f in the form

f = q + g ,

where q = q (x1, . . . , xr) = x2
1 + · · ·+ x2

r and g ∈ m3
n . We expand g as

g = g0 + xr+1gr+1 + · · ·+ xngn ,
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where g0 = g0(x1, . . . , xr) ∈ m3
r and gr+1, . . . , gn ∈ m2

n . Using the Morse Lemma for q we can drop
g0 . Hence,

f (x1, . . . , xr, xr+1, . . . , xn) = q (x1, . . . , xr) +

n∑
ρ=r+1

xρgρ(x1, . . . , xn)

can be viewed as an unfolding of q with parameters xr+1, . . . , xn . By Theorem 14, the universal
unfolding of q is given by

q (x1, . . . , xr) + t .

Hence, there exist functions
φ = φ (xr+1, . . . , xn)

Φk = Φk(x1, . . . , xn) = xk +

n∑
ρ=r+1

xρ hρk(x1, . . . , xn) , k = 1, . . . , r ,

such that
f (x1, . . . , xn) = q (Φ1(x), . . . ,Φk(x)) + φ (xr+1, . . . , xn) .

The claim then follows by (the inverse of) the substitution x′
k = Φk(x) , k = 1, . . . , r , x′

j = xj , j =
r + 1, . . . , n .

Notes and References

The proof of Theorem 3 is a slight variation of the version given in [04 - 04], paragraph 8B. According
to Mumford (loc.cit., p. 161), it is due to Hironaka and is extracted from his proof of resolution in the
general case published in the famous paper

[05 - 01] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic
zero. Annals of Math. 79, 109–326 (1964).

There is a nice interpretation of the invariant ν in “geometric” terms related to the Newton diagram

Newt (f) = { (j, k) ∈ N2 : ajk ̸= 0 }

for a given power series f =
∑

ajkx
jyk in two variables. Due to our assumptions,

(m, 0) ∈ Newt (f) ⊂ { (j, k) : k ≥ m − j }.

Regard now all lines through (m, 0) of the form

k = ω (m − j) with ω ≥ 1 .

Then,
ν (f) = sup

ω
{Newt (f) ⊂ { (j, k) : k ≥ ω (m − j) } } ,

when ν (f) < ∞ .

Concerning intersection theory of curves on surfaces we consulted mainly [01 - 18], pp. 65 ff, in
particular with respect to the sheaf theoretic proof of Lemma 6.

The classification of the simple holomorphic function germs is due to V. I. Arnol’d. The full picture
including the hierarchy of simple germs appeared in

[05 - 02] V. I. Arnol’d: Normal forms for functions near degenerate critical points, the Weyl groups
Ak, Dk, Ek and Lagrangian singularities. Functional Analysis and its Applications 6, 254–272
(1972).
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This work of Arnol’d together with its generalization to the classification of 1–modular and 2–modular
germs (the simple germs being 0–modular in this context) is an integral part of the book [01 - 20]. It
also contains a complete list of his papers. In Chapter 8 of the present manuscript, the reader may find
all the results on the versal unfolding we used in the Appendix. Our arrangement of the material is
strongly influenced by [01 - 15] (see also [01 - 18], pp. 61 ff).

Of course, there is much more to say about the beautiful domain of (algebraic) plane curves. From
our point of view, the best suited accompanying text on this subject is

[05 - 03] E. Brieskorn, H. Knörrer: Plane Algebraic Curves. Basel–Boston–Stuttgart: Birkhäuser 1986.
(First published 1981 by Birkhäuser under the title Ebene algebraische Kurven.)
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