




Chapter 4

Was ist feierlicher als zwei Striche im Sand,
zwei Parallelen? Schau an den fernsten Ho-
rizont, und es ist nichts als Unendlichkeit;
schau auf das weite Meer, es ist Weite,
nun ja, und schau in die Milchstraße em-
por, es ist Raum, daß dir der Verstand ver-
dampft, unausdenkbar, aber es ist nicht das
Unendliche, das sie allein dir zeigen: Zwei
Striche im Sand, gelesen mit Geist . . .

(Max Frisch,
Don Juan oder die Liebe zur Geometrie)
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Chapter 4

Cones over projective algebraic manifolds
and their canonical resolution

Generalizing the example of the A1–singularity - which is described by the vanishing of a homogeneous
polynomial of degree 2 - we study in this Chapter a class of algebraic cones with (possibly) an isolated
singularity at the vertex. In particular, we construct a canonical resolution of these singularities, using
certain holomorphic line bundles on complex projective space.

4.1 From affine subspaces of Cn to algebraic cones in Cn+1

Linear algebra is traditionally regarded as a method to solve systems of (nontrivial) affine equations:

ℓk(x) =

n∑
j=1

ajkxj + αk = 0 , k = 1, . . . ,m .

In geometrical terms, the solution space

X = {x ∈ Cn : ℓk(x) = 0 , k = 1, . . . ,m }

is equal to the intersection

H1 ∩ . . . ∩Hm

of the hyperplanes

Hk = {x ∈ Cn : ℓk(x) = 0 } .

Such an affine subspace X may be empty (for m ≥ 2 ). If not, it consists of a d–dimensional continuum
of points, where

d = n − r , r = rank (ajk) .

More precisely: If x0 ∈ X , then there exist new affine coordinates y1, . . . , yn in Cn such that x0 = 0
and

X = { (y1, . . . , yn) : yd+1 = · · · = yn = 0 } .

We observe that the matrix (ajk) coincides with the Jacobi matrix(
∂ℓk
∂xj

(x)

)
which, consequently, has constant rank r on Cn .

If we replace the linear functions ℓ1, . . . , ℓm by homogeneous polynomials of arbitrary degree, we
can hope to obtain geometrically more fascinating objects.
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From now on, we work in (n + 1)–dimensional complex number space Cn+1 with linear coordinates
x = (x0, . . . , xn) , n ≥ 1 . A nontrivial polynomial P ∈ C [x0, . . . , xn ] is homogeneous of degree d , if
it can be written in the form

P (x) =
∑
|ν|=d

aν x
ν =

∑
ν0+···+νn=d

aν0...νn
xν0
0 · . . . · xνn

n .

In other words, if (x, λ) 7→ λx denotes the standard action Cn+1 × C∗ → Cn+1 of the (multiplica-
tive) group C∗ induced by the C–vector space structure of Cn+1 , then a polynomial P ̸= 0 in
C [x0, . . . , xn ] satisfies

P (λx) = λdP (x) for all λ ∈ C∗ , x ∈ Cn+1 ,

if and only if P is homogeneous of degree d .
Given finitely many homogeneous polynomials P1, . . . , Pm - of degree d1, . . . , dm , say - we call the

simultaneous zero set

C = C (P1, . . . , Pm) := {x ∈ Cn+1 : P1(x) = · · · = Pm(x) = 0 }

the algebraic cone in Cn+1 defined by P1, . . . , Pm . Obviously, we have 0 ∈ C , and x ∈ C implies
λx ∈ C for all λ ∈ C . Consequently, C is a cone in the sense of Section 1.6.

This property calls for building up equivalence classes with respect to the given action of C∗ .

4.2 Projective space Pn

As a set, complex projective space Pn = Pn(C) consists of all lines through the origin in Cn+1 . Such
a line is determined by a vector x = (x0, . . . , xn) ∈ Cn+1 \{ 0 } , and two vectors x′ and x′′ define the
same line, if and only if x′′ = λx′ with a complex number λ ∈ C∗ . So, Pn is equal to the quotient
space

(Cn+1 \ { 0 })/C∗

of all equivalence classes

[x ] = {x′ ∈ Cn+1 \ { 0 } : λx = x′ for some λ ∈ C∗ }

which are precisely the orbits for the C∗–action{
(Cn+1 \ { 0 }) × C∗ −→ Cn+1 \ { 0 }

(x , λ) 7−→ λx .

For historical reasons, we sometimes write [x0 : · · · : xn ] instead of [x ] , when x = (x0, . . . , xn) .
x0, . . . , xn are then called homogeneous coordinates of the point [x ] ∈ Pn . By abuse of notation, we
also write x instead of [x ] .

The canonical projection φ : Cn+1 \ { 0 } → Pn sending x to [x ] will be a continuous map, when
Pn is equipped with the quotient topology in which U ⊂ Pn is open, if and only if φ−1(U) is open in
Cn+1 \ { 0 } . It is easily checked that in this topology the n + 1 sets

Uj = {x = [x0 : · · · : xn ] : xj ̸= 0 } , j = 0, . . . , n ,

are open and dense in Pn and that the maps

χj : Uj −→ Cn

given by

(t
(j)
1 , . . . , t(j)n ) =

(
x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn

xj

)
are (well–defined) homeomorphisms. Moreover, since two different lines in Cn+1 through the origin can
be separated in Cn+1 \ { 0 } by disjoint C∗–invariant open sets, Pn is a Hausdorff space.
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Figure 4.1

Finally, Pn is compact as the image under the continuous mapping φ of the (compact) sphere

S2n+1 = {x ∈ Cn+1 : |x0 |2 + · · ·+ |xn |2 = 1 } .

Summing up, we can say that Pn is a compact topological manifold of (complex) dimension n .
Recall that a complex analytic structure on a topological manifold M of dimension n is given by a

holomorphic atlas
A = { (Uι, χι, Vι) : ι ∈ I } ,

where Uι is open in M , Vι is open in Cn , χι : Uι → Vι is a homeomorphism, the system {Uι : ι ∈ I }
covers M , i.e.

M =
⋃
ι∈I

Uι ,

and where for all ι , κ ∈ I the map

χκ ◦ χ−1
ι |χι(Uι∩Uκ)

: χι(Uι ∩ Uκ) −→ χκ(Uκ ∩ Uι)

is biholomorphic.

