




Chapter 3

Übrigens war diese Zusammenschau ihrer, der Spiegelköpfe, Werk und Lehrbe-
hauptung; sie waren nach ihrer eigenen Aussage sehr stark im Zusammen-
schauen und darin, alle möglichen Gau- und Ortsbeschirmer dem Atum-Rê-
Horachte von On gleich zu achten, der seinerseits schon eine Zusammenschau
und Sternbildfigur ursprünglich eigenständiger Numina war. Aus mehrerem
eins zu machen, war ihr Vorzugsbetreiben, ja, wenn man sie hörte, gab es im
Grunde nur zwei große Götter: einen der Lebenden, das war Hor im Licht-
berge, Atum-Rê; und einen Totenherrn, Usir, das thronende Auge. Das Auge
aber war auch Atum-Rê, nämlich das Sonnenrund, und so ergab sich bei zuge-
spitztem Denken, daß Usir der Herr der Nachtbarke war, in welche, wie jeder-
mann wußte, Rê nach Untergang umstieg, um von Westen nach Osten zu fahren
und den unteren zu leuchten. Mit anderen Worten: auch diese beiden großen
Götter waren genau genommen ein und derselbe. Wenn aber der Scharfsinn
solcher Zusammenschau zu bewundern war, so war es nicht minder die Kunst
der Lehrer, niemanden dabei zu kränken und ungeachtet ihres identifizierenden
Betreibens die tatsächliche Vielheit der Götter Ägyptens unangetastet zu lassen.
Das gelang ihnen vermittels der Wissenschaft vom Dreieck [...], der schönen
Figur der Zusammenschau.

(Thomas Mann, Joseph in Ägypten)
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Chapter 3

The Preparation Theorem of Weierstraß

In the present Chapter we discuss several equivalent formulations of the Preparation and Division
Theorems in the analytic, formal and differentiable context and derive from them some standard results
on the local algebras we are interested in this text as well as a final exact definition and characterization
of what we mean by a “singularity”. The proof of these theorems will be given at the end of the
Chapter via the Polynomial Preparation Theorem in the analytic case; the differentiable situation will
be considered in the Appendix.

3.1 The Division and the Preparation Theorem

For any polynomial G ∈ K [ t ] with deg G = b one has the well known phenomenon of division with
remainder : for each F ∈ K [ t ] there exist (uniquely determined) polynomials Q, R with

F = QG + R , deg R < b .

Let now Rn , n ≥ 1 , be either of the rings En,0 , On,0 , Õn,0 with distinguished variable xn .
Then, denoting by Rn−1 the corresponding ring with respect to the variables x1, . . . , xn−1 , we have
obviously an inclusion of rings

Rn−1[xn ] ⊂ Rn ;

let deg always denote in the sequel the xn–degree of a polynomial in Rn−1[xn ] . We want to study
such a division problem also in the rings Rn : For which g ∈ Rn , g ̸= 0 , is the Division Theorem true
in the following form ?

There exists a number a = a (g) such that for all f ∈ Rn there exist elements q ∈ Rn , r ∈
Rn−1[xn ] , deg r < a , with

f = q g + r .

Definition. If g satisfies the above condition we say that the Division Theorem or the Weierstrass
formula holds for g in degree a .

We first want to deduce a necessary condition for such elements g . Let f = xan and write

xan = q g + r , deg r < a .

If we put h̃ (xn) := h (0, . . . , 0, xn) ∈ R1 for arbitrary h ∈ Rn , we have in particular h̃ ∈ K [xn ] for
h ∈ Rn−1[xn ] . Hence, in the equation above,

q̃ · g̃ = xan − r̃ ∈ K [xn ]

is a polynomial of degree a ; in particular, g̃ ̸= 0 , and via a–fold differentiation one concludes by the
Leibniz rule that not all derivatives of g̃ of order ≤ a can vanish at the origin. Therefore, g̃ possesses
a finite vanishing order b ≤ a such that

g̃ (xn) = g (0, xn) = unit · xbn .
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In the analytic and formal situation this can be established much faster by a power series argument.

Definition. An element g ∈ Rn , n ≥ 1 , is called xn–generic (or xn–regular , xn–distinguished) of
degree b if

g̃ (xn) = g (0, xn) = c xbn + term of higher order , c ̸= 0 ,

i.e. if g̃ has a finite vanishing order (viz. b ) in 0 .

It is clear that if g is xn–generic of degree 0 then g (0) ̸= 0 and thus g is a unit. But for a unit
one always has f = (f g−1) g + 0 . We therefore can assume in the following that b ≥ 1 .

Remark . In the real– and complex analytic case it is easy to see that each element g ̸= 0 in the
maximal ideal of Rn is, after a so called transvection (i.e. a linear transformation of type xj 7→
xj , j = 1, . . . , n − 1 , xn 7→ xn +

∑n−1
j=1 cj xj ), generic with respect to the variable xn . (Otherwise,

g = 0 due to the Identity Theorem). However, in the differentiable situation this is not correct. One
can obviously make a germ g generic only if it has a finite vanishing order, i.e. if it has a non vanishing
Taylor series. But this is also sufficient: Under this assumption, there exists a smallest integer b with
g ∈ mb

n , g ̸∈ mb+1
n . Write, using Taylor’s formula,

g = φ + ψ ,

where φ is a (nonvanishing) homogeneous polynomial of degree b and ψ ∈ mb+1
n . Choose an element

a ∈ Kn with φ (a) ̸= 0 and a linear isomorphism L of Kn such that L (0, . . . , 0, 1) = a . Then,

(g ◦ L) (0, . . . , 0, xn) = g (xna1, . . . , xnan) = xbn φ (a) + ψ (xna)

with ψ (xna) ∈ mb+1
1 . – This argument, of course, also works in the analytic case.

The aim of the present Chapter is to clarify the logical connections between the Division Theorem
which we state next and some other central results. The proof of the Division Theorem (and consequently
of all forms which are shown to be equivalent in this Chapter) will be given later.

Theorem 3.1 (Division Theorem) If g ∈ Rn , n ≥ 1 , is xn–generic of order b ≥ 1 then the
Division Theorem holds for g in degree b . In the analytic case, one has uniqueness of the Weierstraß–
decomposition.

Remark . For the formal power series algebra Rn = Õn,0 this statement is not difficult to prove. The
analytic case is classical (see, in particular with respect to uniqueness, the last Section), the differentiable
case, however, was only successfully treated during the middle of the last century. The first proofs in
this context are due to Malgrange and Mather (see the Appendix).

We first show that the Division Theorem implies the Preparation Theorem.

Theorem 3.2 (Preparation Theorem) If g ∈ Rn , n ≥ 1 , is xn–generic of degree b ≥ 1 then
there exists a polynomial

ω = xbn + a1(x
′)xb−1

n + · · ·+ ab(x
′) ∈ Rn−1[xn ] , x′ = (x1, . . . , xn−1) ,

and a unit e ∈ Rn satisfying g = e ω .

Remarks. 1. We call ω a Weierstraß polynomial of degree b . Necessarily, a1(0) = · · · = ab(0) =
0 , 0 ∈ Kn−1 , since

xbn + a1(0)x
b−1
n + · · ·+ ab(0) = ω (0, xn) = c · xbn + terms of higher order , c ̸= 0 .

2. For uniqueness of the Weierstraß decomposition in the analytic category c.f. Theorem 57.

The proof of the Preparation Theorem via the Division Theorem is most simple. Let g be xn–generic
of degree b and write xbn = q g + r , deg r < b , q g = xbn − r =: ω . Then q̃ g̃ = ω̃ = xbn − r̃ ,
but without loss of generality g̃ = xbn+ terms of higher order. Then, q̃ cannot vanish at 0 , i.e. q̃ and
thus q also are units. □
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3.2 The Excellence Theorem

Surprisingly, there are many more, at first glance completely different, manifestations of the Division
Theorem. To obtain them, we have to introduce some rather general algebraic notions whose geometric
importance shall be worked out later.

Let A, B be local K–algebras with a local homomorphism φ : A→ B . If M is a given B–module,
we can define with the help of φ via am := φ (a)m, a ∈ A , m ∈M , the structure of an A–module
on M ; we sometimes write in this situation MA instead of M . We are interested in conditions on the
homomorphism φ which imply that any finitely generated module M on B - eventually assuming some
mild properties of MA - is also finitely generated on A . Recall the following definition in Chapter 2.

Definition. A module M on B is called finitely generated (or, sometimes, a finite B–module for short)
if there exist elements m1, . . . ,mr ∈M such that each element m ∈M can be written in the form

m =

r∑
j=1

bj mj , b1, . . . , br ∈ B .

We call a homomorphism φ : A → B finite if B is a finite A–module via φ .

Remarks. 1. Every surjective homomorphism is finite.

2. The canonical inclusion Rn−1 ↪→ Rn is not finite.

The following is a trivial criterion.

Lemma 3.3 If φ : A → B is a finite homomorphism then every finitely generated B–module M is
finitely generated on A . In particular, compositions of finite homomorphisms are again finite.

Proof . If m1, . . . ,mr is a system of generators of M over B and b1, . . . , bs are generators for B on
A then the finite system { bkmj : j = 1, . . . , r, k = 1, . . . , s } generates the module MA . □

Remark . If φ is an arbitrary local homomorphism and MA is finitely generated then so is M .

Definition. The B–module M is called quasi–finite if the B/mB = K–vector space M/mBM is finite
dimensional. A homomorphism φ : A → B is called quasi–finite if B is a quasi–finite A–module via
φ , i.e. if B/mAB is a finite dimensional K–vector space. M is called quasi–finite over A if MA is a
quasi–finite A–module.

Remarks. 1. Recall that for an ideal b ⊂ B and a submodule N ⊂ M the symbol bN denotes the
smallest submodule of M containing all products b n , b ∈ b , n ∈ N . It consists precisely of all finite
sums of such products b n .

2. If M is finitely generated over B then M/mBM is a finite dimensional K–vector space, i.e. M
is quasi–finite. In particular, every finite homomorphism is quasi–finite. The converse is not true in
general.

3. It is easily seen that
MA/mAMA

∼= M/ (mAB)M =: M/mAM

as vector spaces on A/mA
∼= K .

Lemma 3.4 If the B–module M is quasi–finite over A it is so on B .

Proof . Since φ is a local homomorphism, we have (mAB)M ⊂ mBM . Consequently, there is a canonical
epimorphism from M/mAM onto M/mBM . □

Definition. The local homomorphism φ : A → B is called excellent if every finitely generated B–
module M which is quasi–finite over A is actually finite on A ; i.e. if the following implication is
valid:

dimKM/mAM < ∞ =⇒ MA is finitely generated over A .
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Lemma 3.5 Let φ : A → B be excellent and quasi–finite. Then φ is finite.

Proof . Put M = B . □

For our considerations the next theorem is extremely useful.

Theorem 3.6 (Special Excellence Theorem) The substitution homomorphisms

φ : Rm −→ Rn

are excellent (in the analytic and differentiable category).

Remark . This is in the differentiable context the Division Theorem à la Mather.

The Special Excellence Theorem is indeed equivalent to the Division Theorem as we will see at the
end of a lengthy chain of arguments. We shall prove it with the help of the Division Theorem, even in
a stronger form for which we need still another notion.