Uι

Uκ

M

χ−1
ι := φι φκ := χ−1

κ

Cn ⊃ Vι Vκ ⊂ Cn

Figure 4.2

The pair (M, A) - or M for short - is then called a complex (analytic) manifold . The concepts of
holomorphy for functions on and for maps between such manifolds are introduced without any difficulty
via the coordinate charts (Uι, χι, Vι) . It is also immediate from the definition that in the category of
complex manifolds cartesian products exist.

Returning to projective space Pn with its canonical covering U of open sets Uj , j = 0, . . . , n , we
want to calculate the transition maps χk ◦ χ−1

j . First, we notice that

χj(Uj ∩ Uk) = { (t(j)1 , . . . , t(j)n ) ∈ Cn : t
(j)
ℓ(j,k) ̸= 0 }
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with ℓ (j, k) = k + 1 , if k ≤ j − 1 , and ℓ (j, k) = k , if k ≥ j + 1 , and then, we easily find that (for
e.g. j < k) χk ◦ χ−1

j is given on χj(Uj ∩ Uk) by holomorphic terms (in fact, the transition functions
are rational):

t
(k)
l =



t
(j)
ℓ

t
(j)
k

, ℓ = 1, . . . , j , k + 1, . . . , n ,

1

t
(j)
k

, ℓ = j + 1 ,

t
(j)
ℓ−1

t
(j)
k

, ℓ = j + 2, . . . , k .

This implies that Pn is a complex manifold of dimension n .

4.3 The base of an algebraic cone

By definition, any cone C ⊂ Cn+1 is completely determined by its image

C = φ (C \ { 0 }) ⊂ Pn

under the canonical (holomorphic) map

φ : Cn+1 \ { 0 } −→ Pn

(cf. Section 2) because of the identity

C = φ−1(C) ∪ { 0 } .

If C = C (P1, . . . , Pm) is an algebraic cone as in Section 1, then C has the structure of a projective
algebraic set, as we will prove in a moment. Therefore, an algebraic cone C is sometimes termed an
affine cone over the projective algebraic variety C .

Theorem 4.1 For any algebraic cone C = C (P1, . . . , Pm) ⊂ Cn+1 , the base C ⊂ Pn is locally given
by the vanishing of m holomorphic functions g1, . . . , gm such that the ranks of the Jacobi matrices of
(P1, . . . , Pm) at a point x ∈ C \ { 0 } and of (g1, . . . , gm) at the corresponding point [x ] ∈ C coincide.
More precisely, if { (Uj , χj ,Cn) : j = 0, . . . , n } denotes the standard atlas of Pn , then

χj(C ∩ Uj)

is an algebraic set in Cn defined by the vanishing of m polynomials.

Proof . We start with the last assertion, restricting our calculations to the open set U0 = {x0 ̸= 0 } .
We write tj instead of the coordinate function t

(0)
j on Cn . Then t = χ0([x ]) = (x1x

−1
0 , . . . , xnx

−1
0 ) ,

and consequently

Pk(x) =
∑

|ν|=dk

a(k)ν xν = xdk
0 ·

∑
ν0+···+νn=dk

a(k)ν0...νn

(
x1

x0

)ν1

· . . . ·
(
xn

x0

)νn

= 0 ,

if and only if

Qk(t) = Qk(t1, . . . , tn) =
∑

ν0+···+νn=dk

a(k)ν0...νn
tν1
1 · . . . · tνn

n = 0 .

This yields

χ0(C ∩ U0) = { t ∈ Cn : Q1(t) = · · · = Qm(t) = 0 } .
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It remains to prove that (∂Pk/ ∂xj) and (∂Qk/ ∂tj) have the same rank at corresponding points x
and t . Now, by Euler’s relation for homogeneous polynomials, we have for x ∈ C :

n∑
j=0

xj
∂Pk

∂xj
(x) = dk Pk(x) = 0 ,

and this leads (for points x ∈ C with x0 ̸= 0) to

rank

(
∂Pk

∂xj
(x)

)
k=1,...,m
j=0,...,n

= rank

(
∂Pk

∂xj
(x)

)
k=1,...,m
j=1,...,n

.

Finally application of the chain rule gives for j ̸= 0 , t = (χ0 ◦ φ) (x) :

∂Pk

∂xj
(x) = xdk

0

n∑
ℓ=1

∂Qk

∂tℓ
(t) · ∂tℓ

∂xj
(x) = xdk−1

0

∂Qk

∂tj
(t) . □

Intuitively, it seems reasonable that a cone C is smooth outside its vertex 0 precisely, when its
base C consists only of regular points. For instance, the cone

{x = (x0, . . . , xn) ∈ Cn+1 :

n∑
j=0

x2
j = 0 }

has an isolated singularity at the vertex, and its base, the quadric

{ [x ] = [x0 : · · · : xn ] ∈ Pn :

n∑
j=0

x2
j = 0 } ,

is seen to be smooth by a straightforward application of the Implicit Function Theorem. In the next
Section we make this remark much more precise.

4.4 Cones and the Rank Theorem

Although an algebraic cone C ⊂ Cn+1 - of dimension d + 1 , say - which is smooth outside the origin,
can be locally described by n − d independent equations (this follows from the trivial direction of the
Implicit Mapping Theorem), it is in general impossible to find n − d polynomials P1, . . . , Pn−d with
C = C (P1, . . . , Pn−d) . We take, for Example, the cone C given by the three equations{

P1 = x0x2 − x2
1 = 0 P2 = x1x3 − x2

2 = 0

P3 = x0x3 − x1x2 = 0

in C4 . If x = (x0, x1, x2, x3) ∈ C \ { 0 } = C ′ , then necessarily x0 ̸= 0 or x3 ̸= 0 . By symmetry,
we need only study the first case, in which C ′ is (locally) parametrized by the equations

x0 = t0 ̸= 0 , x1 = t1 , x2 =
t21
t0

, x3 =
t31
t20

.

Hence, C is - outside the origin - a two–dimensional manifold but not one–dimensional as the number
of equations might suggest. The reason for this, however, does not lie in an artificial inflation of the
number of equations. If we take, for instance, the cone

C1 = C (P2, P3) ,

then the plane {x2 = x3 = 0 } is contained in C1 , but not in C . For the cone C3 = C (P1, P2) ,
the same reasoning works with the plane {x1 = x2 = 0 } . Of course, from these observations we
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cannot conclude the impossibility to write C in the form C (Q1, Q2) with two polynomials Q1 and
Q2 ; this, in fact, will follow later quite easily once we have some tools at our disposal that will enable
us to analyze more carefully the singularity of C at the vertex.