Definition. A local homomorphism φ : A = Rm/ a → Rn/ b = B is called a substitution homomor-
phism if there exists such a homomorphism from Rm to Rn , called ψ , making the diagram

A B-
φ

Rm Rn
-ψ

?

πm

?

πn

commutative. We call φ sometimes also an analytic homomorphism (even in the differentiable context);
ψ is called a lifting of φ .

Theorem 3.7 In the case of convergent power series each local homomorphism φ : A = Rm/ a →
Rn/ b = B is a substitution homomorphism.

Proof . Let mm = (y1, . . . , ym)Rm and fj ∈ m (Rn) a πn–preimage of φ (πm(yj)) ∈ B . Then, by
letting ψ (yj) := fj , we have a substitution homomorphism ψ : Rm → Rn for which πn ◦ ψ (yj) =
(φ ◦ πm) (yj) for all j and thus (due to Theorem 2.23) πn ◦ψ = φ ◦ πm . Here, one has to use the fact
that the rings Rm and B are noetherian (see Theorem 17). □

The general Excellence Theorem clearly should read as follows.

Theorem 3.8 (Excellence Theorem) The local substitution homomorphisms

φ : A = Rm/ a −→ Rn/ b = B

are excellent.

We are able to reduce the proof of this theorem to the special case of the canonical inclusions Rm ↪−→
Rm+1 .

Lemma 3.9 The following assumptions are equivalent :

i) all inclusions Rm ↪−→ Rm+1 are excellent ;

ii) the Special Excellence Theorem holds;

iii) the Excellence Theorem holds.
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Proof . The implications iii) =⇒ ii) =⇒ i) are trivial. So assume i) and let φ : A → B be an analytic
homomorphism and M a finite B–module which is quasi–finite over A . Then it is finite over Rn and
quasi–finite over Rm . As in the proof of Theorem 7 we see at once that we can restrict ourselves to
the case A = Rm and B = Rn . Now, we construct substitution homomorphisms (Rm+n denotes the
ring of functions in the variables y1, . . . , ym , x1, . . . , xn , Rn that in the variables x1, . . . , xn ):

i :

{
Rm −→ Rm+n

yj 7−→ yj
, π :


Rm+n −→ Rn

yj 7−→ fj

xk 7−→ xk

where fj = φ (yj) . Then, the diagram of substitution homomorphisms

Rm+n Rn
-π

Rm

6

i φ

�
�

�
�

�
��

commutes and π is surjective by construction. Therefore, we are reduced to the inclusions i : Rm ↪→
Rm+n . But every (finite) Rm+n–module M which is quasi–finite on Rm is quasi–finite over any ring
Rm+k with Rm ⊂ Rm+k ⊂ Rm+n due to Lemma 4. Therefore, one can go down stepwise from m+ n
to m or, in other words, it suffices to treat the case n = 1 . □

3.3 The Quasi - finiteness Theorem

Taking M := B in the Excellence Theorem implies the (general) Quasi–finiteness Theorem which
states the following.

Theorem 3.10 (Quasi - finiteness Theorem) Each quasi–finite local substitution homomorphism
φ : A→ B is finite.

Remark . It is possible to prove the Quasi–finiteness Theorem directly with analytic methods such that
it may also be used as the “central” Preparation Theorem in the complex analytic theory. (Cf. e.g.:
R. Narasimhan: Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics 25.
Berlin–Heidelberg–New York: Springer 1966).

Corollary 3.11 A substitution homomorphism φ : A = Rm/ a → Rn/ b = B is finite if and only if
there exists an integer r such that mr

B ⊂ φ (mA)B .

Proof . This is an immediate consequence of Theorem 8 and Theorem 2.13. □

It is not difficult to prove that the Quasi–finiteness Theorem (even in a weaker form) in turn implies
the Division Theorem:

Let g ∈ Rn be xn–generic, n ≥ 1 . Look at the composite homomorphism

Rn−1 ↪−→ Rn −→ Rn/ g Rn =: A ,

which we denote by φ . If we calculate modulo the maximal ideal of Rn−1 , we get due to the assumption
of xn–genericity of g :

A/φ (mn−1)A ∼= R1/ x
b
nR1 ,
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R1 the algebra of the function germs in the variable xn . This is, without saying, a finite dimensional
K–vector space since it is generated by the residue classes of the powers 1, xn, . . . , x

b−1
n . Therefore, φ

is quasi–finite and hence finite due to our assumption. From the Nakayama Lemma it follows that also
the residue classes of 1, xn, . . . , x

b−1
n in A generate the Rn−1–module A = Rn/ g Rn . Consequently,

each element f ∈ Rn can be written in the form f = q g + r , r ∈ Rn−1[xn ] , deg r < b . □

3.4 Equivalence of the theorems

We are now going to close the circle for obtaining the following Theorem.

Theorem 3.12 The Division Theorem, the Excellence Theorems and the Quasi–finiteness Theorem are
equivalent.

Due to Lemma 9 we only have to show that the (very) Special Excellence Theorem for the canonical
inclusions Rm ↪→ Rm+1 can be extracted from the Division Theorem. For doing so, we need a simple,
but quite useful Lemma which has further implications (cf. [01 - 02], p.218).

Lemma 3.13 (Dedekind) Let R ⊂ S commutative rings with the same unit element 1 , let N be an
S–module, finitely generated on R , a ⊂ R an ideal and s ∈ S an element satisfying sN ⊂ aN . Then
there exist elements aj ∈ aj , 1 ≤ j ≤ r = cgRN , such that we have:

sr + a1 s
r−1 + · · ·+ ar ∈ AnSN = {x ∈ S : xn = 0 for all n ∈ N } .

Remark . AnSN is easily seen to be an ideal in S . It is called by obvious reasons the annihilating ideal
or annulator of N . If b ⊂ AnSN is an arbitrary ideal then N carries obviously the structure of an
S/ b–module, too.

Proof . Let n1, . . . , nr be a system of generators of N over R . Since s nj ∈ aN there are elements
ajk ∈ a with

s nj =

r∑
k=1

ajk nk ,

hence
r∑

k=1

(s δjk − ajk)nk = 0 , j = 1, . . . , r .

Put d := det A , A := (s δjk − ajk) . Expanding the determinant, we easily see that d is a monic

polynomial in s of degree r with coefficients aj in the ideal aj . Denoting by Ã the matrix of minors
of A (provided with the correct signs), one has by the Laplace Theorem for determinants

tÃA = det A · E .

Since An = 0 for the column vector t(n1, . . . , nk) it follows dnj = 0 for all j , i.e. dN = 0 . □

Remarks. 1. TheDedekind Lemma implies theNakayama Lemma: Given a local ring A with maximal
ideal m and a finitely generated A–module N satisfying N ⊂ mN , put A = R = S , s = 1 and
a = m . Then there exists an element a ∈ m such that the unit 1 + a ∈ AnAN . Hence, 1 ∈ AnAN
and n = 1n = 0 for all n ∈ N .

2. The Dedekind Lemma is equivalent to the following Theorem which is a stronger form of the
classical Theorem of Cayley and Hamilton for endomorphisms of finite dimensional vector spaces
(take a = R ).

Theorem 3.14 (Cayley - Hamilton) If N is a finitely generated R–module and φ : N → N an
R–endomorphism with φ (N) ⊂ aN for an ideal a ⊂ R , then there exist elements aj ∈ aj , j =
1, . . . , r := cgRN , such that

φr + a1 φ
r−1 + · · ·+ ar id = 0

as an endomorphism of N .
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Proof . To prove this theorem take S := R [x ] and let x act on N via x · n := φ (n) . The rest is an
immediate consequence of Dedekind’s Lemma. Conversely, one has to apply the result to the R–module
endomorphism φ (n) := s n , n ∈ N . □

We are now in the position to prove the above mentioned implication Division Theorem =⇒ (very)
Special Excellence Theorem for the natural inclusion Rm ↪→ Rm+1 . By replacing the index m with
n , we have to consider a finite Rn+1–module M which is quasi–finite over Rn ⊂ Rn+1 . We then apply
the Dedekind Lemma first in the case

R = K , S = Rn+1 with variables x1, . . . , xn, xn+1,

and
s = xn+1 , a = R = K , mn = m (Rn) , N = M/mnM .

Due to our assumptions, N is a finite R–module, and we have sN ⊂ aN . Thus, there exist c1, . . . , ct ∈
K with

f := xtn+1 + c1 x
t−1
n+1 + · · ·+ ct ∈ AnRn+1M/mnM ,

i.e. f M ⊂ mnM .
Invoking the same Lemma once more with R = S = Rn+1 , N = M , s = f , a = mnRn+1 gives

elements h1, . . . , hr ∈ mnRn+1 such that

g = fr + h1 f
r−1 + · · ·+ hr ∈ AnRn+1M .

Since g (0, . . . , 0, xn+1) = fr , the element g is xn+1–generic. Then, by the Division Theorem,
Rn+1/ g Rn+1 is a finite Rn–module. But M is, because of g ∈ AnRn+1

M , a finite Rn+1/ g Rn+1–
module and finally finite over Rn according to Lemma 3. □

3.5 Analytically generating systems

We first draw some conclusions from the Quasi–finiteness Theorem.

Theorem 3.15 Let φ : A → B be a substitution homomorphism. The elements g1, . . . , gt ∈ B
generate the ring B as an A–module via φ if and only if their residue classes g1, . . . , gt in B′ =
B/φ (mA)B generate the K–vector space B′ .

If, in particular, mr
B ⊂ φ (mA)B for some r ∈ N and if g1, . . . , gs is a system of generators for mB

then φ is finite and the monomials

gσ1
1 · . . . · gσs

s , σ1 + · · ·+ σs < r

generate B as an A–module.

φ is an epimorphism if and only if mB = φ (mA)B .

Proof . a) Only one of the directions of the claim has to be shown. If g1, . . . , gt generate the K–vector
space B′ then the map φ : A → B is quasi–finite and thus finite. Let g1, . . . , gt in B generate the
A–module B′′ . Then, obviously, B = B′′ + φ (mA)B , and the Nakayama Lemma implies B = B′′ .

b) The residue classes of these monomials generate B/mr
B and consequently also B′ .

c) For an epimorphism φ one has mB = φ (mA) ⊂ φ (mA)B ⊂ mB , and, conversely, from mB =
φ (mA) follows surjectivity of φ . The weaker condition mB = φ (mA)B suffices because in b) one can
choose r = 1 and conclude that 1 ∈ B is a generator of B over A . □

Remark . An exponent r as above exists if there is a number b ≥ 1 such that gb1, . . . , g
b
s ∈ φ (mA)B .

Just take r = s b .

Definition. The elements g1, . . . , gt in mA , A = Rn/ a , form a system of analytic generators for A if
the substitution homomorphism γ in
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Rt Rn
-α

γ
@

@
@
@R

A
?

ε

with α (yτ ) := g̃τ , ε (g̃τ ) = gτ , is surjective. This, of course, means that each function in mn can be
written modulo a in the form

h (g1(x), . . . , gt(x)) , h ∈ mt .

The previous Theorem says that this notion is in fact redundant.

Corollary 3.16 The elements g1, . . . , gt ∈ mA form a system of analytic generators if and only if they
generate mA as an ideal.

Proof . a) If γ as above is surjective then mA = γ (mt) = γ ((y1, . . . , yt)Rt) = (g1, . . . , gt)A .

b) Conversely, if mA is generated by g1, . . . , gt and if γ is constructed as above then

mA = (g1, . . . , gt)A = (γ (y1), . . . , γ (yt))A = γ (mt)A ,

and due to the preceding Theorem, γ is surjective. □

Remark . It is a consequence of the Corollary that the definition of an analytic system of generators for
A is independent of the representation A = Rn/ a .

3.6 Algebraic properties of analytic algebras

Before we derive in Section 14 the Weierstraß formula and the Division Theorem we deduce from them
some standard properties for the rings Rn in the analytic and formal case. Therefore, in the following,
Rn is equal to On,0 or Õn,0 .

Theorem 3.17 Let Rn = K ⟨x1, . . . , xn ⟩ or K {x1, . . . , xn } , K = R oder C . Then Rn and each
analytic K–algebra A = Rn/ a , a ⊂ m , is noetherian.

Proof . a) If B is noetherian and φ : B → A denotes a ring epimorphism then A is noetherian, too.
For: if a ⊂ A is an ideal and b = φ−1(a) = (b1, . . . , br)B , then a = φ (φ−1(a)) = φ (b) is generated
by the elements aj = φ (bj) , j = 1, . . . , r .

b) If A is a local ring and A/f A is noetherian for all f ∈ m = m (A) , f ̸= 0 , then A is noetherian,
too. For: let a ⊂ A be a proper ideal and, without loss of generality, a ̸= 0 ; then there exists an
element f0 ∈ a , f0 ̸= 0 . Let B = A/f0A and φ : A → B the canonical projection. Then, due to
Lemma 2.2,

φ−1(φ (a)) = a + ker φ = a + Af0 = a .

By assumption, b = φ (a) is finitely generated: b = (g1, . . . , gℓ)B . Let f1, . . . , fℓ be preimages of the
elements g1, . . . , gℓ . If now f ∈ a then

φ (f) =

ℓ∑
j=1

bj gj , bj ∈ B ,

hence we achieve with φ (aj) = bj :

φ (f −
ℓ∑

j=1

aj fj) = 0
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and finally

f −
ℓ∑

j=1

aj fj ∈ ker φ = Af0 ;

i.e.: a will be generated f0, f1, . . . , fℓ .

c) We perform induction with respect to n . R0 = K is a field, hence a noetherian ring. Let the
statement be proven for Rn−1 , n ≥ 1 , and take f ∈ Rn , n ≥ 1 , f ̸= 0 . Then, as we have seen
before, there exists a (linear and invertible) substitution homomorphism σ of Rn such that σ (f) is
xn–generic of a certain degree b . Let σ (f) = e ω , ω a Weierstraß polynomial of degree b , e a
unit. It follows from the Division Theorem

Rn/ f Rn
∼= Rn/ σ (f)Rn = Rn/ω Rn = Rn−1[xn ]/ω Rn−1[xn ] .

By induction hypothesis, Rn−1 is noetherian and, due to the Hilbert Basis Theorem, the polynomial
ring Rn−1[xn ] is noetherian. Because of a) this is also true for the quotient modulo ω . b) implies our
claim. □

Remark . This proof does not work in the C∞–theory since, as we have seen earlier, the flat function
germs f ∈ m∞

n cannot be made xn–generic.

Rn is, moreover, a factorial ring, i.e. the Theorem on Unique Prime Factor Decomposition is satis-
fied.

Definition. Let A be a commutative ring with unit element 1 .

a) An element f ∈ A is called a prime element if f |g1 g2 implies f |g1 or f |g2 (the symbol f |g
means: there exists an element h ∈ A such that g = f h , or in other words: f divides g in A ).
This is equivalent to the statement that the ideal f A ⊂ A is a prime ideal ; here, an ideal a ⊂ A
is called prime if and only if

f g ∈ a , g ̸∈ a =⇒ f ∈ a .

This, in turn, is equivalent to the fact that the ring A/ a is an integral domain, i.e. a ring without
zero divisors. In particular, maximal ideals are prime.

b) An element f ∈ A is called indecomposable if f = f1 f2 implies that f1 or f2 is a unit.

c) The ring A is called factorial if A is an integral domain and if each element f ̸= 0 possesses a
unique (up to units and order) prime factor decomposition.

Remark . In a factorial ring the notions of prime and indecomposable elements do coincide.

Theorem 3.18 The rings Rn = K ⟨x1, . . . , xn ⟩ and K {x1, . . . , xn } , K = R or C , are factorial.

Proof . That the ring Rn is an integral domain follows from the Identity Theorem. For the factoriality
we perform induction with respect to n where in the case n = 0 nothing has to be proved because
of R0 = K . Suppose that we know already that Rn−1 is factorial. If f ̸= 0 and f = e ω , ω a
Weierstraß–polynomial, e a unit, then due to the Preparation Theorem

Rn−1[xn ]/ω Rn−1[xn ] ∼= Rn/ω Rn
∼= Rn/ f Rn ,

hence f is prime in Rn if and only if ω has the same property in Rn−1[xn ] . Due to the well known
Gauss Lemma from algebra the monic polynomial ω in Rn−1[xn ] has a unique decomposition into
prime factors. □

Remark . It is easily seen that C∞
1,0 is not an integral domain. This then also applies to all rings C∞

n,0 .

Each (commutative) integral domain A (with unit 1 ) can canonically be embedded in its quotient
field Q (A) .

Definition. An integral domain A is called normal if A is algebraically closed in its quotient field
Q (A) ; in other words: if h ∈ Q (A) is algebraic over A , i.e. if there exist a1, . . . , ar ∈ A with
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(+) hr + a1 h
r−1 + · · ·+ ar = 0 , r ≥ 1 ,

then necessarily h ∈ A .

Theorem 3.19 The rings On,0 and Õn,0 are normal.

The proof immediately follows from the more general

Theorem 3.20 Any factorial integral domain A is normal.

Proof . Let h = f/ g ∈ Q (A) satisfy an equation of type (+). Without loss of generality we may assume
that f and g are relatively prime. Then, from

fr + a1 f
r−1 g + · · ·+ ar g

r = 0 , f, g, a1, . . . , ar ∈ A ,

i.e. fr = g (−a1 fr−1 − · · · − ar g
r−1) , we deduce that g|fr and, because of factoriality, g|f in A ,

i.e. h ∈ A . □

Remark . There are more general notions of normality of local rings not using integrality. However, if
A is noetherian then A is necessarily an integral domain ([01 - 02], p. 219).

We want to deepen the investigation of this situation a little further.

Definition. Let φ : A → B be an analytic homomorphism. An element g ∈ B is called algebraic (or
integral) over A (with respect to φ ) if there exist a0, . . . , ar ∈ A such that

gr + φ (a0) g
r−1 + · · ·+ φ (ar) = 0 .

Theorem 3.21 Let φ : A → B be an analytic homomorphism and g ∈ mB algebraic over A ;
let ω ∈ A [Y ] be a monic polynomial of smallest degree annihilating g : ω (g) = 0 . Then ω is a
Weierstraß–polynomial , i.e.

ω = Y b + a1 Y
b−1 + · · ·+ ab , aβ ∈ mA .

Proof . Without loss of generality let A ⊂ B and φ = id . Since g ∈ mB , we have

− ab = g (gb−1 + a1 g
b−2 + · · ·+ ab−1) ∈ mB ∩A ⊂ mA .

Let d be the largest index with ad ̸∈ mA ; in particular, 1 ≤ d < b . Denote by ρ : A [Y ] → K [Y ]
the epimorphism induced by taking residue classes A → A/mA = K , then

ρ (ω) = Y b−d (Y d + ρ (a1)Y
d−1 + · · ·+ ρ (ad)) ∈ K [Y ]

is because of ρ (ad) ̸= 0 a relatively prime decomposition of ρ (ω) in K [Y ] . Suppose that there are
monic polynomials

ω1, ω2 ∈ A [Y ]

with ρ (ω1) = Y b−d , ρ (ω2) = Y d + · · ·+ ρ (ad) and ω = ω1 ω2 . If we would have ω2(g) ∈ mB then,
because of g ∈ mB , the constant term of ω2 would belong to mA and ρ (ω2) would be divisible by Y .
Contradiction! Therefore, ω2(g) is a unit in B , and from ω (g) = 0 it follows that ω1(g) = 0 . Since
ω1 is of degree b − d < b in Y , we arrive at a contradiction to the assumption that ω is of smallest
degree. Hence, a1, . . . , ab ∈ mA . □

The proof is not complete since we have to justify the assumption we made above. However, this is
a consequence of the following famous Lemma.

*Theorem 3.22 (Hensel’s Lemma) The algebras A = Rn/ a , Rn = On,0 resp. Õn,0 , are
henselian, i.e. if ρ : A → A/mA = K is the natural residue class epimorphism and ρ : A [Y ] →
K [Y ] the continuation defined via ρ (Y ) := Y , if moreover P ∈ A [Y ] is a monic polynomial and

ρ (P ) = Q1 · . . . ·Qt

with pairwise relatively prime monic polynomials Qτ ∈ K [Y ] then there exist monic polynomials
Pτ ∈ A [Y ] with ρ (Pτ ) = Qτ and

P = P1 · . . . · Pt .
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Proof . C.f. [01 - 02], pp. 49 ff. The proof uses only the Weierstraß formula. □

We now get another Finiteness Theorem. Remark that if φ : A → B is finite then each element
g ∈ B is algebraic over A . This easily follows from Dedekind’s Lemma: N = B is finite on A and
with a = A , s = g we conclude that there exist elements a1, . . . , ar ∈ a = A satisfying

gr + a1 g
r−1 + · · ·+ ar ∈ AnBB = { 0 } .

Theorem 3.23 Let φ : A → B be an analytic homomorphism such that each element of a system of
generators in mB is algebraic over A . Then φ is finite.

Proof . Let mB be generated by g1, . . . , gs . To each j = 1, . . . , s , we find a Weierstraß polynomial
ωj ∈ A [Y ] with ωj(gj) = 0 such that g

rj
j ∈ φ (mA)B . With b = r1 · . . . · rs we see gbj ∈ φ (mA)B

and hence, due to the Remark after Theorem 15, φ is finite. □

3.7 Weierstraß hypersurfaces

In order to understand hypersurfaces locally, we are reduced by the Preparation Theorem to study
Weierstraß hypersurfaces, i.e. zero sets of type

X = {ω (x, t) = 0 } ⊂ G× C , G ⊂ Cn a domain ,

where ω is a monic polynomial

ω (x, t) = tb + a1(x) t
b−1 + · · ·+ ab(x) , a1, . . . , ab ∈ O (G) .

To begin with, let us first concentrate on the topological properties of the map π : X → G induced
by the projection G×C → G . By the very definition it is plain that π has finite fibers. Moreover, due
to the Theorem on Continuity of Roots (Lemma 60), the map π is locally bounded with respect to G .
From this remark it is easily deduced that π is a proper map which means that preimages of compact
sets in G under π are compact.