This example indicates - as we already know - that the Implicit Mapping Theorem is not always
strong enough to unveil the manifold structure of an analytic set. A closer look to it, however, points
to a better criterion: the Rank Theorem. In our example, the Jacobi matrix (∂Pk/ ∂xj) must be of
rank ≤ 2 on C ′ ; in other words: there must exist a nontrivial linear relation between the differentials
dP1 , dP2 and dP3 on C ′ . In fact, the obvious relation

x2 P1 + x0 P2 − x1 P3 = 0

implies on C ′ ∩ {x0 ̸= 0 } the relation

x2 dP1 + x0 dP2 − x1 dP3 = 0 ,

and for C ′ ∩ {x3 ̸= 0 } we can use similarly the identity

x3 P1 + x1 P2 − x2 P3 = 0 .

On the other hand, the Jacobi matrix
x2 −2x1 x0 0

0 x3 −2x2 x1

x3 −x2 −x1 x0


does contain 2× 2 matrices with determinants x2

0 and x2
3 , respectively, which have no common zeros

on C ′ . Therefore, the Jacobi matrix has constant rank 2 along C ′ , and we are at least “infinitesimally
close” to the linear situation of Section 1. - Using Theorem 1 the Rank Theorem (see Chapter 3) implies
the following much stronger result.

Theorem 4.2 Let C = C (P1, . . . , Pm) ⊂ Cn+1 be an algebraic cone, and suppose that, near a point
x ∈ C ′ = C \ { 0 } , the Jacobi matrix (

∂Pk

∂xj

)
1≤k≤m
0≤j≤n

has constant rank r along C ′ . Then the base C is smooth of dimension n − r at [x ] , and C is
smooth of dimension n + 1 − r at all points λx , λ ∈ C∗ .

Figure 4.3
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4.5 The tautological bundle on Pn

We now attach to each point [x ] ∈ Pn the line ℓx in Cn+1 through x and the origin. This construction
confronts us with the first example of a (holomorphic) line bundle, i.e. a family of holomorphically
varying complex lines parametrized by the points of a complex manifold (or a more general analytic
object).

More precisely, we study the set
L ⊂ Cn+1 × Pn

consisting of all points (ξ, [x ]) ∈ Cn+1 × Pn with ξ = 0 or [ ξ ] = [x ] . In other terms,

L = { (ξ, [x ]) ∈ Cn+1 × Pn : there exists λ ∈ C such that ξj = λxj , j = 0, . . . , n } ,

or, even more elegantly,

L = { (ξ, [x ]) ∈ Cn+1 × Pn : ξjxk − ξkxj = 0 , 0 ≤ j < k ≤ n } .

Of course, if π denotes the restriction of the projection Cn+1 ×Pn → Pn to the subspace L , then
π is surjective and

π−1([x ]) = ℓx .

Moreover, on each member Uj of the standard open covering on Pn , n equations suffice to describe
Lj := π−1(Uj) , namely

ξk =
xk

xj
ξj , k ̸= j ,

and this implies at once that Lj is a (n + 1)–dimensional complex submanifold of Cn+1 × Uj . Fur-
thermore, we have a commutative diagram

Uj Cn-
χj

Lj C× Cn-
χj

?

π

?

p

where χj is defined by

χj((ξ, [x ])) = (ξj , t
(j)) , t(j) = χj([x ]) ,

and p denotes the projection to the second factor. An easy exercise shows that χj is invertible and
linear as a map on the fibers

ℓx = π−1([x ]) −→ p−1(χj([x ])) = C .

In conclusion, we infer that in the triple (L, π, Pn) the set L is a complex manifold of dimension
n + 1 , and π is a holomorphic map having one–dimensional linear fibers which can (locally with respect
to Pn ) be trivialized by a simple model of type (C × U, p, U) , where p denotes projection. We call
(L, π, Pn) - or L for short - the tautological (line–) bundle on Pn .

4.6 Holomorphic line bundles on complex manifolds

Generalizing the example in the previous Section to a universal concept, we call a triple (L, π, M) a
holomorphic line bundle on M , if the following conditions are satisfied:

i) L, M are complex manifolds,

ii) π : L → M is a holomorphic map whose fibers Lx = π−1(x) , x ∈ M , have a linear structure,

iii) for each point x0 ∈ M there exists a commutative diagram
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π−1(U) C× U-g

U

πU

@
@

@
@R

p
�

�
�

�	

where U is an open neighborhood of x0 , p is projection and g is a biholomorphic map that
respects the linear structure on π−1(x) = Lx and p−1(x) = C .

For such a line bundle, we sometimes write L
π→ M , or L → M , or even L , if no confusion can

arise. We call two line bundles (L1, π1, M) and (L2, π2, M) isomorphic, if there exists a commutative
diagram

L1 L2
-φ

M

π1

@
@

@
@R

π2

�
�

�
�	

with a biholomorphic map φ preserving the linear structures on L1,x and L2,x for all x ∈ M . In all
our considerations, we can replace a holomorphic line bundle by an isomorphic one; so, we are concerned
in reality with isomorphism classes of such bundles without mentioning this fact all the time.

Like complex manifolds themselves, we can construct line bundles by a scissoring and patching
procedure. Given a line bundle L

π→ M , we have an open covering U = {Uj } of M with trivializations

L|Uj
= π−1(Uj) C× Uj

-gj

Uj

πj = π|Uj

@
@
@

@
@R

p

�
�

�
�

�	

On an intersection Ujk = Uj ∩ Uk , the composite map

C× Ujk

g−1
j−→ π−1

j (Uj ∩ Uk) = π−1
k (Uk ∩ Uj)

gk−→ C× Ukj

is biholomorphic, preserves the product structure and is a linear bijection on each fiber. Therefore, if
(vj , x) denotes points in C× Uj , gk ◦ g−1

j is of the form

gk ◦ g−1
j (vj , x) = (fkj(x) · vj , x) ,

where fkj is a nowhere vanishing holomorphic function on Uj ∩Uk . The system (fkj) , fkj ∈ O∗
M (Uj ∩

Uk) , satisfies the following conditions

i) fjj = 1 for all j ,

ii) fjk =
1

fkj
for all j , k with Uj ∩ Uk ̸= ∅ ,

iii) fℓkfkj = fℓj for all j , k , ℓ with Uj ∩ Uk ∩ Uℓ ̸= ∅ .

We call such a system a holomorphic cocycle with respect to the open covering U . The totality of all
such cocycles is denoted by

Z1(U, O∗
M ) .
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On the other hand, given a cocycle (fkj) , then by patching

C× Uj and C× Uk

along C× Ujk via identifying

(vj , xj) and (vk, xk)

if and only if xk = xj = x and vk = fkj(x) vj , we get a well–defined line bundle on M - which is
isomorphic to L , if we construct it with the help of any system (fkj) that is induced by a trivializing
covering U for L .

It is easily checked using the explicit trivializations given in the previous Section that the tautological
bundle L on Pn belongs to the cocycle

fkj =
xk

xj
∈ O∗

Pn
(Uj ∩ Uk) ,

where [x0 : · · · : xn ] denote homogeneous coordinates on Pn .
We leave it as an exercise to the reader to develop the definition of a holomorphic vector bundle

(V, π, M) of rank r on M which is supposed to have r–dimensional vector spaces as fibers Vx =
π−1(x) , and to build up such bundles via systems (fkj) of invertible r × r–matrices of holomorphic
functions on Uj∩Uk with respect to an open covering U = {Uj } of M , satisfying the matrix relations

fℓk(x) · fkj(x) = fℓj(x) , x ∈ Uj ∩ Uk ∩ Uℓ .

We always refer to the matrices (fkj) as to the transition matrices for the vector bundle. In case r = 1 ,
we have the old notion of a line bundle, where we call the fkj the transition functions.

If we allow the entries of the matrices fkj to be only (real) differentiable (or continuous) functions, we
get the notion of a differentiable (or a topological) vector bundle which even makes sense on differentiable
(or topological) manifolds. In particular, each holomorphic vector bundle carries the structure of a
differentiable bundle, whereas the opposite may fail to hold true.

4.7 The σ - modification

We return to the tautological bundle L on Pn and investigate now the behaviour of L under the
projection from Cn+1 × Pn to the first factor Cn+1 , i.e. we study the composite σ of the canonical
maps

L
i

↪−→ Cn+1 × Pn
q−→ Cn+1 .

From the very definition of holomorphic manifolds and holomorphic maps, we conclude the following
facts:

1. If N is a submanifold of M , then the inclusion i : N ↪→ M is a holomorphic map;

2. projections q : M1 ×M2 → M1 are holomorphic;

3. compositions M1 → M2 → M3 of holomorphic maps are holomorphic.

L being an (n + 1)–dimensional submanifold of Cn+1 × Pn , these facts imply that σ : L → Cn+1 is
a holomorphic map.

Topologically, σ is a proper map (i.e. preimages of compact sets K ⊂ Cn+1 are compact, since

σ−1(K) = L ∩ q−1(K) = L ∩ (K × Pn) ,

Pn is compact and L is closed in Cn+1×Pn ). In particular, the fibers σ−1(ξ) , ξ ∈ Cn+1 , are compact
subsets of L .
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However, there is a dramatic jump of the dimensions of these fibers: While σ−1(ξ) consists of one
point only for all ξ ̸= 0 , the fiber over ξ = 0 is the n–dimensional projective space Pn itself. The
bijective map

σ|σ−1(Cn+1\{0}) : σ
−1(Cn+1 \ { 0 }) −→ Cn+1 \ { 0 }

is moreover biholomorphic, since its inverse is given by

σ−1(ξ) = (ξ, φ (ξ)) ∈ Cn+1 × Pn , ξ ̸= 0 ,

where φ : Cn+1 \ { 0 } → Pn denotes the canonical holomorphic quotient map. (Here, we also use the
trivial fact that a holomorphic map M1 → M2 , which factorizes over a complex submanifold N ⊂ M2 ,
induces a holomorphic map M1 → N) .

To get a precise picture of σ , we compute the closure of

σ−1(ℓξ \ { 0 })

in L for a line ℓξ through ξ ∈ Cn+1 \ { 0 } and the origin which usually is called the strict transform
or the strict preimage of ℓξ in contrast to the total transform, i.e. the full preimage σ−1(ℓξ) . It turns
out that

σ−1(ℓξ \ { 0 }) = { (λ ξ, [ξ]) ∈ Cn+1 × Pn : λ ∈ C } .

Therefore, in some sense, the map σ separates all lines through the origin in Cn+1 in that it modifies
Cn+1 , replacing the origin by the manifold Pn whose points represent the complex directions at 0 ∈
Cn+1 .

A real picture in which also the line bundle structure can be seen is drawn in the next figure.

Figure 4.4

More about the σ–modification and general modifications is found in the next Chapter and in
Chapters 5 and 6.

4.8 Canonical resolution of cones with a smooth base

We are going to apply the diagram
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Pn Cn+1

L

π
�

�
�

�	

σ
@
@

@
@R

to a submanifold C ⊂ Pn (of dimension d ). Because of the local product structure of π , it is clear
that

C̃ := L|C := π−1(C) =
⋃

[x]∈C

(ℓx × [x ])

is a (d + 1)–dimensional submanifold of L which contains a copy of C as a submanifold via the
inclusion

C ∋ [x ] 7−→ (0, [x ]) ∈ C̃ .

The image of C̃ under σ is obviously equal to the affine cone C ⊂ Cn+1 over C :

σ (L|C) =
⋃

[x]∈C

ℓx = C ,

and we have

σ (C̃ \ C) = C \ { 0 } .

Since σ|L\σ−1(0) is biholomorphic onto Cn+1 \ { 0 } , we finally have proved (by using σ for both, the

original map and its restriction to C̃) :

Theorem 4.3 Let C ⊂ Pn be a complex submanifold of dimension d , and let C ⊂ Cn+1 denote the
corresponding affine cone. Then one can construct in a canonical way a (d + 1)–dimensional complex

manifold C̃ together with a proper holomorphic map

σ : C̃ −→ C

such that

i) σ−1(0) is a submanifold of C̃ which is biholomorphic to C ,

ii) the restriction of σ to C̃ \ σ−1(0) is a biholomorphic map onto C ′ = C \ { 0 } .

In particular, C ′ is smooth of dimension d + 1 (in fact, it is a complex submanifold of Cn+1 \ { 0 }).

In a certain sense, the (possibly) singular vertex of such a cone C disappears, if one replaces the
origin by the base C . This is our first example for the process of resolving singularities.

The following picture gives an idea of the geometrical content of Theorem 5 (herein, C is just the
union of two different points in P1 ).
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Figure 4.5

We should add here the remark that the a priori more general complex analytic cones that are
treated in the present Section are nevertheless algebraic in the sense of our definition in Section 1. This
statement is equivalent to Chow’s Lemma (see the Appendix to this Chapter).

4.9 Sections in holomorphic line bundles

In the next three Sections we endeavor to give a description of the resolution σ : C̃ → C completely
in terms of the line bundle L (restricted to the submanifold C ). It turns out that the holomorphic

functions on C̃ = L|C that we need in order to form σ can be constructed from holomorphic sections
in the dual bundle of L .