Definition. A continuous map f : X → Y between topological Hausdorff spaces X and Y is called
finite if it has finite fibers and is closed in the sense that it maps closed sets onto closed sets.

Finiteness of continuous maps can also be characterized in the following way.

*Lemma 3.24 If the spaces X and Y are locally compact, finiteness of a continuous map f : X →
Y is equivalent to the following properties:

i) f is proper ;

ii) each point x ∈ X is isolated in the fiber f−1(f (x)) .

The (easy) proof is left to the reader. □

As a consequence, we immediately note

Corollary 3.25 For a Weierstraß hypersurface X ⊂ G × C the canonical projection π : X → G is
a finite holomorphic map.

Let us study the map π : X → G in more detail. For fixed x(0) ∈ G the polynomial ω (x(0), t) ∈
C [ t ] can be decomposed into linear factors

ω (x(0), t) = (t − t1) · . . . · (t − tb)

where t1 = t1(x
(0)), . . . , tb = tb(x

(0)) are uniquely determined by x(0) up to permutation. By the
Vieta formulas, aβ(x

(0)) is, up to sign, equal to the β–th elementary symmetric function of t1, . . . , tb ;
in particular,

a1(x
(0)) = − (t1 + · · ·+ tb) , ab(x

(0)) = (−1)b t1 · . . . · tb .
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Define the discriminant of ω (x(0), t) to be

∆ (x(0)) = ∆ω(x
(0)) :=

∏
1≤j<k≤b

(tj − tk) .

As a symmetric function of the tj , ∆(x(0)) is a nontrivial polynomial with coefficients in C (indepen-
dently of ω ) in the functions a1(x

(0)), . . . , ab(x
(0)) . E.g., if b = 2 , then (up to a constant factor)

∆ (x(0)) = a1(x
(0))2 − 4a2(x

(0)) .

This is a consequence of the Main Theorem on Symmetric Polynomials. Recall that the elementary
symmetric functions σj = σj(x1, . . . , xb) , j = 1, . . . , b , are defined by

b∏
j=1

(t − xj) = tb +

b∑
j=1

(−1)j σj(x) t
b−j .

They are invariant under the obvious action of the symmetric group Sb , i.e. if π ∈ Sb is a permutation
then

σj(xπ(1), . . . , xπ(b)) = σj(x1, . . . , xb) .

One has, as is well known, the following.

*Theorem 3.26 (Main Theorem on Symmetric Polynomials) Let P ∈ K [x1, . . . , xb ] be in-
variant under Sb , then there is a polynomial Q such that

P (x1, . . . , xb) = Q (σ1(x1, . . . , xb), . . . , σb(x1, . . . , xb)) .

So, we can view the discriminant ∆ = ∆ω as a holomorphic function ∆ : G → C . It is clear that
∆ (x(0)) = 0 if and only if the polynomial ω (x(0), t) has multiple zeros.

Whereas O (G) is in general no factorial ring, it is easily deduced from factoriality of On,0 that
the rings O (G) [ t ] satisfy unique prime factorization for monic polynomials and we can speak, in
particular, of multiple factors of such polynomials ω ∈ O (G) [ t ] . This is easily deduced from unique
prime factorization for monic polynomials in Q [ t ] where Q denotes the quotient field of the integral
domain A := O (G) and the following Lemma which is a simple consequence of factoriality of all rings
On,x , x ∈ G .

*Lemma 3.27 If P1, P2 are monic polynomials in Q [ t ] with P1 P2 ∈ A [ t ] , then P1, P2 ∈ A [ t ] .

We also need the notion of an unbranched covering .

Definition. Let f : X → Y be a continuous map between topological Hausdorff spaces. f is called a
(finite) unbranched covering if to each y(0) ∈ Y there exists a neighborhood V ⊂ Y of y(0) and pairwise

distinct neighborhoods Uj of the (finitely many) preimages x
(0)
j of y(0) such that the restrictions

f|Uj
: Uj → V are homeomorphisms.

We can now state our main result of the present Section.

Theorem 3.28 For a monic polynomial ω ∈ O (G) [ t ] and the corresponding Weierstraß hypersurface
X = {ω = 0 } the following assertions are equivalent :

i) ω has no multiple factors;

ii) no germ of ω at any point of G× C has multiple factors;

iii) ∆ω ̸≡ 0 ;

iv) there exists a proper analytic subset D ⊂ G such that the restriction of π to the preimage
X0 := π−1(G0) , G0 := G \D , is a holomorphic finite unbranched covering.
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Under these assumptions, in particular, X0 has no singularities.

Proof . If i) is not satisfied then ii) is not true, either. If ii) is not satisfied, ω has a multiple factor
at a certain point a ∈ Cn+1 as an element of On+1,a and thus as an element of On,a′ [ t ] . Therefore,
∆ ≡ 0 in a neighborhood of a′ and thus ∆ = 0 on G . Clearly, iv) implies i). So, it remains to show
that i) =⇒ iv). Due to the Lemma stated above ω has no multiple factors in the Euclidean ring Q [ t ] ,
either. Therefore, ω and its derivative ω′ with respect to t are relatively prime in this ring such that
there exist nontrivial elements B1, B2, C1, C2 ∈ A [ t ] with

B1

C1
ω +

B2

C2
ω′ = 1 ,

i.e. B1 C2 ω + B2 C1 ω
′ = C1 C2 =: C . Outside the proper analytic subset D := {x ∈ G : C (x) =

0 } the fibers π−1(x) consist of b points all counted with multiplicity 1 . That the restriction of π to
X0 is locally biholomorphic is an immediate consequence of Hensel’s Lemma. □

Definition. An analytic algebra A is called reduced if it does not possess any nilpotent elements.

Example. If A = Rn/ f Rn , A is reduced if and only if f has no multiple factors. Use the factoriality
of Rn !

By the preceding Theorem, if a hypersurface equation f = 0 in a region G ⊂ Cn has no multiple
factors at a point a ∈ X = {x ∈ G : f (x) = 0 } no germ fx has multiple factors at any point x in
a neighborhood of a . We call such an equation a reduced equation of X .

Theorem 3.29 For hypersurfaces X = {x ∈ G ⊂ Cn : f (x) = 0 } , reduced equations exist locally.
With regard to those equations the singular locus S (X) of X is lower dimensional. For all points
a ∈ X \ S (X) , the equation f (x) = 0 itself becomes, after a suitable change of variables near a ,
(xn − an)

b = 0 , the reduced equation, of course, being (xn − an) = 0 .

3.8 Chevalley dimension of analytic algebras

There are many different approaches to introduce the dimension of an analytic algebra. One of the
(possible) definitions is the following that goes back to Chevalley:

Definition. dim A := min {n : it exists a finite morphism Rn −→ A } .

From this definition, however, it is by no means easy to deduce that dim Rn = n . We will discuss
other definitions later in Chapter 6 and show that they are all equivalent. In particular, we have to
convince the reader that this definition is the same as the one presented in Appendix A to Chapter 1
that gives Rn obviously the correct dimension n .

Clearly, dim A = 0 by definition, if and only if A is an artinian ring, i.e. of finite dimension as
a vector space over K . This makes sense due to the Rückert Nullstellensatz , since this condition is in
turn equivalent to (see Theorem 2.13)

mk
n ⊂ a , for some k , if A = Rn/ a ,

and N (a) = { 0 } = N (mn) ⇐⇒ mk
n ⊂ a .

In linear algebra one learns that a linear subspace of Kn has dimension d if and only if d suitable
chosen linear forms cut down the subspace to a point, but no fewer forms suffice. This, in fact, is the
geometric idea behind our introduction of the dimension.

Definition and Remarks. 1. A system of elements f1, . . . , fr ∈ mA is called a weak parameter system,
if the quotient algebra A = A/(f1, . . . , fr)A is artinian.

2. If A = Rn/a , a = (g1, . . . , gm) and F1, . . . , Fr are preimages of the elements f1, . . . , fr , then
A ∼= Rn/(g1, . . . , gm, F1, . . . , Fr) , then

N (a) ∩N (f1) ∩ . . . ∩N (fr) = N (g1, . . . , gm, F1, . . . , Fr) = { 0 } .
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Hence, the r hypersurfaces N (f1), . . . , N (fr) cut down N (a) to a point.

3. A system of elements f1, . . . , fr ∈ mA is by definition a weak parameter system if and only if the
substitution homomorphism given by sending the analytic generators y1, . . . , yr of Rr to f1, . . . , fr ,
resp., is quasi–finite and hence finite.

4. A weak parameter system of minimal length r is called a parameter system. Clearly, each weak
parameter system contains a parameter system.

These remarks imply immediately:

Lemma 3.30 For each analytic algebra A there exist parameter systems f1, . . . , fr ∈ mA . They all
have the same length

r = dim A .

As an immediate consequence of the definition we note:

Lemma 3.31 If A −→ B is finite then dim B ≤ dim A .

Now, every (finite) homomorphism φ : A → B factorizes over an epimorphism A → A/ ker φ
and a (finite) monomorphism A/ ker φ ↪→ B . So, the question arises how much the dimension drops,
if at all, in either case. As a hint for a satisfying answer to the question in the “injective” case we note
the following easy Lemma.

Lemma 3.32 If d = dimA and φ : Rd → A is finite then φ is injective.

Proof . Suppose f ∈ ker φ is not trivial. Then, without loss of generality, we may assume that f is
xd–generic. It is plain that φ induces a finite homomorphism

Rd/ f Rd −→ A

which composed with the Weierstraß homomorphism Rd−1 ↪→ Rd/ f Rd yields a finite homomorphism
Rd−1 → A in contradiction to the assumption d = dim A . □

Therefore, we expect the following to be true.

Theorem 3.33 If φ : A ↪−→ B is finite and injective, then dim B = dim A .

If we assume that dim Rd = d , the last statement implies a (more precise) converse to Lemma 32:

Theorem 3.34 If φ : Rd ↪−→ A is finite and injective, then dim A = d .

Remark . Such a finite, injective homomorphism Rd ↪−→ A is called a Noether normalization of A .
The last Theorem will be proven in Chapter 6 and shall serve us as the anchoring statement for the
interplay between dimension and finite homomorphisms of analytic algebras. Taking it for granted, it
implies, e. g., immediately:

Theorem 3.35

dim Rd = d .

Moreover it is strong enough to deduce Theorem 33: Let d be the dimension of A and take a
finite monomorphism Rd ↪→ A . Composed with the finite monomorphism A ↪→ B this yields a finite
monomorphism Rd ↪→ B such that dim B = d = dim A . □

In the case of an epimorphism A → B = A/a the main result is the following:
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Theorem 3.36 If a is generated by f1, . . . , fr ∈ mA , then

dim B + r ≥ dim A .

Equality holds if and only if the system f1, . . . , fr is necessarily minimal and can be extended to a
parameter system of A .

In particular,
dim A/a ≥ dim A − cg a .

Proof . Let d be the dimension of B , and let fr+1, . . . , fr+d be a parameter system of B . Choose
preimages fr+1, . . . , fr+d of these elements in mA . Then,

A/ (f1, . . . , fr+d)A ≡ B/ (fr+1, . . . , fr+d)B

is a finite dimensional vector space, such that f1, . . . , fr+d is a weak parameter system of A which
implies

d = dim A ≤ r + d .

One has equality if and only if f1, . . . , fr+d is a parameter system of A . □

Remark . By Theorem 36 we know that dim A/f A ≥ dim A − 1 for any f ∈ mA and it is easy to
produce examples with dim A/f A = dim A . In Chapter 6, we clarify the conditions under which an
element f ∈ mA really drops the dimension of A by 1.

3.9 Embedding dimension of analytic algebras and cotangent
vector spaces

It goes without saying that each analytic algebra A can be written as a quotient Rn/ a (up to K–
algebra isomorphisms) in many different ways. The minimal number e with such an isomorphism

A ∼= Re/ a

is an important invariant attached to A which we call the embedding dimension of A , in symbols

e = emb A ,

since in geometric terms the number e is the smallest one with the property that the complex analytic
space germ associated to A can (locally around the origin) be embedded into Ke . By definition,

emb A = min {n ∈ N : ∃ epimorphism Rn −→ A } ≥ dim A ,

and the considerations of the preceding Sections immediately imply that e is the cardinality of any
minimal system of analytic generators of A and hence equals the corank cgmA of the maximal ideal
of A . Therefore, due to Nakayama’s Lemma, we have proved the following Lemma.

Lemma 3.37 For any noetherian analytic algebra, one has the identity

emb A = dimK mA/m
2
A .

Corollary 3.38
emb Rn = n .

It is natural to interpret the vector space mn/m
2
n as the vector space of linear functions on the

tangent space of Kn at the origin. We therefore call it the cotangent (vector) space of Rn ; we write

Ṙn := mn/m
2
n ,
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and more generally, we introduce the cotangent space

Ȧ := m/m2 , m = mA

for an arbitrary local algebra A . We have Ȧ = 0 if and only if A = R0 = K , since m = m2

implies by Nakayama’s Lemma m = 0 . The canonical mapping δ = δA : mA → mA/m
2
A extends

to a map δ : A → mA/m
2
A via δ (f) := δ (f − f (0)) which is K–linear, but does not respect the

algebra–structures. Instead, it fulfills the Leibnitz–rule

δ (f g) = f δ (g) + g δ (f)

and as such it is by definition a derivation.
Any analytic homomorphism φ : A → B induces a K–linear homomorphism, the differential ,

φ̇ : Ȧ −→ Ḃ

making the following diagram commutative:

Ȧ Ḃ-
φ̇

A B-φ

?

δA

?

δB

Remark . If f1, . . . , fm and g1, . . . , gn are minimal sets of generators for mA and mB , resp., then the
differential of any homomorphism φ : A → B will be represented by a certain (m× n)–matrix in the
bases δ (f1), . . . , δ (fm) and δ (g1), . . . , δ (gn) , resp., whose rank φ̇ equals the dimension of the image
φ̇ (Ȧ) ⊂ Ḃ . In the special situation A = Rm = K ⟨ y1, . . . , ym ⟩ , B = K ⟨x1, . . . , xn ⟩ and φ given
by substitution yj = fj(x1, . . . , xn) , j = 1, . . . ,m , this matrix is nothing else but the Jacobi matrix

∂(f1, . . . , fm)

∂(x1, . . . , xn)
(0) =

(
∂ fj
∂ xk

(0)

)
j=1...m
k=1...n

.

The differential φ̇ is obviously surjective if φ is an epimorphism. In particular, any epimorphism
Rn → A = Rn/ a induces a vector space epimorphism Ṙn → Ȧ which is an isomorphism precisely if
n = emb A .

Theorem 15 and the Nakayama Lemma imply the converse of the preceding remark.

Theorem 3.39 A homomorphism φ : A → B is surjective if and only if the differential φ̇ : Ȧ → Ḃ
is an epimorphism.

Proof . Surjectivity of φ̇ leads to the inclusion B ⊂ φ (mA) + m2
B . Nakayama’s Lemma, applied to the

finitely generated B–modules mB and φ (mA)B yields mB = φ (mA)B from which the claim follows
because of Theorem 15. □

Corollary 3.40 (Jacobi Criterion) A homomorphism φ : Rm → Rn is an isomorphism if and
only if φ̇ : Ṙm → Ṙn is bijective (and hence necessarily m = n ).

Proof . The direction =⇒ is obvious. If, on the other hand, φ̇ : Ṙm → Ṙn is an isomorphism, then the
dimensions of the cotangent spaces as K–vector spaces coincide, i.e. m = n . Moreover, by Theorem 39,
φ is an epimorphism and Rn is, in particular, a finite Rn–module via φ . Due to Theorem 35 and
Lemma 32, we can deduce that φ is injective, too. □

Remark . In case m = n , φ̇ : Ṙn → Ṙn is an isomorphism if and only if the functional determinant

det (DF ) (0) ̸= 0
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(see Remark above). This is the standard formulation of the classical Jacobi criterion.

Analytic isomorphisms have, of course, isomorphic differentials. The converse is, by far, not true.
Take, for instance, the standard epimorphisms Rn → Rn/m

2
n which are not injective for n ≥ 1 , but

have isomorphic derivatives. - This phenomenon cannot occur when the right hand side is some Rn .

Theorem 3.41 Every analytic homomorphism φ : A → Rn with bijective derivative is an isomor-
phism.

Proof . By Theorem 39, φ : A → Rn = K ⟨x1, . . . , xn ⟩ is surjective. Hence, there exist elements
g1, . . . , gn ∈ mA with φ (gj) = xj , j = 1, . . . , n . Obviously, the elements δA(gj) are preimages of the

elements δRn(xj) under φ̇ , and consequently form, by our assumption on φ̇ , a basis of Ȧ . Therefore,
the elements g1, . . . , gn form a minimal set of analytic generators for A . Denote by γ the analytic
homomorphism Rn → A given by sending xj to gj . Since (γ ◦ φ) (gj) = gj for all j , we have
γ ◦ φ = idA , and φ has to be injective, too. □

Corollary 3.42 If for an analytic homomorphism φ : A → Rn we have emb A = rank φ̇ = n , then
φ is bijective.

The proof is trivial, since under the given assumptions the derivative φ̇ ist bijective. □

Corollary 3.43 Let f1, . . . , fr ∈ mn ⊂ Rn = K ⟨x1, . . . , xn ⟩ , 1 ≤ r ≤ n be given. Then, the
following are equivalent :

i) f1, . . . , fr can be extended to a minimal set of generators for mn ;

ii) the rank of the functional matrix
∂(f1, . . . , fr)

∂(x1, . . . , xn)
(0) is r ;

iii) the r residue classes δ (fj) ∈ Ṙn are linearly independent.

Proof . The implications i) ⇒ ii) ⇒ iii) being trivial, let us assume iii). Then, we find elements
fr+1, . . . , fn ∈ mn whose δ–images form together with the given δ (fj) a basis in Ṙn , and the substi-
tution homomorphism φ : Rn → Rn defined by φ (xj) = fj is an isomorphism due to Theorem 41.
Hence, the elements f1, . . . , fn form a minimal set of generators for mn . □

The following is a characterization of the embedding dimension which can easily be checked in
examples.

Theorem 3.44 If A = Rn/ a then emb A = n if and only if a ⊂ m2
n .

Proof . If a ̸⊂ m2
n then there exists an element f ∈ a \m2

n , and after a suitable isomorphism of Rn we
may assume that f = xn . Thus, A is the quotient of Rn−1 = Rn/ xnRn and emb A ≤ n − 1 . If,
on the other hand, a ⊂ m2

n , take a minimal set g1, . . . , ge of generators for mA and lift the elements
gj to elements fj ∈ mn . By assumption, mn ⊂ (f1, . . . , fe)Rn + m2

n , whence by Nakayama’s Lemma
mn = (f1, . . . , fe) and e ≥ n . □

Remark . See also Remark 2 in Chapter 2.10.

Examples. 1. The plane curve singularities x2 − yk+1 = 0 , k ≥ 1 , have embedding dimension 2 at
the origin.

2. The cones over the rational normal curve of arbitrary degree are given by quadratic equations that
can be written in a short form as follows:

rank

(
x0 x1 · · · xn−1

x1 x2 · · · xn

)
< 2 .

Hence their embedding dimension at the vertex is n + 1 . On the other hand, these are two–dimensional
objects such that the singularities they create at the origin are never hypersurface singularities unless
n = 2 and the singularity is our good friend A1 . For more details, see the next Chapter 4.

One can always “arrange” matters such that the situation is exactly as in the preceding Theorem.
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Theorem 3.45 Let φ : Rn → A be an epimorphism and e = emb A . Then, after a suitable change
of variables, Rn

∼= K ⟨x1, . . . , xn ⟩ → A has the property that xe+1, . . . , xn ∈ ker φ and the induced
homomorphism ψ : Re = K ⟨x1, . . . , xe ⟩ ∼= Rn/(xe+1, . . . , xn)Rn → A is still surjective.

Proof . Let Rn = K ⟨ y1, . . . , yn ⟩ . By definition, δ (ker φ) is a vector subspace of Ṙn of dimension

jg ker φ = n − emb A = n − e .

The system of preimages fe+1, . . . , fn of any basis of this vector space can by Corollary 43 extended
to a minimal set f1, . . . , fn of generators for mn . In the coordinates xj = fj , j = 1, . . . , n , the
kernel of φ is contained in the ideal generated by xe+1, . . . , xn , and with the canonical projection
π : Rn → Re = Rn/(xe+1, . . . , xn)Rn we have a factorization φ = ψ ◦ π . ψ is automatically
surjective. □

3.10 Jacobi rank of ideals and regularity criteria

We are now in the position to clarify the notion of a singularity or a singular point of a (germ of
an) analytic subset as opposed to the notion of a regular point . Set–theoretically the zero–set of
an ideal a ⊂ Rn is a d–dimensional submanifold of Kn if after a suitable change of coordinates
N (a) = N (xd+1, . . . , xn) such that by Rückert’s Nullstellensatz rad a = rad (xd+1, . . . , xn) . Now,
Rn/(xd+1, . . . , xn) ∼= Rd has no zero divisors such that rad (xd+1, . . . , xn) = (xd+1, . . . , xn) and
rad a = (xd+1, . . . , xn) . Consequently, for the analytic algebra A := Rn/a , we have red A =
Rn/rad a ∼= Rd . The consideration of the powers of the maximal ideal mn indicate that we should
also view nonreduced algebras as not regular , i.e. singular . Therefore, we give the following

Definition. An analytic algebra A is called regular , if A ∼= Rd for some d .

There is a wonderful characterization of regular algebras (whose proof, however, uses in one direction
Theorem 35 for which the reader still has to wait until Chapter 6).

Theorem 3.46 (Regularity criterion) An analytic algebra A is regular if and only if dim A =
emb A .

Proof . If A = Rd , then dim A = d = emb A . If, on the other hand, dim A = emb A = d , there
exists a surjective homomorphism Rd → A which by Lemma 32 is also injective. □

The aim of the rest of the present Section is to elucidate the notion of regularity for analytic algebras
A = Rn/a in terms of the ideal a ⊂ mn . We need first a better understanding how the embedding
dimension depends on a . As Rn–modules, m := mA

∼= mn/a , and there is an exact sequence

0 −→ a −→ mn −→ m −→ 0 .