A holomorphic section of a holomorphic vector bundle F
π→ M on an open set U ⊂ M is a

holomorphic map s : U → F with π ◦ s = id . Such a section s can be thought of as being a family
of vectors s (x) ∈ Fx = π−1(x) , x ∈ U , varying holomorphically with x ∈ U .

F

π

s
M

U

Figure 4.6

If F is given (on U , say) by transition matrices fkj with respect to a covering U , then sj = s|Uj

can be represented by an r–tuple of holomorphic functions sj = (s1j , . . . , s
r
j) on Uj in the sense that

for the trivialization F|Uj

∼−→ Cr × Uj the diagram
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F|Uj
Cr × Uj-∼

Uj

s
@
@
@
@R

x 7→ (sj(x), x)
�

�
�

�	

commutes, and that on Uj ∩ Uk these local representations satisfy the compatibility condition

tsk(x) = fkj(x) · tsj(x) .

The set of all such sections could be denoted by the somewhat clumsy symbol

OM (F ) (U) .

We prefer to use from now on the cohomological notations

H0(U, OM (F )) or H0(U, O (F ))

(the zeroth cohomology group of U with values in the sheaf of holomorphic sections in the vector
bundle F ). We shall have to say more on cohomology groups with values in sheaves later.

As a matter of fact, the set H0(U, O (F )) is canonically endowed with a group structure, since
sections can be added fiberwise. They can be multiplied by constants c ∈ C and, moreover, by holo-
morphic functions f ∈ OM (U) ; it is easily checked that H0(U, O (F )) is a (unitary) O (U)–module
with respect to this operation.

In particular, we have always the zero-section in F over any set U , i.e. the zero element of
H0(U, O (F )) . As a map, this section embeds M into F as a submanifold (see the picture on the
preceding page).

If we take the trivial line bundle C × M → M , then holomorphic sections are nothing else but
holomorphic functions. For this reason, we write

H0(U, O) instead of H0(U, O (C×M))

and identify O (U) with H0(U, O) .
Given any line bundle L on a manifold M , we can form new bundles by raising the transition

functions fkj of L to a fixed power ℓ ∈ Z . One can show that (the isomorphism classes of) these
bundles do not depend on the special choice of a trivializing covering. We denote them by Lℓ or L⊗ℓ ;
in particular, L⊗1 is equal to L , and L⊗0 is the trivial bundle. L⊗−1 is also denoted by L∗ , the dual
bundle of L .

As an Example, we consider the dual bundle H = L∗ of the tautological bundle L on Pn and its
powers H⊗ℓ . In algebraic geometry, the notions

O (ℓ) = O (H⊗ℓ) , O (−ℓ) = O (L⊗ℓ) , ℓ ≥ 0 ,

are in common use. So we ask: what are the elements in H0(Pn, O (ℓ)) , ℓ ∈ Z ? For ℓ ≥ 0 , we take a
homogeneous polynomial of degree ℓ in the variables x0, . . . , xn :

P =
∑
|ν|=ℓ

aν x
ν0
0 · . . . · xνn

n .

Such a polynomial does not define a function on Pn , but by dividing out xℓ
j we get well–defined

holomorphic functions

sj =
P

xℓ
j

=
∑
|ν|=ℓ

aν

(
x0

xj

)ν0

· . . . ·
(
xj

xj

)νj

· . . . ·
(
xn

xj

)νn
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on Uj for all j which satisfy the relations

sk =

(
xj

xk

)ℓ

· sj = f−ℓ
kj · sj .

Hence, each homogeneous polynomial of degree ℓ ≥ 0 determines an element in H0(Pn, O (ℓ)) . One
can show that this correspondence is bijective and respects the H0(Pn, O) = C–module structure:

H0(Pn, O (ℓ)) , ℓ ≥ 0 , is canonically isomorphic to the C–vector space of all homogeneous polynomials
of degree ℓ in n + 1 variables. In particular, we have

dimC H0(Pn, O (ℓ)) =

(
n + ℓ

ℓ

)
.

Since in general there exist no distinguished local trivializations of a line bundle, it does not make
sense to speak of the value of a section at a point x . However, there is an intrinsic meaning for saying
that s vanishes at x of order k . Especially in case ℓ = 1 , each nontrivial section of H , being
determined by a nontrivial linear form, vanishes of precisely first order on a hyperplane in Pn , and
each hyperplane is the exact vanishing locus of a suitable section. This is the reason why H is called
the hyperplane bundle on Pn .

It is easily shown by Taylor expansions on the Uj that one has

H0(Pn, O (ℓ)) = 0 , ℓ < 0 .

We usually refer to this fact by saying that O (ℓ) has no sections for ℓ < 0 , by what we mean, of
course, that it has no nontrivial holomorphic sections. There are necessarily nontrivial meromorphic
sections in O (ℓ) , ℓ < 0 , namely the inverses of sections in O (−ℓ) .

4.10 Very ample line bundles

Let now L denote again an arbitrary holomorphic line bundle on a compact complex manifold M .
Then we have, as in the case M = Pn , that H0(M, O) ∼= C by applying the Maximum Principle for
holomorphic functions. Moreover, the following Finiteness Theorem holds true:

*Theorem 4.4 For a holomorphic line bundle L on a compact complex manifold M , the C–vector
space H0(M, O (L)) is finite dimensional.

We assume that H0(M, O (L)) ̸= 0 , and choose a basis s0, . . . , sN of that finite dimensional vector
space. As we mentioned already in the previous Section, the vector (s0(x), . . . , sN (x)) ∈ CN+1 has a
meaning only after we have chosen a trivialization of L near x . But taking another trivialization causes
only the multiplication of (s0(x), . . . , sN (x)) by a nonzero factor γ (x) ∈ C . Therefore, we can state:

In the situation above, we get a well–defined holomorphic map

s : M \ Z −→ PN , Z = {x ∈ M : s0(x) = · · · = sN (x) = 0 } ,

by sending x to [ s0(x) : · · · : sN (x) ] (in any local trivialization of L near x ).
It is clear that the zero set Z does only depend on the line bundle L rather than on the special

choice of a basis for H0(M, O (L)) , and that the map s : M \Z → PN is uniquely determined by L
up to a projective linear automorphism of PN (i.e. an automorphism of Pn which is induced from a
linear automorphism of Cn+1) .