Tensoring with Rn/mn yields an epimorphism

mn/m
2
n −→ m/m2 ,

whose kernel is isomorphic to

a/a ∩m2
n
∼= (a + m2

n)/m
2
n

(for more details see, e.g., [01 - 02], Anhang, §2.6).

Definition. The dimension of this kernel is sometimes called the Jacobi rank of a , in symbols: jg a .

Theorem 3.47 For an analytic algebra A = Rn/a, a ⊂ mn , one has the following identity :

emb A = n − jg a .
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Remark . If the ideal a ⊂ Rn is generated by f1, . . . , fr , the vector space (a + m2
n)/m

2
n will obviously

be generated by the 1-jets of these elements. Hence, the Jacobi rank of the ideal equals the rank of the
matrix (

∂fj
∂xk

(0)

)
j=1,...,r
k=1,...,n

,

and the last number is independently of the generators well defined. In particular, we have always

jg a ≤ cg a .

Since the dimension of an analytic algebra is never larger than its embedding dimension, one readily
deduces from the last Theorem:

Corollary 3.48 For an analytic algebra A = Rn/a, a ⊂ mn , one has the following inequality :

dim A + jg a ≤ n .

Taking the Regularity Criterion Theorem 46 for granted, we immediately get the following.

Theorem 3.49 An analytic algebra A = Rn/a, a ⊂ mn , is regular if and only if

dim A + jg a = n .

More precisely, we can prove the following Theorem.

Theorem 3.50 For an analytic algebra A = Rn/a, a ⊂ mn , the following statements are equivalent :

i) A ∼= Rd ;

ii) cg a = jg a ( = n − d ) ;

iii) after a convenient choice of coordinates x1, . . . , xn , the ideal a is generated by xd+1, . . . , xn .

Proof . The implication iii) ⇒ ii) is obvious. If ii) is satisfied, we get by former general results

dim A ≥ n − cg a = n − jg a = emb A ≥ dim A .

Hence A is isomorphic to Rd with d = n − cg a due to Theorem 46. It remains to show i) ⇒ iii).
Since d is the embedding dimension of A ∼= Rd we may assume according to Theorem 45 without loss
of generality that xd+1, . . . , xn ∈ a . From this, we deduce a commutative diagram

Rd
∼= Rn/(xd+1, . . . , xn)Rn A ∼= Rn/a-

φ

Rn

ψ

�
�

�
�

�	

π

@
@

@
@
@R

in which φ is surjective. Consequently, φ is an isomorphism (Corollary 42) and a = ker π = ker ψ =
(xd+1, . . . , xn)Rn . □
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3.11 The Rank Theorem and analyticity of the singular locus

Let us now look more “globally” to an analytic subset X ⊂ U ⊂ Cn , given, say, by a (fixed) set of
holomorphic functions g1, . . . , gs on U . These functions define an ideal I ⊂ O (U) and thus the ideals
Ix ⊂ OCn,x , x ∈ U , that are generated by the germs (g1)x, . . . , (gs)x . If, at a point x(0) , the ideal
Ix(0) is also generated by the germs of the functions f1, . . . , fr which are defined in a neighborhood V
of x(0) , then the whole ideal I is generated by these functions in (a perhaps smaller neighborhood)
V . In particular, we have according to the permanence principle (see the “important note” at the end
of Chapter 2.8 and the Supplement)

Ix = ((f1)x, . . . , (fr)x)OCn,x for all x ∈ V .

These remarks have a trivial consequence, namely the following

Lemma 3.51 The function U ∋ x 7→ cg Ix is upper semi-continuous. In other words:

cg Ix ≤ cg Ix(0)

for all x ∈ U near x(0) .

Remark . By definition, cg Ix ≥ 0 and cg Ix = 0 , if and only if Ix = 0 . Hence, cg Ix = 0 is an
open condition which means that the set of elements x ∈ U with that condition is an open subset of
U . Moreover, as we remarked already in Chapter 1, this set coincides with U if the latter is connected .

A much stronger result can be drawn from Theorem 50. Note, that an automorphism of OCn,x can
be extended because of the Jacobi criterion to an actual biholomorphic map on a neighbourhood of x
thus introducing new holomorphic coordinates near x . Therefore we can state:

Theorem 3.52 If Ix(0) ⊂ OCn,x(0) satisfies one of the equivalent conditions of Theorem 50, then the

ideal I is after a suitable change of holomorphic variables generated near x(0) = 0 by the functions
xd+1, . . . , xn .

Remarks. 1. Since OCn,0 modulo the ideal I0 generated by xd+1, . . . , xn is isomorphic to OCd,0 and
therefore an integral domain, the ideal itself is a prime ideal and thus coincides with its radical . As
a consequence, we not only have set–theoretically in a neighbourhood V of such a regular or smooth
point 0 ∈ X = N (I) after holomorphic coordinate change:

X ∩ V = {x ∈ V : xd+1 = · · · = xn = 0 } ,

but also that the ideal of all holomorphic functions vanishing on X is generated by the coordinate
functions xd+1, . . . , xn .

2. If these conditions are satisfied for all x ∈ X = N (I) with fixed d , we call X a d–dimensional
submanifold of U .

Since the Jacobi rank of an ideal is independent of given generators and of holomorphic coordinate
changes (because of the chain rule) and since finally

rank
∂(xd+1, . . . , xn)

∂(x1, . . . , xn)
= n − d ,

we immediately derive from Theorem 50 the following important insight.

Theorem 3.53 If Ix(0) ⊂ OCn,x(0) satisfies one of the equivalent conditions of Theorem 50, then the

ideal I has locally constant Jacobi rank around x(0) :

jg Ix = n − d , x near x(0) .
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The true generalization of linear algebra to complex analytic geometry consists in the converse to
this result that is usually called the Rank Theorem:

*Theorem 3.54 Let X = N (f1, . . . , fm) be an analytic subset of the open set U ⊂ Cn , and let

r (x) = rank

(
∂fj
∂xk

(x)

)
1≤j≤m
1≤k≤n

be constant in a neighbourhood of X : r (x) = r for all x ∈ V = V (X) . Then X is an (n − r)–
dimensional submanifold of U .

The proof of this statement is standard and follows the arguments in the differentiable case. □

A special case of the Rank Theorem is the Implicit Mapping Theorem which obviously generalizes
the Implicit Function Theorem:

*Theorem 3.55 Let x(0) be a point of an analytic subset X ⊂ U ⊂ Cn . x(0) is a regular point of X
(of dimension d ), if and only if there exist holomorphic functions fd+1, . . . , fn in a neighborhood V
of x(0) such that

X ∩ V = {x ∈ V : fd+1(x) = · · · = fn(x) = 0 }

and

rank

(
∂fj
∂xk

(x(0))

)
j=d+1,...,n
k=1,...,n

= n − d .

Remark . Near a smooth point of dimension d , the analytic set X is also parametrized by a d–
dimensional continuum. This follows from a (local) inverse ψ of the coordinate transformation φ
by observing that

X ∩ V = {x = (x1, . . . , xn) ∈ V : xk = αk(t1, . . . , td) , k = 1, . . . , n }

with a map α given by

xk = αk(t1, . . . , td) := ψk(t1, . . . , td, 0, . . . , 0) , k = 1, . . . , n ,

whose Jacobi matrix has constant rank d in a neighborhood of 0 in W ′ ⊂ Cd . (We also say in this
situation that α itself has constant rank). On the other hand, if X ∩ V can be represented by

X ∩ V = {x ∈ V : xk = αk(t1, . . . , td) , k = 1, . . . , n , t = (t1, . . . , td) ∈W ′ ⊂ Cd }

with a holomorphic map α = (α1, ..., αn) : W
′ → V of maximal rank d , then α (0) is a regular point

of X . To see this, we may assume that α (0) = 0 and(
∂αk

∂tj
(t)

)
1≤j,k≤d

is invertible for all t ∈W ′ . If we denote by β a (local) inverse to α′ = (α1, . . . , αd) : W
′ → V ′ ⊂ Cd ,

then {
yk = xk , k = 1, . . . , d

yk = xk − αk(β (x1, . . . , xd)) , k = d + 1, . . . , n

define new holomorphic coordinates near the origin (by the Inverse Mapping Theorem) and X is locally
given by the vanishing of the coordinates yd+1, . . . , yn .

Remark . It should be clear that all considerations above can be made mutatis mutandis for analytic
subsets of arbitrary complex manifolds (instead of Cn ).

We are finally coming back to a closer inspection of the “singular locus” sing X of an analytic subset
X = N (I) = N (f1, . . . , fm) ⊂ U ⊂ Cn where, of course, sing X denotes the set of nonsmooth, i. e.
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singular points of X . We know already that this is a closed subset of X since the complement reg X
of smooth points is open in X as we have seen above. Of course, it may happen that sing X = X , e. g.
if all points x ∈ X have nonreduced structure. We want to show in the following, at least in a special
situation, that sing X itself is analytic and give some hints why this is true in general. (Another more
conceptual argument shall be presented in the Supplement).

Theorem 3.56 For an analytic subset X = N (f1, . . . , fm) ⊂ U ⊂ Cn the singular locus sing X is
analytic, too.

Sketch of proof . Because S (X) := sing X is closed in X and hence in U , it suffices to prove analyticity
only locally at any point x(0) ∈ S (X) . Now, X decomposes in a neighbourhood V = V (x(0)) ⊂ U
into a finite union of “irreducible” (analytic) components:

X ∩ V = X1 ∪ · · · ∪Xt ,

and the singular locus of X ∩ V is just the union of the singular loci of the components and the
intersections Xτ ∩Xν . Moreover, for sufficiently small V , all components are pure–dimensional , i. e.
dimxXτ = dimx(0) Xτ for all x ∈ Xτ ∩V . (For more details, c. f. Chapter 6). Therefore, we are reduced
to the case that X is pure–dimensional , say dimxX = d for all x ∈ X such that due to Theorem 49:

S (X) = X ∩ {x ∈ U : jg Ix < n − d } .

In other words, we have to study the set of points x ∈ U such that the rank

rank

(
∂fj
∂xk

(x)

)
1≤j≤m
1≤k≤n

< n − d .

But this set consists of all points x ∈ U in which all (n − d) × (n − d)–subdeterminants of the

functional matrix
∂(f1, . . . , fm)

∂(x1, . . . , xn)
vanish. □

3.12 Uniqueness of the Weierstraß decomposition

In the following Section we will prove the Division Theorem for the rings Rn = C ⟨x1, . . . , xn ⟩ and
C∞
n,0 via the Polynomial Division Theorem which is treated in Section 14 in the analytic situation and in

the Appendix for differentiable germs. In the present Section we discuss the question about uniqueness
and derive the real analytic case R ⟨x1, . . . , xn ⟩ from the complex analytic result. The formal case is
more or less trivial and will be left to the reader.

As we will see below it is easy to prove uniqueness of the Weierstrass decomposition

f = q g + r

in the first (and hence in the real analytic and also in the formal) case. However, for differentiable germs
this is wrong as one can see by the following

Example. g (x, t) := t2 − x is t–generic of order 2 . Consider the germ f = 0 and write

r (x, t) = r (x) :=

{
exp (−1/x2) , x < 0 ,

0 , x ≥ 0 ,

q (x, t) := −r (x, t)/ g (x, t) if g (x, t) ̸= 0 , q (x, t) := 0 otherwise. Then, obviously, q0 ∈ E2,0 , r0 ∈
E1,0 ⊂ E2,0 and

q g + r = 0 = 0 g + 0 .
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Remark . For n = 1 , however, uniqueness holds for differentiable functions, as well.

We now carry out the proof for uniqueness in the complex analytic case. For doing so, we change
our notations in order to elucidate the problem. We work in Cn+1 with variables (x1, . . . , xn, t) and
write x = (x1, . . . , xn) for short and f (x, t) instead of f (x1, . . . , xn, t) etc.

Theorem 3.57 If g ∈ On+1,0 is t–generic of order b then any decomposition

f = q g + r , degt r < b ,

is unique.

Proof . It is only to show that q g = r , deg r < b implies q = r = 0 . For this it is sufficient to
prove r = 0 since due to the fact that On+1,0 is integer and g ̸= 0 it follows automatically q = 0 .
Therefore, there is nothing to prove for b = 0 (this case is clear anyway since g is then a unit). Thus,
we may assume that always b ≥ 1 in the following.

So, let

r = r (x, t) = a0(x) + a1(x) t + · · ·+ ab−1(x) t
b−1

be not identically zero. Then we find a sequence ξj ∈ Cn with lim ξj = 0 and an index 0 ≤ k ≤ b− 1
such that ak(ξj) ̸= 0 for all j . The polynomials

Pj(t) = r (ξj , t) ∈ C [ t ]

have therefore only zeros of order at most b − 1 in C .

Consider conversely g (x, t) . According to our assumption, g (0, t) possesses in t = 0 an (isolated)
zero of order b . Hence, there is a δ0 > 0 such that the origin is the only zero of g (0, t) in { | t | ≤ δ0 } .
Put

ε0 := min
|t|=δ0

{ | g (0, t) | } > 0 .

For suitable σ > 0 , the compact set { |x | ≤ σ , | t | ≤ δ0 } is contained in the region of definition for
g and due to continuity of g we get for sufficiently small σ0 ≤ σ that

| g (x, t) − g (0, t) | ≤ ε0
2
, |x | ≤ σ0 , | t | = δ0 .

Therefore, for such x and t :

| g (x, t) − g (0, t) | < | g (0, t) | .

Rouché’s Theorem then tells us that g (x, t) has for fixed x near 0 exactly as many zeros (with
multiplicity) in | t | < δ0 as g (0, t) , namely b of them, and this leads for large j because of

q (ξj , t) g (ξj , t) = Pj(t)

to a contradiction. □

Remark . If f is a real analytic germ at 0 ∈ Rn then f can be extended uniquely to a holomorphic
germ F at 0 ∈ Cn . From this remark, one easily deduces the following:

a) if g is xn–generic then the extension G is zn–generic, xn = Re zn ;

b) the decomposition f = q g + r , deg r < b , is unique if and only if the extended decomposition
F = QG + R is unique;

c) a decomposition F = QG + R induces a decomposition f = q g + r with q (x1, . . . , xn) =
Re Q (x1, . . . , xn) etc., x = Re z . In other words: the real analytic case follows directly from the
complex analytic one.
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3.13 The Polynomial Division Theorem

The complex analytic and the differentiable Division Theorem is a consequence of the special or poly-
nomial Division Theorem.

Theorem 3.58 (Polynomial Division Theorem) Let f (x, t) be holomorphic in a neighborhood of
(0, 0) ∈ Cn×C (resp. complex valued and C∞ near (0, 0) ∈ Rn×R) . Then, for the generic polynomial

Pb = Pb(t, λ) = tb +

b∑
j=1

λj t
b−j ,

there exists a decomposition

i) f (x, t) = q (x, t, λ)Pb(t, λ) + r (x, t, λ) with

ii) r (x, t, λ) =
∑b

j=1 rj(x, λ) t
b−j , rj(x, λ) holomorphic in a neighborhood of (0, 0) ∈ Cn × Cb

resp. differentiable near 0 ∈ Rn × Rb .

Before we proof this theorem at the end of the present Section, we demonstrate its usefulness. One
should note that it follows, in turn, from the Division Theorem: just view Pb as a holomorphic function
in the variables x, t, λ and remark that it is t–generic.

Theorem 3.59 The Polynomial Division Theorem implies the Preparation Theorem and the general
Division Theorem.

Proof . If the Preparation Theorem is already proven we write for the t–generic germ g :

g = q1 P

with the polynomial P = P (x, t) = tb +
∑b

j=1 uj(x) t
b−j and a unit q1 . From the Special Division

Theorem we have for arbitrary f :

f (x, t) = q2(x, t, λ)Pb(t, λ) + r2(x, t, λ) , degtr2 < b

for all λ near 0 . Setting λj = uj(x) leads to a decomposition of the desired manner:

f = (q−1
1 q2) g + r , r = r (x, t) = r2(x, t, u (x)) .

It remains to conclude the Preparation Theorem from the Polynomial Division Theorem. Thus, let
g = g (x, t) be t–generic of order b ≥ 1 . Then,

(∗)


g (x, t) = Q (x, t, λ)Pb(t, λ) + R (x, t, λ),

R (x, t, λ) =

b∑
j=1

hj(x, λ) t
b−j , Pb(t, λ) = tb +

b∑
j=1

λj t
b−j .

We are seeking functions λj = uj(x) such that R (x, t, u (x)) ≡ 0 , i.e. hj(x, u (x)) ≡ 0 for all j .
Since then Pb(t, u (x)) is a Weierstraß polynomial and g (x, t) = Q (x, t, u (x))Pb(t, u (x)) is the
decomposition of the form we want.

Now, (∗) implies for x = 0 , λ = 0 that

Q (0, 0, 0) ̸= 0

(Q is, in fact, a unit) and hj(0, 0) = 0 . Differentiating (∗) at x = 0 , λ = 0 with respect to λk we
find

0 = tb−kQ (0, t, 0) + tb
∂Q

∂λk
(0, t, 0) +

b∑
j=1

∂hj
∂λk

(0, 0) tb−j .



3.14 Proof of the Polynomial Division Theorem in the analytic case 83

Since Q (0, 0, 0) ̸= 0 , this implies

∂hj
∂λk

(0, 0) = 0 , j > k ,
∂hk
∂λk

(0, 0) ̸= 0 .

Therefore,

det

(
∂hj
∂λk

(0, 0

)
j,k=1,...,b

̸= 0 ,

and the equations h = 0 with

h :

{
Kn × Kb −→ Kb

(x , λ) 7−→ (h1(x, λ), . . . , hb(x, λ))

can be, because of h (0, 0) = 0 , holomorphically (K = C ) resp. differentiably (K = R ) resolved with
respect to λ near λ = 0 . □

3.14 Proof of the Polynomial Division Theorem in the analytic
case

The Polynomial Division Theorem is for complex analytic functions a simple consequence of the Cauchy
Integral Theorem (in one complex variable). The following is easy to prove.

Lemma 3.60 (Continuity of Roots) If |λ | ≤ δ = δ (ε) is sufficiently small then all the roots of

P (t, λ) := Pb(t, λ)

are lying in a fixed disk { | t | ≤ ε } .

For the proof repeat the arguments of the second part of the proof of Theorem 57. From this we
construct to each ε > 0 a δ > 0 such that P (t, λ) has exactly b roots in { | t | ≤ ε } for fixed λ
with |λ | ≤ δ . □

We are now in the position to prove the Polynomial Division Theorem in the complex analytic case;
Let D = Dε(0) ⊂ C . If one takes into consideration that

P (z, λ) − P (t, λ)

z − t
= ρ (z, t, λ)

is a polynomial in t of degree < b with analytic coefficients, then Cauchy’s Integral Formula says for
small ε > 0 - if one divides the equation above by P (z, λ) :

f (x, t) =
1

2πi

∫
∂D

f (x, z)

z − t
dz

=

(
1

2πi

∫
∂D

f (x, z)

(z − t) P (z, λ)
dz

)
P (t, λ) +

1

2πi

∫
∂D

f (x, z) ρ (z, t, λ)

P (z, λ)
dz .

Since, for small λ and t , the integrals exist and define holomorphic functions in (x, t, λ) , the proof is
finished. □

3.15 A formal criterion

As a last application of the investigations above we regard the differentiable and analytic category, i.e.
Rn equal to On,0 or En,0 , and their relation to the formal situation, i.e. to R̃n = K {x1, . . . , xn } .
We have in both cases a canonical homomorphism

ε = εn : Rn −→ R̃n ,
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which in the differentiable case is surjective and, in the analytic case, injective. Each substitution
homomorphism

φ :

{
Rm −→ Rn

g 7−→ g (f1, . . . , fm) ,
, f1, . . . , fm ∈ mn

gives rise to a substitution homomorphism

φ̃ :

{
R̃m −→ R̃n

g̃ 7−→ g̃ (ε(f1), . . . , ε(fm))
.

The corresponding diagram

(×)

R̃m R̃n
-

φ̃

Rm Rn
-φ

?

εm

?

εn

is obviously commutative (Theorem 2.23).
The following theorem is, in the C∞–category, the version of the Division Theorem à laMalgrange.

Theorem 3.61 For a substitution homomorphism φ : Rm → Rn the following statements are equiv-
alent :

i) φ is finite;

ii) φ is quasi–finite;

iii) φ̃ is finite;

iv) φ̃ is quasi–finite.

Proof . We have already shown the equivalence of i) and ii) resp. of iii) and iv). Now, if φ is finite and if
x1, . . . , xn form a system of generators for mn then each xj is algebraic over Rm with respect to φ .

Due to (×) the generators x̃j := εn(xj) of m̃n = m (R̃n) are algebraic with respect to φ̃ over R̃m ;
hence φ̃ is finite (Theorem 23).

Let conversely φ̃ be quasi–finite. Then, because of (×),

R̃n/ (εn ◦ φ) (mm) R̃n

is a finite dimensional K–vector space and thus

dimK(Rn/ (mmRn + m∞
n )) < ∞ .

Consequently, there exists a number k ∈ N with

mk
n ⊂ mk+1

n + mmRn + m∞
n ⊂ mmRn + mk+1

n ,

and the Nakayama Lemma gives mk
n ⊂ mmRn . Hence, Theorem 15 guaranties the finiteness of φ . □

3.A Appendix: The Polynomial Division Theorem in the dif-
ferentiable case

3.A.1 Proof of the Theorem

Let us here consider the differentiable case f = f (x, t) : (Rn × R, 0) → C . As before, put

Pb = Pb(z, λ) = zb +

b∑
j=1

λj z
b−j , (z, λ) ∈ C× Cb .
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We try to find suitable C∞–extensions

F = F (x, z, λ) : (Rn × C× Cb, 0) −→ C

of f , i.e. F (x, t, λ) = f (x, t) , (x, t) ∈ (Rn × R, 0) , such that the wanted decomposition follows
from the inhomogeneous Cauchy Integral Formula. The latter reads, as is well known, for suitable
D = Dε(0) ⊂ C :

f (x, t) = F (x, t, λ) =
1

2πi

∫
∂D

F (x, z, λ)

z − t
dz +

1

2πi

∫
D

∂F

∂z
(x, z, λ)

z − t
dz ∧ dz .