The points x ∈ Z are classically called base points of L . If Z = ∅ , L is said to be base point free.
A holomorphic line bundle L on M without base points is called very ample, if the holomorphic map

s : M −→ PN



4.11 The resolution of cones with smooth base, revisited 105

is injective and has everywhere constant rank equal to the dimension of M . By the definition of complex
submanifolds, this implies that M can be identified with the complex analytic submanifold s (M) in
PN ; that is: M is necessarily a projective algebraic manifold. (Notice that this argument yields a priori
only the insight that s (M) is locally a complex manifold. But since M is compact, its image s (M)
is closed in PN ).

It is easily shown that the positive powers of the hyperplane bundle H on Pn are all very ample.
The sections of H⊗ℓ embed Pn into PN , where

N =

(
n + ℓ

ℓ

)
− 1 ;

the image of Pn in PN is called the Veronese or Veronese embedding .

4.11 The resolution of cones with smooth base, revisited

Taking up our former symbols, we denote by C an arbitrary compact complex manifold and by L
a holomorphic line bundle on C , whose dual L∗ is now supposed to be very ample. Moreover, let
s : C → Pn be the embedding supplied by the sections of L∗ . It is clear that each vector bundle F
on a manifold N can be lifted under holomorphic maps f : M → N in a unique manner to a bundle
f∗F on M (we just lift the transition matrices). Since the coordinate “functions” xj on Pn lift to sj
on C via the map s , we can easily prove that L∗ = s∗H , where H denotes the hyperplane bundle
on Pn . Or, in other words: If we identify C with its image s (C) ∈ Pn , then L∗ is (isomorphic to)
the restriction H|C . (For a submanifold M ⊂ N and a vector bundle F on N , the restriction F|M
is the same as the bundle i∗F , where i : M ↪→ N denotes inclusion).

We can now formulate Theorem 3 in a somewhat more precise manner:

Theorem 4.5 Let L → C be a holomorphic line bundle on a compact complex manifold C such
that L∗ is very ample. Let (s0, . . . , sn) be a basis of H0(C, O (L∗)) , and denote by s : C → Pn

the corresponding holomorphic embedding. Then the affine cone C over s (C) can be resolved by L
(viewed as a manifold) via the map L → C which is induced by the canonical map

σ = (s0, . . . , sn) : L −→ Cn+1

(where sections in H0(C, O (L∗)) are interpreted as holomorphic functions on L which are linear on
the fibers of L ).

Only the last sentence needs an explanation: If L is given by a cocycle (fkj) , then a section s of
L∗ is represented by holomorphic functions s(j) ∈ O (Uj) such that

s(k) = f−1
kj s(j) on Uj ∩ Uk .

The coordinates vj with respect to a trivialization C× Uj of L satisfy the conditions

vk = fkj vj .

Hence, s := s (x, vj) = s(j)(x) vj , x ∈ Uj , is well-defined on L , holomorphic and linear along the
fibers.

4.12 The cone over the rational normal curve of degree n

According to our low dimensional aims, we are mainly interested in cones over complex curves. The
simplest abstract compact complex manifold of dimension one (Riemann surface) is projective space
P1 , the Riemann sphere. We can realize it as a submanifold of Pn via the n–th power of the hyperplane
bundle H → P1 . Our goal in this Section is to compute explicitly the resolution of the corresponding
algebraic cone.
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If uj denotes the coordinate of Uj
∼= C with respect to the standard covering U = {U0, U1 }

of P1 , then the total space of H⊗n can be constructed directly by patching two copies of C2 with
coordinates (u0, w0) and (u1, w1) by the rule

u0 =
1

u1

w0 =
w1

un
1

(u1 ̸= 0) .

The n + 1 independent sections in H⊗n are given in local coordinates by

sj = (uj
0 , u

n−j
1 ) , j = 0, . . . , n ,

sucht that the induced map s : P1 → Pn is described on U0
∼= C by

U0 ∋ u0 7−→ (u0, u
2
0, . . . , u

n
0 ) ∈ Cn ∼= U0 ⊂ Pn .

Using homogeneous coordinates [ ξ0 : ξ1 ] on P1 , the map s can also be written as

[ ξ0 : ξ1 ] 7−→ [ ξn0 : ξn−1
0 ξ1 : · · · : ξn1 ] .

From these descriptions it is deduced very easily that s is injective and of constant rank 1 , as we
claimed in Section 12.

It is customary to call the image s (P1) the rational normal curve of degree n in Pn . Here, the
term “rational” refers to the fact that s (P1) is biholomorphic to the rational curve P1 ; s (P1) is called
“of degree n”, since almost all hyperplanes in Pn cut s (P1) in exactly n points. We shall prove in
Chapter 6 that the cone C over s (P1) has at the vertex an isolated singularity which is a quotient of
C2 by the action of a cyclic group of order n , whence a normal singularity. C is obviously realized in
Cn+1 as the locus of common zeros of the polynomials

xjxk − xj+1xk−1 , 0 ≤ j , k ≤ n , j ≤ k − 2 .

In particular, for n = 2 , we have the A1–singularity

x0x2 − x2
1 = 0 .

For n = 3 , we meet again the example given in Section 6.

The dual bundle of H⊗n whose total space provides us with a resolution C̃ of the affine cone
emerges by patching

C2 ∋ (u0, v0) ∼ (u1, v1) ∈ C2

if and only if {
u0 = u−1

1

v0 = un
1 v1

(u1 ̸= 0) .

On this manifold, the n + 1 functions of Theorem 5 are the following:

s0 = un
0 v0 = v1 , s1 = un−1

0 v0 = u1v1 , . . . , sn = v0 = un
1 v1 .

It is obvious that s = (s0, . . . , sn) : C̃ → Cn+1 factorizes over C and that it pushes the set

P1
∼= { v0 = v1 = 0 } ⊂ C̃

down to the origin.
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4.13 Resolution of singularities of determinantal varieties

It is an illuminating exercise to resolve the singularities of the hypersurface

H = M (n−1)(n× n, C) ⊂ M (n)(n× n, C) = Cn×n , n ≥ 2 .

Quite naturally, one is tempted to study the space

H̃ = { (A, x) ∈ H × Cn : Ax = 0 } .

Since rank A ≤ n − 1 for A ∈ H , the linear space {x ∈ Cn : Ax = 0 } is not trivial; therefore we
have a well–defined closed analytic subspace

H̃ = { (A, [x ]) ∈ H × Pn−1 : Ax = 0 } ⊂ H × Pn−1

such that the restriction of the projection H × Pn−1 → H to H̃ is necessarily a proper surjective
holomorphic map

(∗) π : H̃ −→ H .

We leave it as an Exercise to the reader to convince himself or herself that H̃ is in fact a smooth
submanifold of M (n)(n× n, C)× Pn−1 = Cn×n × Pn−1 of dimension n2 − 1 . To be a little bit more
precise, the Jacobi matrix of the map (x, A) 7→ Ax is of the form

J :=
(
A B

)
,

where B is the n× n2–matrix
x1 · · · xn 0 · · · 0 · · · · · · 0 · · · 0

0 · · · 0 x1 · · · xn · · · · · · 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0 · · · · · · x1 · · · xn

 .

Consequently, rank J = n for all A and x ̸= 0 with Ax = 0 (such that necessarily rankA ≤ n− 1 ).
Therefore, by the Implicit Function Theorem, the fiber of the map (Cn \ { 0 }) × M (n)(n × n, C) ∋
(x, A) 7→ Ax ∈ Cn over the origin is a submanifold of dimension n2 + n − n = n2 . This immediately

implies that H̃ , which is the quotient of this fiber by the natural action of C∗ on the first factor, is a
smooth (sub)manifold of dimension n2 − 1 .

If A ̸∈ sing H , then rankA = n − 1 and {x ∈ Cn : Ax = 0 } is 1–dimensional, thus defining a
point in Pn−1 . Hence,

π

∣∣∣∣π−1(H \ sing H)
: H̃ \ π−1(sing H) −→ H \ sing H

is bijective and moreover, as one can easily prove as in the exercise just proposed, biholomorphic. - In
conclusion, we can state the following theorem.

Theorem 4.6 The map π : H̃ → H is a resolution of the singularities of

H = {A ∈ M (n× n, C) : det A = 0 } .

It is interesting to study the manifold H̃ ⊂ M (n × n,C) × Pn−1 under the projection to Pn−1

more closely. If x ∈ Cn \ { 0 } is a representative of [x ] ∈ Pn−1 , the matrices A ∈ M (n× n, C) with

Ax = 0 form a vector space of dimension n2 − n = n (n − 1) . In fact, the map H̃ → Pn−1 exhibits

H̃ as a vector bundle of rank n2 − n .
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We prove the last statement in case n = 2 , identifying the rank 2–bundle H̃ → P1 in a more
specific way. For x = (x0, x1) , x1 ̸= 0 , all 2× 2–matrices killing x are of the form λ0 −λ0

x0

x1

λ1 −λ1
x0

x1

 , (λ0, λ1) ∈ C2 .

Correspondingly, we have for x = (x0, x1) , x0 ̸= 0 , the matrices µ0
x1

x0
−µ0

µ1
x1

x0
−µ1

 , (µ0, µ1) ∈ C2 .

This shows that H̃ → P1 can be identified with a vector bundle of rank 2. On the intersection
x0x1 ̸= 0 , we necessarily have

λ0 = µ0
x1

x0
, λ1 = µ1

x1

x0
.

Therefore, we see that

H̃ = OP1
(−1)⊕OP1

(−1)

as a bundle over P1 . Writing a general 2× 2–matrix in the form(
ξ1 + ξ2 ξ3 + s

ξ3 − s ξ1 − ξ2

)

we get a concrete resolution of the 3–dimensional A1–singularity given by the equation

(∗∗) ξ21 − ξ22 − ξ23 + s2 = 0 .

This can be thought of as being a one–dimensional deformation of the 2–dimensional A1–singularity

ξ21 − ξ22 − ξ23 = 0

with the parameter s . In fact, it is a 2 : 1–covering of the versal deformation which is given by the
equation

ξ21 − ξ22 − ξ23 + t = 0 ;

(c.f. the Appendix to Chapter 5). Moreover, it is easily checked that the fiber of H̃ over any s is smooth
and resolves the singularities of the fiber of (∗∗) over s . The existence for such a simultaneous resolution
of the versal deformation (after finite base change) is characteristic for the rational double points (c.f.
Chapter 16). Clearly, restricting our considerations to the special fiber over s = 0 , i.e. to the subspace
{ a12 = a21 } of symmetric 2 × 2–matrices whose determinantal variety has an A1–singularity in C3

at the origin, we must put

λ1 = −λ0
x0

x1
.

Therefore, we get again a resolution of the A1–singularity as a line bundle over P1 . In local fiber
coordinates λ0 , −µ1 , we find

−µ1 = −λ1
x0

x1
= λ0

(
x0

x1

)2

,

such that this bundle is, as we know, isomorphic to the bundle OP1
(−2) .
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4.A Appendix: Algebraicity criteria

4.A.1 Analytic cones

By a (local) analytic cone we understand an analytic set C ⊂ Cn (resp. an analytic set defined in a
neighborhood of the origin 0 ∈ Cn ) satisfying the condition

C ∋ x =⇒ t x ∈ C for all t ∈ C (resp. with | t | ≤ ε ).

It is plain that algebraic cones are necessarily analytic. The converse is true but not obvious. We give
a more precise statement and an outline of the proof.

Theorem 4.7 Let X ⊂ Cn be a cone. Then the following are equivalent :

i) X is algebraic ;

ii) X is analytic ;

iii) X is locally analytic ;

iv) X is locally near 0 the zero set of finitely many homogeneous polynomials ;

v) X is the zero set of finitely many homogeneous polynomials.

Proof . It is plain that v) =⇒ i) =⇒ ii) =⇒ iii). To show iv) =⇒ v) we assume that there are a
neighborhood U = U (0) and finitely many homogeneous polynomials P1, . . . , Pℓ such that

X ∩ U = A ∩ U , A = {x ∈ Cn : P1(x) = · · · = Pℓ(x) = 0 } .

Clearly, A is an (algebraic) cone. The conclusion then follows from the following general

Lemma 4.8 Suppose that X, Y are cones in Cn with X ∩U ⊂ Y ∩U for a certain neighborhood U
of 0 ∈ Cn . Then, X ⊂ Y .

Proof . Obviously, 0 ∈ X ∩ Y . So, let x ∈ X be different from zero. Then, for a certain t ∈ C∗ , t x ∈
X ∩ U ⊂ Y ∩ U ⊂ Y , and therefore x = t−1(t x) ∈ Y . □

It remains to show iii) =⇒ iv). This conclusion follows from the slightly more general

Lemma 4.9 Let X be an analytic subset of a ball B = B (0, R) with C×X ∋ (t, x) 7→ t x ∈ X for all
t ∈ C with | t | < ε , ε > 0 . Then, there exist homogeneous polynomials P1, . . . , Pℓ ∈ C [x1, . . . , xn ]
such that

X ∩B′ = {x ∈ B′ : P1(x) = · · · = Pℓ(x) = 0 } , B′ = B (0, R′) , 0 < R′ < R

sufficiently small.