With similar considerations as in the complex analytic case it follows that

f (x, t) = Q (x, t, λ)P (t, λ) + R (x, t, λ) ,

where

(2πi)Q (x, t, λ) =

∫
∂D

F (x, z, λ)

(z − t) P (z, λ)
dz +

∫
D

∂F

∂z
(x, z, λ)

(z − t) P (z, λ)
dz ∧ dz

and

(2πi)R (x, t, λ) =

∫
∂D

F (x, z, λ) ρ (z, t, λ)

P (z, λ)
dz +

∫
D

∂F

∂z
(x, z, λ)

ρ (z, t, λ)

P (z, λ)
dz ∧ dz .

In the boundary integrals along ∂D the numerators do not vanish. Therefore, these parts of Q and R
are C∞–functions resp. polynomials in t of degree smaller than b with C∞–coefficients. This is also
true for the domain integrals in as far as we can prove the following Extension Lemma which goes back
to Nirenberg.

Lemma 3.62 Let f (x, t) be a complex valued C∞–function on a neighborhood of 0 ∈ Rn × R . Then
there is an extension F = Fb of f near 0 ∈ Rn × C× Cb such that the following holds true :

(+)
∂F

∂z
vanishes of infinite order on the real analytic sets { Im z = 0 } and {P (z, λ) = 0 } .

This suffices for proving the Polynomial Division Theorem. Indeed, putting

g (x, z, t, λ) :=

∂F

∂z
(x, z, λ)

(z − t) P (z, λ)

for z ̸= t and P (z, λ) ̸= 0 resp. = 0 otherwise, each partial derivative of g at a place where the
numerator does not vanish is a finite sum of functions of the form

(++)
G0(x, z, λ)

[ (z − t)P (z, λ) ]k
,

where G vanishes of infinite order on { Im z = 0} and on {P (z, λ) = 0 } . Remark that the numerator
is complex analytic in all variables.

Now, set λ′ = (λ1, . . . , λb−1) and look at the map

(z, λ′, λb) 7−→ (z, λ′, u)

with u = P (z, λ) . Since ∂u/ ∂λb ≡ 1 this is a diffeomorphism under which the set {P (z, λ) = 0 }
will be carried to the hyperplane {u = 0 } . Hence, due to our assumption, G0 can be written for all
ℓ ∈ N in the form

G0(x, z, λ) = (Im z)ℓG1(x, z, λ)
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and moreover
G1(x, z, λ) = (Reu)ℓG2(x, z, λ) + (Imu)ℓG3(x, z, λ) .

Hence, for ℓ > k , the expression (++) converges together with (z − t)P (z, λ) → 0 to zero, and
from this one deduces immediately that all partial derivatives of g exist for z = t and P (z, λ) = 0
(and vanish). In particular, the parts of Q and R which consist of domain integrals exist and are, as
we wanted, C∞–functions. □

After all, we must prove the Nirenberg Extension Lemma. For this, we need a Lemma that goes
back to E. Borel.

*Lemma 3.63 Let (fj) be a sequence of C∞–functions on a neighborhood U = U (0) ⊂ Rn . Then
there exists a C∞–function F = F (x, t) in a neighborhood V = V (0) ⊂ Rn × R with V ∩ Rn ⊂ U
such that

∂jF

∂tj
(x, 0) = fj(x) , j ∈ N .

Remark . For n = 0 , this is the surjection C∞
n,0 → R {x1, . . . , xn } which we used already in a former

Section.

Idea of proof . Let φ (t) be a C∞–function on R with φ (t) ≡ 1 , | t | ≤ 1/ 2 , φ (t) ≡ 0 , | t | ≥ 1 .
Then one puts

F (x, t) =

∞∑
j=0

tj

j!
φ (ρjt) fj(x)

and shows that F (x, t) has the desired properties if the positive sequence (ρj) grows sufficiently fast.
(C.f. [01 - 20], pp. 98, 99). □

With the same idea one proves

*Lemma 3.64 Let f : (Rn × R, 0) → C be a differentiable germ. Then there exists a differentiable
germ F : (Rn × C, 0) → C with F|Rn×R = f such that ∂F/ ∂z : Rn × C → C vanishes to infinite
order on Rn × R .

Idea of proof . Let z = t + s i and, with the function φ as above and suitable ρj > 0 :

F (x, z) =

∞∑
j=0

(
i
∂

∂t

)j

f (x, t)
sj

j!
φ (ρjs) .

Then F is arbitrarily often differentiable and F (x, t) = f (x, t) . Now,

2 ∂/ ∂ z = ∂/ ∂t + i ∂/ ∂s = i (−i ∂/ ∂t + ∂/ ∂s) ;

this implies

2

i

∂F

∂z
(x, z) =

∞∑
j=0

(
i
∂

∂t

)j+1

f (x, t)
sj

j!
[φ (ρj+1s) − φ (ρjs) ] +

∞∑
j=0

(
i
∂

∂t

)j

f (x, t)
sj

j!
ρj φ

′(ρjs) ,

and each term vanishes in a neighborhood of s = 0 . □

The proof of Nirenberg’s Extension Theorem is carried out via induction on b . For b = 0 the
set {P (z, λ) = 0 } is empty and, therefore, our claim is true due to the preceding Lemma. Suppose
that the Extension Lemma is already proven for b − 1 . We make again the transformation

(z, λ′, λb) 7−→ (z, λ′, u) , u = P (z, λ) = Pb(z, λ) ,
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and compute easily that the operator ∂/ ∂z is equal to

L =
∂

∂z
+ P ′(z, λ)

∂

∂u

where, in principle,

P ′ =
∂Pb

∂t

is (up to a factor and a homotethy) equal to Pb−1 = Pb−1(z, λ
′) (the coordinate λb does not occur

anymore).

After induction hypothesis, there exists a C∞–function F ′ = Fb−1 = Fb−1(x, z, λ
′) with

F ′(x, t, λ′) = f (x, t) , (x, t, λ′) ∈ Rn × R× Cb−1 ,

and ∂F ′/ ∂z vanishes to arbitrary high order on { Im z = 0 } and {P ′(z, λ′) = 0 } .

Put now (φ is chosen similarly as above)

F (x, z, λ) =

∞∑
j=0

(
− 1

P ′
∂

∂z

)j

F ′(x, z, λ′)
uj

j!
φ (ρju)

where ρ0 = 0 and the ρj are increasing so rapidly that one is allowed to differentiate the series term
by term (up to arbitrary high order) on P ′ ̸= 0 . Due to our assumption on F ′ , the function F
may be extended via F (x, z, λ) = 0 for P ′(z, λ′) = 0 to a C∞–function in a neighborhood of 0 in
Rn × C× Cb .

For Im z = 0 , i.e. z = t ∈ R , all summands vanish to arbitrary high order, besides for the index
j = 0 . Hence, F is an extension of f :

F (x, t, λ) = F ′(x, t, λ′) = f (x, t) .

Now, ∂F ′/ ∂u ≡ 0 , and hence, LF vanishes to arbitrary high order on { Im z = 0 } . However,

LF = P ′
(

1

P ′
∂

∂z
+

∂

∂u

)
F

= −P ′
∞∑
j=0

(
− 1

P ′
∂

∂z

)j+1

F ′ · u
j

j!
[φ (ρju) − φ (ρj+1u) ]

+P ′
∞∑
j=0

(
− 1

P ′
∂

∂z

)j

F ′ · u
j

j!
ρj

∂φ

∂u
(ρju) ,

and here, each summand on the right hand side vanishes locally around u = 0 , i.e. ∂F/ ∂z vanishes
of infinite order on {u = 0 } = {Pb(z, λ) = 0 } . □

3.A.2 Symmetric germs

In order to close this Chapter we apply the Division Theorem to symmetric germs carrying over the
main theorem on symmetric polynomials to differentiable and analytic function germs.

Theorem 3.65 (Glaeser) Each symmetric, i.e. Sn–invariant germ f ∈ Rn is of the form f =
g ◦ σ , g ∈ Rn , σ = (σ1, . . . , σn) .

Proof . Putting in the defining equation for the elementary symmetric functions t = xk leads to

xnk =

n∑
j=1

(−1)j−1 σj(x)x
n−j
k ,
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whence
xnk ∈ σ (mn)Rn and (mn)

nn

⊂ σ (mn)Rn .

Thus, the monomials of degree < nn generate Rn as a module on the ring of germs f ◦ σ .

Let φ1, . . . , φN be the monomials of degree < nn . Further, let f be a symmetric function germ and
write

f (x) =

N∑
j=1

gj(σ (x))φj(x) .

Due to the symmetry of f and gj ◦ σ , we get

f (x) =

N∑
j=1

gj(σ (x)) φ̃j(x)

with

φ̃j(x) =
1

n!

∑
π∈Sn

φj(xπ(1), . . . , xπ(n)) .

Since the polynomials φ̃j are symmetric they can be written in the form Pj ◦ σ , Pj ∈ K [x1, . . . , xn ] ,
and

g =

N∑
j=1

gj Pj

does the job. □

Remark . The symmetric group Sn is generated by the transpositions τ = (j k) . τ operates on Rn

via τ (xj) = xk , τ (xk) = xj , τ (xi) = xi , i ̸= j, k . Hence τ2 = id and τ is a reflection. In other
words: Sn operates on Kn as a reflection group. We have shown above that the invariant ring

RSn
n := { f ∈ Rn : f ◦ π = f for all π ∈ Sn }

is equal to the ring { g ◦ σ : g ∈ Rn } , thus isomorphic to Rn . We shall study such invariant rings
RG

n later in more generality for arbitrary finite subgroups G ⊂ Aut Rn . If G is an arbitrary reflection
group then always RG

n
∼= Rn .

Notes and References

Historically, the – by Weierstrass – so called Vorbereitungssatz comes first in the complex analytic
case (due to his own statement from

”
1860 wiederholt in meinen Universitätsvorlesungen vorgetragen”,

published only after 1886, by Poincaré already in 1879, but also for n = 2 by Cauchy 1831 - cf.
Bemerkung 2 in Grauert - Remmert, Analytische Stellenalgebren [01 - 02], pp. 35–36. This theorem,
however, is equivalent to the Division Theorem (Stickelberger 1887, Brill 1891, Späth 1929,
Rückert 1933). It is even possible to derive from the Division Theorem the Preparation Theorem for
general ground fields as has been noted by Stickelberger and Siegel, c.f. loc. cit., pp. 43–44.

Most of the algebraic material in our text can be found in a very similar manner in [01 - 02]. The use
and proof of the Polynomial Division Theorem is taken from [01 - 26]. The proof in the differentiable
category follows Bröcker [01 - 24] and Bröcker - Lander [01 - 25] with a certain abbreviation which
- according to Theodor Bröcker - goes back to Andreas Dress. I thank my colleague Peter Slodowy who
called my attention to this variant. For the proof of Hilbert’s Basis Theorem, the Gauß Lemma and
further applications of the Cayley–Hamilton Theorem, cf. [02 - 01].
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