Proof . After choosing R sufficiently small we may assume that

X = { f1(x) = · · · = fr(x) = 0 , f1, . . . , fr ∈ O (B) } .

Define Fj(t, x) := fj(t x) for | t | < ε ≤ 1 and x ∈ B . Clearly, Fj is a holomorphic function on
D×B , D = { | t | < ε } ⊂ C . Since 0 = 0x ∈ X for x ∈ X , Fj(0, x) = 0 for all x ∈ B . Expanding
Fj for fixed x ∈ B into a power series in t , we get a convergent series

Fj(t, x) =

∞∑
k=1

fjk(x) t
k
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with holomorphic functions

fjk =
1

k!

∂kFj

∂tk

∣∣∣∣
t=0

on B . Expanding fj near 0 in a convergent power series

fj(x) =

∞∑
k=1

Pjk(x) , Pjk(x) =
∑
|α|=k

cα xα ,

we have

Fj(t, x) =

∞∑
k=1

Pjk(t x) =

∞∑
k=1

Pjk(x) t
k .

In particular, fjk(x) = Pjk(x) is a (globally defined) homogeneous polynomial of degree k .

Now, it is easily seen that fjk(x) = 0 for all j, k and x ∈ X ∩ B : Assume that this is true for all
k ≤ κ ; then,

fj(t x) = Fj(t, x) =

∞∑
k=κ+1

fjk(x) t
k = tκ+1

∞∑
k=κ+1

fjk(x) t
k−(κ+1) = 0

for all x ∈ X ∩B , 0 < | t | < ε , hence

∞∑
k=κ+1

fjk(x) t
k−(κ+1) = 0 , x ∈ X ∩B , 0 < | t | < ε .

Forming the limit for t → 0 , we immediately see that

fj,κ+1(x) = 0 , x ∈ X ∩B .

Hence, X ⊂ {x ∈ B : fjk(x) = 0 , j = 1, . . . , r , k = 1, . . . ,∞} . On the other hand, if x ∈ B′ =
B (0, R′) and fjk(x) = 0 for all j, k , R′ sufficiently small, then

fj(x) =

∞∑
k=1

Pjk(x) =

∞∑
k=1

fjk(x) = 0 .

Therefore,
X ∩B′ = {x ∈ B′ : fjk(x) = 0 , j = 1, . . . , r , k = 1, . . . ,∞} .

Finally, the ideal in OCn,0 generated by the germs of the functions fjk at 0 will be generated by
finitely many of them which we call P1, . . . , Pℓ . Shrinking B′ again if necessary, we see that

X ∩B′ = {x ∈ B′ : Pλ(x) = 0 , λ = 1, . . . , ℓ } . □

4.A.2 Chow’s Lemma

This is one of the most prominent algebraicity results, sometimes also referred to as the Theorem of
Chow :

*Theorem 4.10 Each analytic subset A ⊂ Pn is algebraic; i.e. it is equal to the base of an algebraic
cone C ⊂ Cn+1 .

A proof of this result can be given along these lines: Let φ : Cn+1 \ { 0 } → Pn denote the canonical
map as usual, and put C ′ = φ−1(A) . Since φ is a holomorphic map, C ′ is an analytic subset of
Cn+1 \ { 0 } , whose closure C in Cn+1 is clearly equal to C ′ ∪ { 0 } . In view of the preceding Section,
the claim amounts to maintaining that the closure C is an analytic subset locally near the origin. This
is indeed a consequence of the Extension Theorem for Analytic Sets which we do not want to formulate
at the moment.
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4.A.3 Artin’s algebraicity criterion

By Chow’s Lemma, any analytic cone is algebraic in the sense that it can be described near the vertex
by the vanishing of polynomials instead of holomorphic functions. An analytic set A ⊂ U ⊂ Cn is
called algebraizable at a point x(0) ∈ A , if, after an analytic change of coordinates near x(0) , the
set A is algebraic in the new coordinates. Examples of such points are smooth ones, but also isolated
hypersurface singularities (see Chapter 1.10). Perhaps surprisingly, even the following holds true:

*Theorem 4.11 (M. Artin) An arbitrary analytic set is algebraizable at any of its isolated singular
points.

There is no need for applications of this result in our book, though it is present all the time in so
far as only polynomials will show up in concrete examples.

Notes and References

In this Chapter we crossed the borderline between the realm of complex analytic and that of (projective)
algebraic geometry for the first but not for the last time. That such a fluctuation in language or style
is more or less unavoidable should be absolutely clear from the results we mentioned in the Appendix.
There, however, we touched only the tip of an iceberg compound by the results of type GAGA, as
thoroughly explained by

[04 - 01] J. P. Serre: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6, 1-42 (1956).

For instance, it is no accident that the transition functions for the hyperplane bundle on Pn are rational.
This example only reflects the fact that all holomorphic vector bundles on projective algebraic manifolds
(and, more generally, on projective algebraic varieties) are indeed naturally equipped with an algebraic
structure.

Due to our education, our treatment will be anchored in the complex analytic category; but yet
we shall use methods from Local Algebra, Commutative Algebra, Homological Algebra and Algebraic
Geometry, whenever we can simplify arguments in this way. No attempt will be made, however, to cover
the corresponding algebraic questions for (algebraically closed) ground fields k of characteristic p > 0 .

From this point of view, the most helpful accompanying text on Algebraic Geometry for the reader
of the present treatise should be

[04 - 02] Ph. Griffiths, J. Harris: Principles of Algebraic Geometry. Pure and Applied Mathematics,
New York–Chichester–Brisbane–Toronto: John Wiley & Sons 1978

where also most of the material on Complex Analytic Geometry can be found. Occasionally, we will
consult the other now standard textbooks on this subject:

[04 - 03] R. Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics 52, New York–
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Wissenschaften 227, Berlin–Heidelberg–New York–Tokyo: Springer–Verlag 1977.



112 Chapter 4 Notes and References

We will have the opportunity to come back to such questions in connection with Grauert’s much
more general Coherence Theorem for Direct Image Sheaves in the Supplement.

The outline for the proof of Chow’s Lemma follows [01 - 01], p.184; see also [01 - 10], pp. 171–172.
Artin’s algebraicity criterion was proved in

[04 - 07] M. Artin: Algebraic approximation of structures over complete local rings. Publ. Math. IHES
36 , 23–58 (1969).

More on analytic cones can be found in
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